ON THE ASYMPTOTIC THEORY OF SUBSAMPLING

by

DIMITRIS N. POLITIS
Department of Mathematics
University of California, San Diego

JOSEPH P. ROMANO
Department of Statistics
Stanford University

MICHAEL WOLF
Departamento de Estadistica y Econometria
Universidad Carlos III

Technical Report No. 1999–10
May 1999

This research was supported in part by
National Science Foundation grant DMS-9704487

Department of Statistics
Sequoia Hall
STANFORD UNIVERSITY
Stanford, California 94305-4065

http://www-stat.stanford.edu
On the Asymptotic Theory of Subsampling

Dimitris N. Politis
Department of Mathematics
University of California, San Diego

Joseph P. Romano
Department of Statistics
Stanford University

Michael Wolf
Departamento de Estadística y Econometría
Universidad Carlos III, Madrid

May 1999

Abstract

A general approach to constructing confidence intervals by subsampling was presented in Politis and Romano (1994). The crux of the method is based on recomputing a statistic over subsamples of the data, and these recomputed values are used to build up an estimated sampling distribution. The method works under extremely weak conditions, it applies to independent, identically distributed (i.i.d.) observations as well as to dependent data situations, such as time series (possibly nonstationary), random fields, and marked point processes. In this article, we present some new theorems showing: a new construction for confidence intervals that removes a previous condition, a general theorem showing the validity of subsampling for data-dependent choices of the block size, and a general theorem for the construction of hypothesis tests (which is not necessarily derived from a confidence interval construction). The arguments apply to both the i.i.d. setting as well as the dependent data case.

KEY WORDS: Confidence Intervals, Data-dependent block size choice, Hypothesis Tests, Large sample theory, Resampling.
1 Introduction

A general theory for the construction of confidence intervals or regions was presented in Politis and Romano (1992, 1994). The basic idea is to approximate the sampling distribution of a statistic based on the values of the statistic computed over smaller subsets of the data. For example, in the case where the data are n observations which are independent and identically distributed, a statistic is computed based on the entire data set and is recomputed over all $\binom{n}{b}$ data sets of size b. Implicit is the notion of a statistic sequence, so that the statistic is defined for samples of size n and b. These recomputed values of the statistic are suitably normalized to approximate the true sampling distribution.

This approach based on subsampling is perhaps the most general theory for the construction of first order asymptotically valid confidence regions. In fact, under very weak assumptions on b, the method is valid whenever the original statistic, suitably normalized, has a limit distribution under the true model. Other methods, such as the bootstrap, require that the distribution of the statistic is somehow locally smooth as a function of the unknown model. In fact, many papers have been devoted to showing the convergence of a suitably normalized statistic to its limiting distribution is appropriately uniform as a function of the unknown model in specific situations. In contrast, no such assumption or verification of such smoothness is required in the theory for subsampling. Indeed, the method here is applicable even in the several known situations which represent counterexamples to the bootstrap. To appreciate why subsampling behaves well under such weak assumptions, note that each subset of size b (taken without replacement from the original data) is indeed a sample of size b from the true model. Hence, it should be intuitively clear that one can at least approximate the sampling distribution of the (normalized) statistic based on a sample of size b. But, under the weak convergence hypothesis, the sampling distributions based on samples of size b and n should be close. The bootstrap, on the other hand, is based on recomputing a statistic over a sample of size n from some estimated model which is hopefully close to the true model.

The method has a clear extension to the context of a stationary time series or, more generally, a homogeneous random field. The only difference is that the statistic is computed over a smaller number of subsets of the data that retain the dependence structure of the observations. For example, if X_1, \ldots, X_n represent n observations from some stationary time series, the statistic is recomputed only over the $n-b+1$ subsets of size b of the $\{X_i, X_{i+1}, \ldots, X_{i+b-1}\}$. The ideas extend to random fields and marked point processes as well.

The use of subsample values to approximate the variance of a statistic is well-known. The Quenouille-Tukey jackknife estimates of bias and variance based on computing a statistic over all subsamples of size $n-1$ has been well-studied and is closely related to the mean and variance of our estimated sampling distribution with $b = n - 1$. Mahalanobis (1946) suggested
the use of subsamples to estimate variability in studying crop yields, though he used the name interpenetrating samples. Half sampling methods have been well-studied in the context of sampling theory; see McCarthy (1969). Hartigan (1969) has introduced what Efron (1982) calls a random subsampling method, which is based on the computation of a statistic over all $2^n - 1$ nonempty subsets of the data. His method is seen to produce exact confidence limits in the special context of the symmetric location problem. Hartigan (1975) has adapted his finite sample results to a more general context of certain classes of estimators which have asymptotic normal distributions. But, even in this context, his asymptotic results assume the number of subsamples used to recompute the statistic remains fixed as $n \to \infty$, which results in a loss of efficiency.

The jackknife and random subsampling methods are similar in that they both use subsets of the data to approximate standard errors of a statistic, or perhaps even to approximate a sampling distribution. The method presented here retains the conceptual simplicity of these methods and is seen to be applicable under very minimal assumptions.

Efron's (1979) bootstrap, while sharing some similar properties to the aforementioned methods, has corrected some deficiencies in the jackknife, and has tackled the more ambitious goal of approximating an entire sampling distribution. Shao and Wu (1989) have shown that, by basing a jackknife estimate of variance on the statistic computed over subsamples with d observations deleted, many of the deficiencies of the usual $d = 1$ jackknife estimate of variance can be removed. Later, Wu (1990) used these subsample values to approximate an entire sampling distribution by what he calls a jackknife histogram, but only in regular i.i.d. situations where the statistic is appropriately linear so that asymptotic normality ensues. In more broad generality, Sherman and Carlstein (1996) considered the use of subsamples as a diagnostic tool to describe the shape of the sampling distribution of a general statistic, though formal inference procedures, such as the construction of confidence intervals, are not delivered. Here, we show how these subsample values can accurately estimate a sampling distribution without any assumptions of asymptotic normality, by only assuming the existence of a limiting distribution. Moreover, the asymptotic validity of confidence statements follows. In summary, while the method developed in this work is quite related to several well-studied techniques, the simplicity of our arguments has lead to asymptotic justification under the most general conditions.

In Section 2, the method is described in the context of i.i.d. observations. The basic theory is quickly reviewed, as the ideas and notation are used in the new results. A variation (Corollaries 2.1 and 5.1) of the basic confidence interval is presented which removes one of the original conditions. Although this condition is extremely weak, the new interval is more closely related to a construction presented in the next section on hypothesis testing. The use of subsampling in the context of hypothesis testing based on i.i.d. samples is described in
Section 3. A general theorem proving consistency of subsampling using random or data-driven choices of the block size is presented in Section 4. Sections 5, 6, and 7 extend these ideas to the time series case. The same ideas apply, and the proofs only highlight the differences from the i.i.d. case. Section 8 presents an example and illustrates the idea of data-driven choice of the block size. The paper is summarized in Section 9.

2 The Basic Theorem in the i.i.d. Case

Throughout this section, \(X_1, \ldots, X_n\) is a sample of \(n\) independent and identically distributed random variables taking values in an arbitrary sample space \(S\). The common probability measure generating the observations is denoted \(P\). The goal is to construct a confidence region for some parameter \(\theta(P)\). For now, assume \(\theta\) is real-valued, but this can be considerably generalized to allow for the construction of confidence regions for multivariate parameters or confidence bands for functions.

Let \(\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n)\) be an estimator of \(\theta(P)\). It is desired to estimate or approximate the true sampling distribution of \(\hat{\theta}_n\) in order to make inferences about \(\theta(P)\). Nothing is assumed about the form of the estimator, though it is natural in the i.i.d. context to assume \(\hat{\theta}_n\) is symmetric in its arguments (but even this is not necessary).

Define \(J_n(P)\) to be the sampling distribution of \(\tau_n(\hat{\theta}_n - \theta(P))\) based on a sample of size \(n\) from \(P\), where \(\tau_n\) is a normalizing constant. Also define the corresponding cumulative distribution function:

\[
J_n(x, P) = \text{Prob}_P\{\tau_n[\hat{\theta}_n(X_1, \ldots, X_n) - \theta(P)] \leq x\}.
\]

Essentially, the only assumption that we will need to construct asymptotically valid confidence intervals for \(\theta(P)\) is the following.

Assumption 2.1 There exists a limiting law \(J(P)\) such that \(J_n(P)\) converges weakly to \(J(P)\) as \(n \to \infty\).

This assumption will be required to hold for some sequence \(\tau_n\). It will be necessary, however, that \(\tau_n\) is such that the limit law \(J(P)\) is nondegenerate. This assumption is clearly satisfied in numerous examples, and it is hard to conceive of a theory where this assumption fails.

To describe the method studied in this section, let \(Y_1, \ldots, Y_{N_n}\) be equal to the \(N_n = \binom{n}{b}\) subsets of size \(b\) of \(\{X_1, \ldots, X_n\}\), ordered in any fashion. Of course, the \(Y_i\) depend on \(b\) and \(n\), but this notation has been suppressed. Only a very weak assumption on \(b\) will be required. In typical situations, it will be assumed that \(b/n \to 0\) and \(b \to \infty\) as \(n \to \infty\). Now, let \(\tilde{\theta}_{n,b,i}\) be
equal to the statistic $\hat{\theta}_b$ evaluated at the data set Y_i. The approximation to $J_n(x, P)$ we study is defined by

$$L_{n,b}(x) = N_n^{-1} \sum_{i=1}^{N_n} 1\{\tau_b(\hat{\theta}_{n,b,i} - \hat{\theta}_n) \leq x\}. \quad (1)$$

The motivation behind the method is the following. For any i, Y_i is a random sample of size b from P. Hence, the exact distribution of $\tau_b(\hat{\theta}_{n,b,i} - \theta(P))$ is $J_b(P)$. The empirical distribution of the N_n values of $\tau_b(\hat{\theta}_{n,b,i} - \theta(P))$ should then serve as a good approximation to $J_n(P)$. Of course, $\theta(P)$ is unknown, so we replace $\theta(P)$ by $\hat{\theta}_n$, which is asymptotically permissible because $\tau_b(\hat{\theta}_n - \theta(P))$ is of order $\tau_b/\tau_n \to 0$. These heuristics lead to the following theorem, first proved in Politis and Romano (1992). We include much of the proof because all subsequent proofs will expand upon the argument, as well as make use of the same notation.

Theorem 2.1 Assume Assumption 2.1. Also assume $\tau_b/\tau_n \to 0$, $b \to \infty$, and $b/n \to 0$ as $n \to \infty$.

(i) If x is a continuity point of $J(\cdot, P)$, then $L_{n,b}(x) \to J(x, P)$ in probability.

(ii) If $J(\cdot, P)$ is continuous, then

$$\sup_x |L_{n,b}(x) - J_n(x, P)| \to 0 \text{ in probability.} \quad (2)$$

(iii) Let

$$c_{n,b}(1 - \alpha) = \inf \{x : L_{n,b}(x) \geq 1 - \alpha\}.\text{Correspondingly, define}$$

$$c(1 - \alpha, P) = \inf \{x : J(x, P) \geq 1 - \alpha\}.\text{If } J(\cdot, P) \text{ is continuous at } c(1 - \alpha, P), \text{ then}$$

$$\text{Prob}_P\{\tau_n[\hat{\theta}_n - \theta(P)] \leq c_{n,b}(1 - \alpha)\} \to 1 - \alpha \text{ as } n \to \infty. \quad (3)$$

Therefore, the asymptotic coverage probability under P of the confidence interval

$I_1 = [\hat{\theta}_n - \tau_n^{-1}c_{n,b}(1 - \alpha), \infty)$ is the nominal level $1 - \alpha$.

(iv) Assume $\tau_b(\hat{\theta}_n - \theta(P)) \to 0$ almost surely and, for every $d > 0$, $\sum \exp\{-d(n/b)\} < \infty$.

Then, the convergences in (i) and (ii) hold with probability one.

Proof. Let

$$U_n(x) = U_{n,b}(x, P) = N_n^{-1} \sum_{i=1}^{N_n} 1\{\tau_b[\hat{\theta}_{n,b,i} - \theta(P)] \leq x\}. \quad (4)$$
Note that the dependence of $U_n(x)$ on b and P will now be suppressed for notational convenience. To prove (i), it suffices to show $U_n(x)$ converges in probability to $J(x, P)$ for every continuity point x of $J(x, P)$. To see why,

$$L_{n,b}(x) = N_n^{-1} \sum_i 1\{\tau_0[\tilde{\theta}_{n,b,i} - \theta(P)] + \tau_0[\theta(P) - \tilde{\theta}_n] \leq x\},$$

so that for every $\epsilon > 0$,

$$U_n(x - \epsilon) 1(E_n) \leq L_{n,b}(x) 1(E_n) \leq U_n(x + \epsilon),$$

where $1(E_n)$ is the indicator of the event $E_n \equiv \{\tau_0|\theta(P) - \tilde{\theta}_n| \leq \epsilon\}$. But, the event E_n has probability tending to one. So, with probability tending to one,

$$U_n(x - \epsilon) \leq L_{n,b}(x) \leq U_n(x + \epsilon)$$

for any $\epsilon > 0$. Hence, if $x + \epsilon$ and $x - \epsilon$ are continuity points of $J(\cdot, P)$, then $U_n(x \pm \epsilon) \to J(x \pm \epsilon, P)$ in probability implies

$$J(x - \epsilon, P) - \epsilon \leq L_{n,b}(x) \leq J(x + \epsilon, P) + \epsilon$$

with probability tending to one. Now, let $\epsilon \to 0$ so that $x \pm \epsilon$ are continuity points of $J(\cdot, P)$. Therefore, it suffices to show $U_n(x) \to J(x, P)$ in probability for all continuity points x of $J(\cdot, P)$. But, $U_n(x)$ is a U-statistic of degree b. Also, $0 \leq U_n(x) \leq 1$ and $E[U_n(x)] = J_b(x, P)$. By an inequality of Hoeffding (1963) (see Serfling (1980), Theorem A, p.201): for any $t > 0$,

$$\text{Prob}_P\{U_n(x) - J_b(x, P) \geq t\} \leq \exp\{-2|n/b|t^2\}. \quad (5)$$

One can obtain a similar inequality for $t < 0$ by considering the U-statistic $-U_n(x)$. Hence, $U_n(x) - J_b(x, P) \to 0$ in probability. The result (i) follows since $J_b(x, P) \to J(x, P)$.

To prove (ii), given any subsequence $\{n_k\}$, one can extract a further subsequence $\{n_{k_j}\}$ so that $L_{n_{k_j}}(x) \to J(x, P)$ almost surely. Therefore, $L_{n_{k_j}}(x) \to J(x, P)$ almost surely for all x in some countable dense set of the real line. So, $L_{n_{k_j}}$ tends weakly to $J(x, P)$ and this convergence is uniform by Polya’s theorem. Hence, the result (ii) holds.

The proof of (iii) is very similar to the proof of Theorem 1 of Beran (1984) given our result (i).

To prove (iv), follow the same argument, using the added assumptions and the Borel-Cantelli Lemma on the inequality equation (5).

Remark 2.1 The assumptions $b/n \to 0$ and $b \to \infty$ need not imply $\tau_b/\tau_n \to 0$. For example, in the unusual case $\tau_n = \log(n)$, if $b = n^\gamma$ and $\gamma > 0$, the assumption $\tau_b/\tau_n \to 0$ is not satisfied. In regular cases, $\tau_n = n^{1/2}$, and the assumptions on b simplify to $b/n \to 0$ and $b \to \infty$. The further assumption on b in part (iv) of the Theorem will then hold, for example, if $b = n^\gamma$ for any $\gamma \in (0, 1)$. In fact, it is easy to see that it holds if $b \log(n)/n \to 0$.

6
Remark 2.2 The assumptions on \(b \) are as weak as possible under the weak assumptions of the theorem. However, in some cases, the choice \(b = O(n) \) yields similar results; this occurs in Wu (1990), where the statistic is approximately linear with an asymptotic Gaussian distribution and \(\tau_n = n^{1/2} \). This choice will not work in general.

Remark 2.3 The proof of consistency of the subsampling distribution \(L_{n,b}(x) \) boils down to proving consistency of the related U-statistic \(U_n(x) \). Rather than using Hoeffding’s exponential inequality as done in the proof, it may be instructive to show the variance of \(U_n(x) \) tends to zero as follows. Suppose \(k \) is the greatest integer less than or equal to \(n/b \). For \(j = 1, \ldots, k \), let \(R_{n,b,j} \) be equal to the statistic \(\hat{\theta}_b \) evaluated at the data set \(\hat{\theta}_b(X_{b(j-1)+1}, X_{b(j-1)+2}, \ldots, X_{b(j-1)+b}) \) and set

\[
\bar{U}_n(x) = k^{-1} \sum_{j=1}^{k} 1\{\tau_n[R_{n,b,j} - \theta(P)] \leq x\}.
\]

Clearly, \(\bar{U}_n(x) \) and \(U_n(x) \) have the same expectation. But, since \(\bar{U}_n(x) \) is the average of \(k \) i.i.d. variables (each of which is bounded between 0 and 1), it follows that

\[
\text{Var}[\bar{U}_n(x)] \leq \frac{1}{4k} \to 0
\]
as \(n \to \infty \). Intuitively, \(U_n(x) \) should have a smaller variance than \(\bar{U}_n(x) \), because \(\bar{U}_n(x) \) uses in the ordering in the sample in an arbitrary way. Indeed, the fact that \(U_n(x) \) has a smaller variance than \(\bar{U}_n(x) \) can be argued by a sufficiency argument using the Rao-Blackwell theorem. Simply note that we can write

\[
U_n(x) = E[\bar{U}_n(x)|X_n],
\]

where \(X_n \) is the collection of the order statistics \(\{X_{(1)}, \ldots, X_{(n)}\} \).

Remark 2.4 In fact, one can remove the assumption that \(\tau_b/\tau_n \to 0 \) if the goal is to construct an asymptotically valid confidence interval for \(\theta(P) \), but at the small expense of bypassing consistent estimation of \(J_n(\cdot, P) \). To see how, let

\[
u_{n,b}(1 - \alpha, P) = \inf \{x : U_{n,b}(x, P) \geq 1 - \alpha\},
\]

where \(U_{n,b}(\cdot, P) \) is defined in (4). Under continuity assumptions on \(J(\cdot, P) \), the proof of Theorem 2.1 shows \(U_{n,b}(x, P) \) converges in probability to \(J(x, P) \); it follows that \(\nu_{n,b}(1 - \alpha, P) \) converges in probability (under \(P \)) to \(c(1 - \alpha, P) \). Moreover, the assumption \(\tau_b/\tau_n \to 0 \) is not used. Note, however, that \(\nu_{n,b}(1 - \alpha, P) \) is not an estimator since it depends on \(P \). Nevertheless, with \(P \) fixed, the event

\[
\{\tau_n(\hat{\theta}_n - \theta(P)) \leq \nu_{n,b}(1 - \alpha, P)\}
\]

has an asymptotic probability of \(1 - \alpha \) under \(P \) (assuming \(J(\cdot, P) \) is continuous at \(c(1 - \alpha, P) \)). But,

\[
\nu_{n,b}(1 - \alpha, P) = c_{n,b}(1 - \alpha) + \tau_b(\hat{\theta}_n - \theta(P)).
\]
Hence, the event (6) is exactly the same as the event
\[
\{\tau_n(\hat{\theta}_n - \theta(P)) \leq c_{n,b}(1 - \alpha) + \tau_b(\hat{\theta}_n - \theta(P))\},
\]
(8)
or equivalently,
\[
\{(\tau_n - \tau_b)(\hat{\theta}_n - \theta(P) \leq c_{n,b}(1 - \alpha))\}
\]
(9)
By solving for \(\theta(P)\), the following nominal level \(1 - \alpha\) confidence interval is obtained:
\[
[\hat{\theta}_n - (\tau_n - \tau_b)^{-1}c_{n,b}(1 - \alpha), \infty).
\]
(10)
This interval (10) can be computed without knowledge of \(P\), it has asymptotic coverage probability under \(P\) of \(1 - \alpha\), and the assumption \(\tau_b/\tau_n \to 0\) was not needed. Clearly, the only difference between this interval (10) and the interval presented in Theorem 2.1 is the factor \((\tau_n - \tau_b)^{-1}\) here replaces the factor \(\tau_n^{-1}\) there. This discussion leads to the following corollary.

Corollary 2.1 Assume Assumption 2.1. Also, assume \(b \to \infty\) and \(b/n \to 0\) as \(n \to \infty\). If \(J(\cdot, P)\) is continuous at \(c(1 - \alpha, P)\), then the interval (10) contains \(\theta(P)\) with asymptotic probability \(1 - \alpha\) under \(P\).

In fact, the interval (10) can be viewed in the following way. Rather than approximate \(J_n(x, P)\) by \(L_{n,b}(x, P)\), consider the distribution
\[
\tilde{L}_{n,b}(\cdot) = L_{n,b}(\tau_n \cdot \cdot, \cdot),
\]
(11)
so that the correction factor \((\tau_n - \tau_b)/\tau_n\) is employed. Then, the \(1 - \alpha\) quantile of \(\tilde{L}_{n,b}(\cdot)\) is just \(\tau_n \cdot c_{n,b}(1 - \alpha)/(\tau_n - \tau_b)\). Hence, solving for \(\theta(P)\) in the inequality
\[
\{\tau_n(\hat{\theta}_n - \theta(P)) \leq \tilde{L}_{n,b}^{-1}(1 - \alpha)\}
\]
leads to the interval (10).

Remark 2.5 The interval \(I_1\) defined in (iii) of Theorem 2.1 corresponds to a one-sided hybrid percentile interval in the bootstrap literature (e.g., Hall, 1992). A two-sided equal-tailed confidence interval can be obtained by forming the intersection of two one-sided intervals. The two-sided analogue of \(I_1\) is
\[
I_2 = [\hat{\theta}_n - \tau_n^{-1}c_{n,b}(1 - \alpha/2), \hat{\theta}_n - \tau_n^{-1}c_{n,b}(\alpha/2)].
\]
\(I_2\) is called equal-tailed because it has approximately equal probability in each tail:
\[
\text{Prob}_{P}\{\theta(P) < \hat{\theta}_n - \tau_n^{-1}c_{n,b}(1 - \alpha/2)\} \simeq \alpha/2
\]
and
\[\text{Prob}_P\{\theta(P) > \hat{\theta}_n - \tau_n^{-1}c_{n,b}(\alpha/2)\} \simeq \alpha/2. \]

As an alternative approach, two-sided symmetric confidence intervals can be constructed. A two-sided symmetric confidence interval is given by \([\hat{\theta}_n - \hat{c}, \hat{\theta}_n + \hat{c}]\), where \(\hat{c}\) is chosen so that \(\text{Prob}_P\{|\hat{\theta}_n - \theta(P)| > \hat{c}\} \simeq \alpha\). Hall (1988) showed that symmetric bootstrap confidence intervals may enjoy enhanced coverage and, even in asymmetric circumstances, can be shorter than equal-tailed confidence intervals. To construct two-sided symmetric subsampling intervals in practice, we follow the traditional approach and estimate the two-sided distribution function
\[J_{n,|\cdot|}(x, P) = \text{Prob}_P\{\tau_n|\hat{\theta}_n - \theta(P)| \leq x\}. \]

The subsampling approximation to \(J_{n,|\cdot|}(x, P)\) is defined by
\[L_{n,b,|\cdot|}(x) = N_n^{-1} \sum_{i=1}^{N_n} \{\tau_b \left| \hat{\theta}_{n,b,i} - \hat{\theta}_n \right| \leq x\}. \]

An approximate \(1 - \alpha\) symmetric confidence interval is then given by
\[I_{SYM} = [\hat{\theta}_n - \tau_n^{-1}c_{n,b,|\cdot|}(1 - \alpha), \hat{\theta}_n + \tau_n^{-1}c_{n,b,|\cdot|}(1 - \alpha)], \]
where \(c_{n,b,|\cdot|}(1 - \alpha)\) is a \(1 - \alpha\) quantile of \(L_{n,b,|\cdot|}(\cdot)\).

By Theorem 2.1 and the continuous mapping theorem, the asymptotic validity of two-sided symmetric subsampling intervals easily follows.

3 Hypothesis Testing in the i.i.d. Case

In this section, we consider the use of subsampling for the construction of hypothesis tests. As before, \(X_1, \ldots, X_n\) is a sample of \(n\) independent and identically distributed observations taking values in a sample space \(S\). The common unknown distribution generating the data is denoted by \(P\). This unknown law \(P\) is assumed to belong to a certain class of laws \(\mathbb{P}\). The null hypothesis \(H_0\) asserts \(P \in \mathbb{P}_0\), and the alternative hypothesis \(H_1\) is \(P \in \mathbb{P}_1\), where \(\mathbb{P}_1 \subset \mathbb{P}\) and \(\mathbb{P}_0 \cup \mathbb{P}_1 = \mathbb{P}\).

There are several general approaches one can take for the construction of asymptotically valid tests, depending on the nature of the problem. In the special (but usual) case where the null hypothesis translates into a null hypothesis about a real- or vector-valued parameter \(\theta(P)\), one can construct a confidence region for \(\theta(P)\)—by subsampling, bootstrapping, asymptotic approximations, or other methods—and then exploit the usual duality between the construction of confidence regions for parameters and the construction of hypothesis tests about those
parameters. This is the approach taken in Politis and Romano (1996), and the details are left to the reader.

Of course, not all hypothesis testing problems fit nicely into the aforementioned framework. An alternative bootstrap approach can be based on bootstrapping from a distribution obeying the constraints of the null hypothesis; see Beran (1986) and Romano (1988, 1989). None of the above approaches easily handles the following example, taken from Bickel and Ren (1997), but we will see that an appropriate simple subsampling scheme applies here as well. Bickel and Ren (1997) consider the related bootstrap with smaller resample size.

Example 3.1 (Goodness of Fit for Censored Data) Suppose that U_1, \ldots, U_n are i.i.d. random variables with cumulative distribution function F. The null hypothesis H_0 asserts $F = F_0$, where F_0 is some specified distribution. In this problem, however, we do not necessarily observe the full data U_1, \ldots, U_n because the observations U_i are left and right censored. Specifically, assume (Y_i, Z_i) are independent and identically distribution pairs with $Z_i < Y_i$ (with probability one), and the (Y_i, Z_i) pairs are independent of U_1, \ldots, U_n. Define

$$V_i = \begin{cases} U_i, & \text{if } Z_i < U_i \leq Y_i; \\ Y_i, & \text{if } U_i > Y_i; \\ Z_i, & \text{if } X_i \leq Z_i \end{cases}$$

and

$$\delta_i = \begin{cases} 1, & \text{if } Z_i < U_i \leq Y_i; \\ 2, & \text{if } U_i > Y_i; \\ 3, & \text{if } X_i \leq Z_i. \end{cases}$$

The actual observations available are $X_i = (V_i, \delta_i)$. Let \hat{F}_n be the nonparametric maximum likelihood estimator of F based on X_1, \ldots, X_n; this can be computed numerically by the algorithms described in Mykland and Ren (1996). Now, consider the Cramér-von Mises test statistic given by

$$T_n = n \int_{-\infty}^{\infty} [\hat{F}_n(x) - F_0(x)]^2 dF_0(x).$$

Under suitable conditions and when F is the true distribution for U_i, $n^{1/2}[\hat{F}_n(\cdot) - F(\cdot)]$, viewed as a process on $D[-\infty, \infty]$, converges weakly to a mean zero Gaussian process with covariance depending on the joint distribution of (Z_i, Y_i); see Giné and Zinn (1990) and Bickel and Ren (1996). Hence, T_n possesses a limiting distribution as well, both under the null hypothesis and against a sequence of contiguous alternatives; the notion of contiguity is presented in Bickel, et al. (1993, Section A.9). The difficulty that the bootstrap has in trying to approximate this limiting distribution is that Y_i and Z_i are never observed together for any i, so that any information on the joint distribution is not available. Note, however, in the right censoring case (with $Z_i = -\infty$), \hat{F}_n is the Kaplan-Meier estimator, and the distribution of the censoring variables can be estimated and the bootstrap offers a viable approach.
We now return to the general setup of testing the null hypothesis H_0 that $P \in \mathcal{P}_0$ versus the alternative hypothesis H_1 that $P \in \mathcal{P}_1$. The goal is to construct an asymptotically valid test based on a given test statistic,

$$T_n = \tau_n t_n(X_1, \ldots, X_n),$$

where, as before, τ_n is a fixed nonrandom normalizing sequence (though even this assumption can be weakened; see Bertail, Politis and Romano (1999)). Let

$$G_n(x, P) = \text{Prob}\{\tau_n t_n(X_1, \ldots, X_n) \leq x\}.$$

At this point, not too much is assumed about T_n, though it is certainly natural in the i.i.d. case presented here that $t_n(X_1, \ldots, X_n)$ is symmetric in its arguments. As before, we will be assuming that $G_n(\cdot, P)$ converges in distribution, at least for $P \in \mathcal{P}_0$. Of course, this would imply (as long as $\tau_n \to \infty$) that $t_n(X_1, \ldots, X_n) \to 0$ in probability for $P \in \mathcal{P}_0$. Naturally, t_n should somehow be designed to distinguish between the competing hypotheses. Our next theorem will assume t_n is constructed to satisfy the following: $t_n(X_1, \ldots, X_n) \to t(P)$ in probability, where $t(P)$ is a constant which satisfies $t(P) = 0$ if $P \in \mathcal{P}_0$ and $t(P) > 0$ if $P \in \mathcal{P}_1$. This assumption can be made to hold in every conceivable example.

To describe the test construction, let Y_1, \ldots, Y_{N_n} be equal to the $N_n = \binom{N}{b}$ subsets of $\{X_1, \ldots, X_n\}$, ordered in any fashion. Let $t_{n,b,i}$ be equal to the statistic t_b evaluated at the data set Y_i. The sampling distribution of T_n is then approximated by

$$\hat{G}_{n,b}(x) = N_n^{-1} \sum_{i=1}^{N_n} 1\{t_{n,b,i} \leq x\}. \quad (12)$$

Using this estimated sampling distribution, the critical value for the test is obtained as the $1 - \alpha$ quantile of $\hat{G}_{n,b}(\cdot)$; specifically, define

$$g_{n,b}(1 - \alpha) = \inf\{x : \hat{G}_{n,b}(x) \geq 1 - \alpha\}. \quad (13)$$

Finally, the nominal level α test rejects H_0 if and only if $T_n > g_{n,b}(1 - \alpha)$.

The following theorem gives the consistency of this procedure, under the null hypothesis, the alternative hypothesis, and a sequence of contiguous alternatives.

Theorem 3.1

(i) Assume, for $P \in \mathcal{P}_0$, $G_n(P)$ converges weakly to a continuous limit law $G(P)$, whose corresponding cumulative distribution function is $G(\cdot, P)$ and whose $1 - \alpha$ quantile is
\[g(1 - \alpha, P). \] Assume \(b/n \to 0 \) and \(b \to \infty \) as \(n \to \infty \). If \(G(\cdot, P) \) is continuous at \(g(1 - \alpha, P) \) and \(P \in P_0 \), then

\[g_{n,b}(1 - \alpha) \to g(1 - \alpha, P) \text{ in probability} \]

and

\[\text{Prob}_P\{T_n > g_{n,b}(1 - \alpha)\} \to \alpha \text{ as } n \to \infty. \]

(ii) Assume the test statistic is constructed so that \(t_n(X_1, \ldots, X_n) \to t(P) \) in probability, where \(t(P) \) is a constant which satisfies \(t(P) = 0 \) if \(P \in P_0 \) and \(t(P) > 0 \) if \(P \in P_1 \). Assume \(b/n \to 0 \), \(b \to \infty \), and \(\liminf_n (\tau_n/\tau_b) > 1 \). Then, if \(P \in P_1 \), the rejection probability satisfies

\[\text{Prob}_P\{T_n > g_{n,b}(1 - \alpha)\} \to 1 \text{ as } n \to \infty. \]

(iii) Suppose \(P_n \) is a sequence of alternatives such that, for some \(P_0 \in P_0 \), \(\{P_n^\alpha\} \) is contiguous to \(\{P_0^\alpha\} \). Assume \(b/n \to 0 \) and \(b \to \infty \) as \(n \to \infty \). Then,

\[g_{n,b}(1 - \alpha) \to g(1 - \alpha, P_0) \text{ in } P_n^\alpha\text{-probability}. \]

Hence, if \(T_n \) converges in distribution to \(T \) under \(P_n \) and \(G(\cdot, P_0) \) is continuous at \(g(1 - \alpha, P_0) \), then

\[P_n^\alpha\{T_n > g_{n,b}(1 - \alpha)\} \to \text{Prob}\{T > g(1 - \alpha, P_0)\}. \]

Proof. To prove (i), note again that \(\hat{G}_{n,b}(x) \) is a U-statistic of degree \(b \), with expectation under \(P \) equal to \(G_b(x, P) \). An argument analogous to the one used in the proof of Theorem 2.1 (but easier because there is no centering) shows that \(\hat{G}_{n,b}(x) \to G(x, P) \) in probability. Indeed, the variance of the U-statistic tends to zero by the same exponential inequality. It follows that \(g_{n,b}(1 - \alpha) \to g(1 - \alpha, P) \) in probability. Thus, by Slutsky’s theorem, the asymptotic rejection probability of the event \(T_n > g_{n,b}(1 - \alpha) \) is exactly \(\alpha \).

To prove (ii), rather than considering \(\hat{G}_{n,b}(x) \), just look at the empirical distribution of the values of \(t_{n,b,i} \) (not scaled by \(\tau_b \)); so define

\[\hat{G}_{n,b}^0(x) = N_n^{-1} \sum_{i=1}^{N_n} 1\{t_{n,b,i} \leq x\} \hat{G}_{n,b}(\tau_b x). \]

But, by a now familiar argument, \(\hat{G}_{n,b}^0 \) is a U-statistic with expectation

\[E_P[\hat{G}_{n,b}^0(x)] = \text{Prob}_P\{t_b(X_1, \ldots, X_b) \leq x\}, \]

and so \(\hat{G}_{n,b}^0(\cdot) \) converges in distribution to a point mass at \(t(P) \). It also follows that a \(1 - \alpha \) quantile, say \(g_{n,b}^0(1 - \alpha) \), of \(\hat{G}_{n,b}^0(\cdot) \) converges in probability to \(t(P) \). But, our test rejects when
\((\tau_n / \tau_b) \cdot t_n(X_1, \ldots, X_n) \) exceeds \(g_{n, b}(1 - \alpha) \). Since \(\lim \inf_n (\tau_n / \tau_b) > 1 \) and \(t_n(X_1, \ldots, X_n) \to t(P) \) in probability (with \(t(P) > 0 \)), it follows by Slutsky's theorem that the asymptotic rejection probability is one.

Finally, to prove (iii), we know that \(g_{n, b}(1 - \alpha) \to g(1 - \alpha, P_0) \) in probability under \(P_0 \); contiguity forces \(g_{n, b}(1 - \alpha) \to g(1 - \alpha, P_0) \) in probability under \(P_n \). \(\blacksquare \)

Remark 3.1 Consider the special case of testing a real-valued parameter. Specifically, suppose \(\theta(\cdot) \) is a real-valued function from \(P \) to the real line. The null hypothesis is specified by \(P_0 = \{ P : \theta(P) = \theta_0 \} \). Assume the alternative hypothesis is one-sided and specified by \(\{ P : \theta(P) > \theta_0 \} \). Suppose we simply take

\[
t_n(X_1, \ldots, X_n) = \hat{\theta}_n(X_1, \ldots, X_n) - \theta_0.
\]

Then, it can be checked that the test construction accepts the null hypothesis if and only if the confidence interval (10) contains the value \(\theta_0 \). Thus, in this special case, the test construction presented in this section has an exact duality with the interval presented in (10). This is not surprising, because the argument leading up to (10) was based on the relationship (7) and the asymptotic coverage probability of the event (6). Moreover, in the testing context, \(\theta(P) = \theta_0 \) is fixed and known under the null hypothesis, in which case \(u_{n, b}(\alpha, P) \) in (7) can be computed, at least under the null hypothesis.

In addition, if \(\hat{\theta}_n \) is a consistent estimator of \(\theta(P) \), then the hypothesis on \(t_n \) in part (ii) of the theorem is satisfied (just take the absolute value of \(t_n \) for a two-sided alternative). Thus, the hypothesis on \(t_n \) in part (ii) of the theorem boils down to verifying a consistency property and is rather weak, though this assumption can in fact be weakened further. The convergence hypothesis of part (i) is satisfied by typical test statistics; in regular situations, \(\tau_n = n^{1/2} \).

Remark 3.2 In Example 3.1, simply take

\[
t_n = \int_{-\infty}^{\infty} [\hat{F}_n(x) - F_0(x)]^2 dF_0(x).
\]

Then, \(t_n \) (under reasonable conditions) will converge to

\[
t(F) = \int_{-\infty}^{\infty} [F(x) - F_0(x)]^2 dF_0(x),
\]

if \(F \) is the distribution of \(U_i \). Clearly, \(t(F) = 0 \) if and only if the null hypothesis is true.

Remark 3.3 The interpretation of part (iii) of the theorem is the following. Suppose, instead of using the subsampling construction, one could use the test that rejects when \(T_n > g_n(1 - \alpha, P) \), where \(g_n(1 - \alpha, P) \) is the exact \(1 - \alpha \) quantile of the true sampling distribution \(G_n(\cdot, P) \).
Of course, this test is not available in general because P is unknown and so is $g_n(1 - \alpha, P)$. Then, the asymptotic power of the subsampling test against a sequence of contiguous alternatives \(\{P_n\} \) to P with P in P is the same as the asymptotic power of this fictitious test against the same sequence of alternatives. Hence, to the order considered, there is no loss in efficiency in terms of power.

4 Data-dependent Block Size in the i.i.d. Case

The basic theorems we have presented so far prove that subsampling works under weak conditions. In particular, the conditions on the choice of block size b are quite weak. Inevitably, the choice of block size will be data-driven and higher order asymptotic considerations will come into play. At this point, we are not concerned with an optimality result (and it seems doubtful there will ever exist a universal prescription for choice of block size anyway). Rather, we present a result which shows subsampling works quite generally even with a data-driven choice of block size.

Theorem 4.1 Assume Assumption 2.1. Let $1 \leq j_n \leq k_n \leq n$ be integers satisfying $j_n \to \infty$, $k_n/n \to 0$, $\tau_n/k_n \to 0$, and, for every $d > 0$, $k_n \exp(-d[\frac{1}{k_n}]) \to 0$ as $n \to \infty$. Also, assume \{\tau_n\} is nondecreasing in n.

(i) If x is a continuity point of $J(\cdot, P)$, then

$$\sup_{j_n \leq b \leq k_n} |L_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.}$$

(ii) Hence, if $\{\hat{b}_n\}$ is a data-dependent sequence (that is, a measurable function of X_1, \ldots, X_n), and

$$\text{Prob}_P\{j_n \leq \hat{b}_n \leq k_n\} \to 1,$$

then

$$L_{n,b}(x) \to J(x, P) \text{ in probability.}$$

(iii) If $J(\cdot, P)$ is continuous, then

$$\sup_x |L_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.}$$

In fact,

$$\sup_{j_n \leq b \leq k_n} \sup_x |L_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.}$$
(iv) Let
\[c_{n,b_n}(1 - \alpha) = \inf\{x : L_{n,b_n}(x) \geq 1 - \alpha\}. \]

Then, if $J(\cdot, P)$ is continuous,
\[\Pr_{P}\{\tau_n[\hat{\theta}_n - \theta(P)] \leq c_{n,b_n}(1 - \alpha)\} \to 1 - \alpha \]
as $n \to \infty$. Therefore, the asymptotic coverage probability under P of the confidence interval $[\hat{\theta}_n - \tau_n^{-1}c_{n,b_n}(1 - \alpha), \infty)$ is the nominal level $1 - \alpha$.

Proof. Let $\hat{\theta}_{n,b,i}$ be equal to the statistic $\hat{\theta}_b$ evaluated at the i-th of the $\binom{n}{b}$ data sets of size b; any ordering of these $\binom{n}{b}$ values will do. As in the proof of Theorem 2.1, define
\[U_{n,b}(x) = \left(\binom{n}{b}\right)^{-1} \sum_{i=1}^{\binom{n}{b}} 1\{\tau_b[\hat{\theta}_{n,b,i} - \theta(P)] \leq x\}. \]
Here, the notation $U_{n,b}(x)$ clearly includes the dependence on b since, unlike Theorem 2.1, we are considering simultaneously a range of b values. First, we claim that, for each continuity point x of $J(\cdot, P)$,
\[\sup_{j_n \leq b \leq k_n} |U_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.} \tag{14} \]
But,
\[\sup_{j_n \leq b \leq k_n} |J_b(x, P) - J(x, P)| \to 0, \]
because, if this convergence failed, there would exist $\{b_n\}$ with $b_n \in [j_n, k_n]$ such that $J_{b_n}(x, P)$ does not converge to $J(x, P)$, which is a contradiction since $b_n \geq j_n \to \infty$. So, to show the convergence (14), it suffices to show
\[\sup_{j_n \leq b \leq k_n} |U_{n,b}(x) - J_b(x, P)| \to 0 \text{ in probability.} \tag{15} \]
But, for any $t > 0$,
\[\Pr_{P}\{\sup_{j_n \leq b \leq k_n} |U_{n,b}(x) - J_b(x, P)| \geq t\} \]
\[\leq \sum_{b=j_n}^{k_n} \Pr_{P}\{|U_{n,b}(x) - J_b(x, P)| \geq t\} \]
\[\leq k_n \sup_{j_n \leq b \leq k_n} \Pr_{P}\{|U_{n,b}(x) - J_b(x, P)| \geq t\} \tag{16} \]
\[\leq 2k_n \sup_{j_n \leq b \leq k_n} \exp\{-2\frac{n}{b}t^2\}, \]
making use of Hoeffding's inequality as in the inequality (5). But this last expression is
bounded above by \(2k_n \exp\{-2\frac{E_n}{k_n} t^2\}\), which tends to zero by assumption on \(\{k_n\}\). Thus, the
convergence (15) holds, as does (14). Now, note that

\[
L_{n,b}(x) = \left(\frac{n}{b}\right)^{-1} \sum_{i=1}^{(n)} 1\{\tau_b[\hat{\theta}_{n,b,i} - \hat{\theta}(P)] + \tau_b[\theta(P) - \hat{\theta}_n] \leq x\}.
\]

Fix any \(\epsilon > 0\) so that \(x \pm \epsilon\) are continuity points of \(J(\cdot, P)\). Then,

\[
U_{n,b}(x - \epsilon)1(E_{n,b}) \leq L_{n,b}1(E_{n,b}) \leq U_{n,b}(x + \epsilon),
\]

where \(1(E_{n,b})\) is the indicator of the event \(E_{n,b} \equiv \{\tau_b[\theta(P) - \hat{\theta}_n] \leq \epsilon\}\). By the monotonicity of \(\{\tau_n\}\),

\[
1(E_{n,k_n}) \leq 1(E_{n,b}) \leq 1(E_{n,j_n})
\]

and \(\tau_{k_n}/\tau_n \to 0\) implies \(\text{Prob}_{P}(E_{n,k_n}) \to 1\). So,

\[
L_{n,b}(x)1(E_{n,k_n}) \leq U_{n,b}(x + \epsilon).
\]

Thus, on the set \(E_{n,k_n}\),

\[
\sup_{j_n \leq b \leq k_n} L_{n,b}(x) - J(x, P) \leq \sup_{j_n \leq b \leq k_n} U_{n,b}(x + \epsilon) - J(x, P)
\]

\[
\leq \sup_{j_n \leq b \leq k_n} |U_{n,b}(x + \epsilon) - J(x + \epsilon, P)| + J(x + \epsilon, P) - J(x, P).
\]

But, by (14), it follows that, for every \(\delta > 0\),

\[
\sup_{j_n \leq b \leq k_n} L_{n,b}(x) - J(x, P) \leq \delta + J(x + \epsilon, P) - J(x, P)
\]

with probability tending to one. Similarly, replacing \(x + \epsilon\) by \(x - \epsilon\) and using the first inequality
in (17), we get, for every \(\eta > 0\),

\[
\sup_{j_n \leq b \leq k_n} |L_{n,b}(x) - J(x, P)| \leq \eta
\]

with probability tending to one, which is equivalent to statement (i) of the theorem. Part (ii)
is obvious. The rest of the theorem is proved as in the proof of Theorem 2.1. ■

Remark 4.1 In some cases, one finds that an optimal choice of \(b = b_n\) should satisfy

\[
b_n/n^p \to \xi(P),
\]

for some \(p \in (0, 1)\), where \(\xi(P)\) is a constant typically depending on the unknown probability
 mechanism \(P\). In an ad hoc way, one can sometimes estimate \(\xi(P)\) consistently by \(\hat{\xi}_n\) (say by
 a plug-in approach), which leads to the choice of block size

\[
b_n = \lfloor \xi_n n^p \rfloor.
\]
Such a construction for \hat{b}_n will easily satisfy the conditions of the theorem. Simply take $j_n = \lceil \epsilon n^p \rceil$ and $k_n = \lceil n^p / \epsilon \rceil$ for small enough ϵ. Moreover, the condition $\tau_{k_n} / \tau_n \to 0$ will be satisfied in the typical case τ_n is proportional to n^β for some $\beta \in (0,1)$. In practice, the parameter $\xi(P)$ may be difficult to estimate, and even if consistent estimation is possible, the resulting estimator may have poor finite-sample performance. The point of this section is to show subsampling has some asymptotic validity across a broad range of choices for the subsample size.

Remark 4.2 The monotonicity assumption on $\{\tau_n\}$ can be replaced by the condition
\[
\sup_{j_n \leq b \leq k_n} \left(\frac{\tau_b}{\tau_n} \right) \to 0,
\]
as the proof essentially shows. Actually, the assumption can be removed altogether by the modification leading to Corollary 2.1.

Remark 4.3 The convergence in probability statements in the theorem can be strengthened to be almost sure convergences, provided $\tau_{k_n} [\hat{\theta}_n - \theta(P)] \to 0$ almost surely, and for every $d > 0$,
\[
\sum_{n=1}^{\infty} k_n \exp(-d\lceil n / k_n \rceil) < \infty.
\]
The last condition holds whenever k_n can be taken to be $O(n^p)$ with $p < 1$.

5 The Time Series Case

Suppose $\{\ldots, X_{-1}, X_0, X_1, \ldots\}$ is a sequence of random variables taking values in an arbitrary sample space S, and defined on a common probability space. Denote the joint probability law governing the infinite sequence by P, which we assume to be stationary. By stationarity, all finite-dimensional marginal distributions are shift-invariant; that is, for any integer m the joint distribution of $X_k, X_{k+1}, \ldots, X_{k+m}$ does not depend on k. The goal is to construct a confidence interval for some real-valued parameter $\theta(P)$, on the basis of observing X_1, \ldots, X_n. The sequence $\{X_t\}$ will be assumed to satisfy a certain weak dependence condition. To make this condition precise, we introduce the concept of strong mixing coefficients. The original definition, due to Rosenblatt (1956), applies to stationary sequences.

Definition 5.1 Given a random sequence $\{X_t\}$, let \mathcal{F}_n^m be the σ-algebra generated by $\{X_t, n \leq t \leq m\}$, and define the corresponding α-mixing sequence by
\[
\alpha_X(k) = \sup_n \sup_{A,B} |P(A \cap B) - P(A)P(B)|,
\]
where A and B vary over the σ-fields $\mathcal{F}_{-\infty}^n$ and $\mathcal{F}_{n+k}^{\infty}$, respectively. (Note that in case the sequence $\{X_t\}$ is strictly stationary, the \sup_n in this definition becomes redundant.) The sequence $\{X_t\}$ is called α-mixing or strong mixing if $\alpha_X(k) \to 0$ as $k \to \infty$.

Throughout this section, we will assume the sequence is strictly stationary, but this condition can be relaxed somewhat, as in Politis, Romano, and Wolf (1997).

Let $\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n)$ be an estimator of $\theta(P) \in \mathbb{R}$, the parameter of interest.

The crux of the subsampling method is to approximate the sampling distribution of a statistic by recomputing it on subsamples of smaller size of the observed data. In the context of independent data, subsamples of size $b < n$ are generated by sampling b observations without replacement from the original data sequence of size n. Since this approach does not take the order of the original sequence into account, it generally fails for time series data. The key, therefore, is to only use blocks of size b of consecutive observations as legitimate subsamples, the first one being $\{X_1, X_2, \ldots, X_b\}$, and the last one being $\{X_{n-b+1}, X_{n-b+2}, \ldots, X_n\}$. Note that there are $q = n - b + 1$ such blocks. Obviously, $n - b + 1 < < \binom{n}{b}$, the number of available subsamples in the independent case.

Define $\hat{\theta}_{n,b,t} = \hat{\theta}_b(x_t, \ldots, x_{t+b-1})$, the estimator of $\theta(P)$ based on the subsample $\{X_t, \ldots, X_{t+b-1}\}$. Let $J_b(P)$ be the sampling distribution of

$$\tau_b(\hat{\theta}_{n,b,1} - \theta(P)),$$

where τ_b is an appropriate normalizing constant. Also define the corresponding cumulative distribution function:

$$J_b(x, P) = \text{Prob}_P\{\tau_b(\hat{\theta}_{n,b,1} - \theta(P)) \leq x\}. \quad (19)$$

For convenience, denote $J_n(P) = J_{n,1}(P)$, the sampling distribution of $\tau_n(\hat{\theta}_n - \theta(P))$.

Essentially, the only assumption that will be needed to consistently estimate $J_n(P)$ is the following.

Assumption 5.1 There exists a limiting law $J(P)$ such that $J_n(P)$ converges weakly to $J(P)$ as $n \to \infty$.

This means that the estimator, properly centered and normalized, has a limiting distribution. It is hard to conceive of any asymptotic theory free of such a requirement.

In order to describe our method, let Y_t be the block of size b of the consecutive data $\{X_t, \ldots, X_{t+b-1}\}$. Only a very weak assumption on b will be required. Typically, $b/n \to 0$ and
$b \to \infty$ as $n \to \infty$. The approximation to $J_n(x, P)$ we study is the analogue of (1) for the i.i.d. case and defined by

$$L_{n,b}(x) = \frac{1}{n - b + 1} \sum_{t=1}^{n-b+1} \{\tau_b(\hat{\theta}_{n,b,t} - \hat{\theta}_n) \leq x\}. \tag{20}$$

The motivation behind the method is the following. For any t, Y_t is a true subsample of size b from the true model P. Hence, the exact distribution of $\tau_b(\hat{\theta}_{n,b,t} - \theta(P))$ is $J_b(P)$. By stationarity, the empirical distribution of the $n - b + 1$ values of $\tau_b(\hat{\theta}_{n,b,t} - \theta(P))$ should serve as good approximation to $J_n(P)$, at least for large n. Replacing $\theta(P)$ by $\hat{\theta}_n$ is permissible because $\tau_b(\hat{\theta}_n - \theta(P))$ is of order τ_b/τ_n in probability and we will assume that $\tau_b/\tau_n \to 0$.

The following theorem could be coined "a general asymptotic validity result under minimal conditions". It states sufficient conditions under which the subsampling method will yield asymptotically valid results for very general statistics. No equivalent theorem is available for resampling methods, such as the moving blocks bootstrap or the stationary bootstrap. Instead, such methods require a much more difficult case by case analysis.

Theorem 5.1 Assume Assumption 5.1 and that $\tau_b/\tau_n \to 0, b/n \to 0$, and $b \to \infty$ as $n \to \infty$. Also, assume that $\alpha_X(m) \to 0$ as $m \to \infty$.

(i) If x is a continuity point of $J(\cdot, P)$, then $L_{n,b}(x) \to J(x, P)$ in probability.

(ii) If $J(\cdot, P)$ is continuous, then $\sup_x |L_{n,b}(x) - J(x, P)| \to 0$ in probability.

(iii) For $\alpha \in (0, 1)$, let

$$c_{n,b}(1 - \alpha) = \inf \{x : L_{n,b}(x) \geq 1 - \alpha\}.$$

Correspondingly, define

$$c(1 - \alpha, P) = \inf \{x : J(x, P) \geq 1 - \alpha\}.$$

If $J(\cdot, P)$ is continuous at $c(1 - \alpha, P)$, then

$$\text{Pr}_P[\tau_n[\hat{\theta}_n - \theta(P)] \leq c_{n,b}(1 - \alpha)] \to 1 - \alpha \text{ as } n \to \infty.$$

Thus, the asymptotic coverage probability under P of the interval $I_1 = [\hat{\theta}_n - \tau_n^{-1}c_{n,b}(1 - \alpha), \infty)$ is the nominal level $1 - \alpha$.

Remark 5.1 In most examples, the rate of convergence satisfies $\tau_n = s(n)n^{\gamma}$, for some $\gamma > 0$, and the assumptions on b simplify to $b/n \to 0$ and $b \to \infty$.

19
Remark 5.2 For reasons analogous to those stated in Section 2, the conditions on the block size \(b \) are in general not only sufficient, but also necessary. For the scenario of dependent observations, it is even more clear that keeping the block size fixed will result in failure of the method. On the other hand, for the case of the sample mean, Lahiri (1998) showed explicitly how subsampling (and block bootstrap methods) fail when the block size grows at the same rate as the sample size. In the case \(b/n \to \lambda \in (0, 1) \), the subsampling approximation has a random limit on the space of all probability measures on the real line. In the case \(b/n \to 1 \), the approximation collapses to a point mass at zero. By linearization, his results carry over to statistics that can be approximated by smooth functions of means.

Remark 5.3 Note that, besides the mixing condition, the main difficulty in applying the theorem lies in checking whether the properly standardized estimator has a nondegenerate limiting distribution, whose shape, however, does not have to be known. Much more work is typically necessary to demonstrate the validity of bootstrap methods.

Remark 5.4 When two-sided confidence intervals are desired, both equal-tailed and symmetric intervals are available. The ideas are analogous to the i.i.d. case; see Remark 2.5.

Proof of Theorem 5.1. Without loss of generality, we may think of \(b \) as a function of \(n \). Therefore, the notational burden can be reduced by omitting the \(b \)-subscripts. For example, \(L_n(\cdot) \equiv L_{n,b}(\cdot) \), \(c_n(\alpha) \equiv c_{n,b}(\alpha) \), etc. To simplify the notation further, introduce \(q \equiv q_n \equiv n - b + 1 \). Let

\[
U_n(x) = \frac{1}{q} \sum_{i=1}^{q} 1\{\tau_b[\hat{T}_{n,b,t} - \theta(P)] \leq x\}.
\]

It suffices to show that \(U_n(x) \) converges in probability to \(J(x, P) \) for every continuity point \(x \) of \(J(x, P) \), because the rest of the argument is then identical to the proof of Theorem 2.1. Since \(E(U_n(x)) = J_b(x, P) \), the proof reduces by Assumption 5.1 to showing that \(\text{Var}(U_n(x)) \) tends to zero (as \(n \) tends to infinity). Define

\[
I_{b,t} = 1\{\tau_b[\hat{T}_{n,b,t} - \theta(P)] \leq x\}, \quad t = 1, \ldots, q,
\]

\[
s_{q,h} = \frac{1}{q} \sum_{t=1}^{q-h} \text{Cov}(I_{b,t}, I_{b,t+h}).
\]

Then,

\[
\text{Var}(U_n(x)) = \frac{1}{q} (s_{q,0} + 2 \sum_{h=1}^{q-1} s_{q,h})
\]

\[
= \frac{1}{q} (s_{q,0} + 2 \sum_{h=1}^{b-1} s_{q,h} + 2 \sum_{h=b}^{q-1} s_{q,h})
\]

\[
= A^* + A,
\]

20
where $A^* = \frac{1}{q}(s_{q,0} + 2\sum_{h=1}^{q-1} s_{q,h})$ and $A = \frac{2}{q}\sum_{h=b}^{q-1} s_{q,h}$.

It is readily seen that $|A^*| = O(b/q)$. To handle A, we apply the well-known mixing inequality of Davydov (1970) (which states that the covariance between two variables bounded in absolute value by one and separated in time by at least k units is bounded above by $4k$ times the kth mixing coefficient of the sequence). Thus, for $h \geq b$

$$|\text{Cov}(I_{b,t}, I_{b,t+h})| \leq 4\alpha_X(h - b + 1)$$

and therefore,

$$|A| \leq \frac{4}{q}\sum_{h=1}^{q-b} \alpha_X(h).$$

By the monotonicity of mixing coefficients, $\alpha_X(m) \to 0$ (as $m \to \infty$) and therefore $M^{-1}\sum_{m=1}^{M} \alpha_X(m) \to 0$ (as $M \to \infty$), which implies that A converges to zero. Thus, both A and A^* converge to zero, which completes the proof. ■

Just as in the i.i.d. case, the assumption that τ_0/τ_n can be removed if the interval is modified appropriately. The argument is the same, except that U_n is analyzed as in the proof of Theorem 5.1, rather than Theorem 2.1. Hence, the following is true.

Corollary 5.1 Assume Assumption 5.1. Also, assume $b \to \infty$ and $b/n \to 0$ as $n \to \infty$. If $J(\cdot, P)$ is continuous at $c(1 - \alpha, P)$, then the interval $[\hat{\theta}_n - (\tau_n - \tau_0)^{-1} c_n(1 - \alpha), \infty)$ contains $\theta(P)$ with asymptotic probability $1 - \alpha$ under P.

6 Hypothesis Testing in the Stationary Case

In Section 3, it was discussed how to use subsampling for hypothesis testing when the null hypothesis does not translate into a null hypothesis on a parameter and thus the duality between hypothesis tests and confidence regions cannot be exploited. The discussion was limited to i.i.d. observations but the problem, of course, also exists for dependent observations. Goodness of fit tests are one of many examples. The approach presented here will be analogous to the one of Section 3. To provide a general framework, assume that X_1, \ldots, X_n is a sample of stationary observations taking values in a sample space S. Denote the probability law governing the infinite, stationary sequence $\ldots, X_{-1}, X_0, X_1, \ldots$ by P. This unknown law P is assumed to belong to a certain class of laws \mathcal{P}. The null hypothesis H_0 asserts $P \in \mathcal{P}_0$, and the alternative hypothesis H_1 is $P \in \mathcal{P}_1$, where $\mathcal{P}_1 \subset \mathcal{P}$ and $\mathcal{P}_0 \cup \mathcal{P}_1 = \mathcal{P}$. The goal is to construct an asymptotically valid test based on a given test statistic,

$$T_n = \tau_n t_n(X_1, \ldots, X_n),$$

21
where, as usual, τ_n is a fixed nonrandom normalizing sequence (but this assumption could be relaxed).

Let

$$G_n(x, P) = \text{Prob}_P\{\tau_n t_n(X_1, \ldots, X_n) \leq x\}.$$

As before, we will be assuming that $G_n(\cdot, P)$ converges in distribution, at least for $P \in P_0$. The theorem we will present will assume t_n is constructed to satisfy the following: $t_n(X_1, \ldots, X_n) \rightarrow t(P)$ in probability, where $t(P)$ is a constant which satisfies $t(P) = 0$ if $P \in P_0$ and $t(P) > 0$ if $P \in P_1$.

To describe the test construction, let $t_{n,b,j}$ be equal to the statistic t_b evaluated at the block of data $\{X_j, \ldots, X_{j+b-1}\}$. The sampling distribution of T_n is then approximated by

$$\hat{G}_{n,b}(x) = \frac{1}{n-b+1} \sum_{j=1}^{n-b+1} 1\{\tau_b t_{n,b,j} \leq x\}. \quad (21)$$

Given the estimated sampling distribution, the critical value for the test is obtained as the $1 - \alpha$ quantile of $\hat{G}_{n,b}(\cdot)$; specifically, define

$$g_{n,b}(1 - \alpha) = \inf\{x : \hat{G}_{n,b}(x) \geq 1 - \alpha\}. \quad (22)$$

Finally, the nominal level α test rejects H_0 if and only if $T_n > g_{n,b}(1 - \alpha)$.

The following theorem gives results analogous to the ones of Theorem 3.1.

Theorem 6.1

(i) Assume, for $P \in P_0$, $G_n(P)$ converges weakly to a continuous limit law $G(P)$, whose corresponding cumulative distribution function is $G(\cdot, P)$ and whose $1 - \alpha$ quantile is $g(1 - \alpha, P)$. Assume $b/n \rightarrow 0$ and $b \rightarrow \infty$ as $n \rightarrow \infty$. Also, assume that $\alpha_X(m) \rightarrow 0$ as $m \rightarrow \infty$, where $\alpha_X(\cdot)$ is the mixing sequence corresponding to $\{X_t\}$. If $G(\cdot, P)$ is continuous at $g(1 - \alpha, P)$ and $P \in P_0$, then

$$g_{n,b}(1 - \alpha) \rightarrow g(1 - \alpha, P) \text{ in probability}$$

and

$$\text{Prob}_P\{T_n > g_{n,b}(1 - \alpha)\} \rightarrow \alpha \text{ as } n \rightarrow \infty.$$

(ii) Assume the test statistic is constructed so that $t_n(X_1, \ldots, X_n) \rightarrow t(P)$ in probability, where $t(P)$ is a constant which satisfies $t(P) = 0$ if $P \in P_0$ and $t(P) > 0$ if $P \in P_1$. Assume $b/n \rightarrow 0$, $b \rightarrow \infty$, and $\tau_b/\tau_n \rightarrow 0$ as $n \rightarrow \infty$. Also, assume that $\alpha_X(m) \rightarrow 0$ as
$m \to \infty$, where $\alpha_X(\cdot)$ is the mixing sequence corresponding to $\{X_t\}$. Then, if $P \in P_1$, the rejection probability satisfies

$$\operatorname{Prob}_P\{T_n > g_{n,b}(1 - \alpha)\} \to 1 \text{ as } n \to \infty.$$

(iii) Suppose P_n is a sequence of alternatives such that, for some $P_0 \in P_0$, $\{P_n[\cdot]\}$ is contiguous to $\{P_0[\cdot]\}$. In this notation, $P_n[\cdot]$ denotes the law of the finite segment X_1, \ldots, X_n when the law of the infinite sequence $\ldots, X_{-1}, X_0, X_1, \ldots$ is given by P_n. The meaning of $\{P_0[\cdot]\}$ is analogous. Assume $b/n \to 0$ and $b \to \infty$ as $n \to \infty$. Then,

$$g_{n,b}(1 - \alpha) \to g(1 - \alpha, P_0) \text{ in } P_0[\cdot]\text{-probability.}$$

Hence, if T_n converges in distribution to T under P_n and $G(\cdot, P_0)$ is continuous at $g(1 - \alpha, P_0)$, then

$$P_n[\cdot]\{T_n > g_{n,b}(1 - \alpha)\} \to \operatorname{Prob}\{T > g(1 - \alpha, P_0)\}.$$

Proof. The proof mimicks the proof of Theorem 3.1, with the differences being analogous to the differences of the proofs of Theorems 2.1 and 5.1. The details are left to the reader. \(\blacksquare\)

Remark 6.1 Remarks 3.1 and 3.3 also apply here.

7 Data-dependent Block Size in the Stationary Case

Theorem 4.1 can be generalized to the stationary time series case as well. Indeed, one can show that subsampling with a general data-driven choice of block size is consistent. In order to support this claim, one must show the convergence of $L_{n,b}(\cdot)$ to $J(\cdot, P)$ is uniform in a broad range of b values, say $j_n \leq b \leq k_n$ (as expressed in Theorem 4.1). As in the proof of Theorem 4.1, let $U_{n,b}(x)$ be the $U_n(x)$ considered in the proof of Theorem 5.1, but now the dependence on b is made clear. So,

$$U_{n,b}(x) = q_{n,b}^{-1} \sum_{t=1}^{q_{n,b}} 1\{\tau_b[\tilde{\theta}_{n,b,t} - \theta(P)] \leq x\},$$

where $q_{n,b} = n - b + 1$. Then, the proof in the i.i.d. case goes through as long as we can bound

$$k_n \sup_{j_n \leq b \leq k_n} \operatorname{Prob}_P\{|U_{n,b}(x) - J_b(x, P)| \geq t\}$$

where $t > 0$.
by something tending to zero; see equation (16). The simplest strategy would be to apply Chebychev’s inequality, which was used in the proof of Theorem 5.1 (but we did not have to worry about the \(k_n \) or the sup in front). The resulting bound is of order

\[
O\left(\frac{k_n b}{q_{n,b}}\right) + O\left(\frac{k_n}{q_{n,b}^{1/2}}\right) \sum_{h=1}^{q_{n,b}^{1/2}} \alpha_X(h) \leq O\left(\frac{k_n^2}{q_{n,b}}\right) + O\left(\frac{k_n}{q_{n,b}}\right) o(1).
\]

Hence, if \(k_n \) is assumed to satisfy \(k_n = o(n^{1/2}) \), the proof of Theorem 4.1 goes through. Unfortunately, this assumption on \(k_n \) is much stronger than the one used in the i.i.d. case (where it was essentially assumed that \(k_n = o(n) \)). Note, however, that the restriction to \(k_n \) satisfying \(k_n = o(n^{1/2}) \) means \(b \) cannot be too large, and this is substantiated by simulations and higher order considerations. On the other hand, one can essentially recover the i.i.d. result at the expense of a slightly stronger mixing condition. To do this, we appeal to an exponential type inequality for mixing sequences, as provided in Theorem 1.3 of Bosq (1996). Then, one can obtain uniform consistency over \(b \) in \(\{ b : j_n \leq b \leq k_n \} \) under the assumption \(k_n = o(n) \) if one is willing to slightly strengthen the mixing assumption. The result is the following.

Theorem 7.1 Let \(X_1, \ldots, X_n \) be observations from a stationary model with mixing coefficients \(\alpha_X(\cdot) \). Assume Assumption 5.1. Let \(1 \leq j_n \leq k_n \leq n \) be integers satisfying \(j_n \to \infty, k_n/n \to 0, \) and \(\tau_{k_n}/\tau_n \to 0, \) as \(n \to \infty. \) Assume, for some \(\beta > 1, \)

\[
\limsup_{m \to \infty} m^\beta \alpha_X(m) < \infty.
\]

Also, assume \(\{ \tau_n \} \) is nondecreasing in \(n. \)

(i) If \(x \) is a continuity point of \(J(\cdot, P) \), then

\[
\sup_{j_n \leq b \leq k_n} |L_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.}
\]

(ii) Hence, if \(\{ \hat{b}_n \} \) is a data-dependent sequence (that is, a measurable function of \(X_1, \ldots, X_n \)), and

\[
\text{Prob}_P\{ j_n \leq \hat{b}_n \leq k_n \} \to 1,
\]

then

\[
L_{n,\hat{b}_n}(x) \to J(x, P) \text{ in probability.}
\]

(iii) If \(J(\cdot, P) \) is continuous, then

\[
\sup_x |L_{n,\hat{b}_n}(x) - J(x, P)| \to 0 \text{ in probability.}
\]

In fact,

\[
\sup_{j_n \leq b \leq k_n} \sup_x |L_{n,b}(x) - J(x, P)| \to 0 \text{ in probability.}
\]
(iv) Let
\[c_{n,b}(1-\alpha) = \inf\{x : L_{n,b}(x) \geq 1-\alpha\}. \]

Then, if \(J(\cdot, P) \) is continuous,
\[\text{Prob}_P\{\tau_n(\hat{\theta}_n - \theta(P)) \leq c_{n,b}(1-\alpha)\} \to 1-\alpha \]
as \(n \to \infty \). Therefore, the asymptotic coverage probability under \(P \) of the confidence interval \([\hat{\theta}_n - \tau_n^{-1}c_{n,b}(1-\alpha), \infty) \) is the nominal level \(1-\alpha \).

Proof. For the proof, we just need to bound (23) because the rest of the argument from Theorem 4.1 carries over. Note that \(U_{n,b}(x) \) is an average of the variables \(1\{\tau_n(\hat{\theta}_{n,b,t} - \theta(P))\} \) as \(t \) ranges between 1 and \(n-b+1 \). Moreover, as \(t \) varies between 1 and \(n-b+1 \), these variables form a stationary sequence of random variables, each between 0 and 1, and with mixing coefficients \(\alpha_{n,b}(\cdot) \) satisfying
\[\alpha_{n,b}(j) \leq \alpha_X([\max(0,j-b+1)]). \]

Also, \(E[U_{n,b}(x)] = J_b(x, P) \). Then, according to Bosq (1996), Theorem 1.3, for any \(q \) in \([1, \frac{n}{2}]\) and any \(t > 0 \), the expression (23) is bounded above by
\[k_n4\exp(-t^2q/8) + k_n22(1 + \frac{4}{t})^{1/2}q \alpha_X([\frac{n-b+1}{2q}]). \]

Let \(p = (\beta - 1)/(\beta + 1) \) and choose \(q = n^p \). The first term in the last expression is bounded above by \(4n\exp(-t^2n^{p}/2) \to 0 \). Letting \(C_t = 22(1 + \frac{4}{t})^{1/2} \), the second term is bounded above by
\[C_tk_nn^p\alpha_X([\frac{n-b+1}{2n^p}]) \leq C_t\frac{k_n}{n}n^{p+1}\alpha_X([\frac{n-k_n+1}{2n^p}]), \]
which is bounded above by
\[C_t\frac{k_n}{n}n^{p+1}\alpha_X([n^{1-p}/4]) \]
as soon as \(k_n/n \leq 1/2 \). Letting \(m_n = n^{1-p} \) and noting that \(\beta = (1+p)/(1-p) \), this bound becomes
\[C_t\frac{k_n}{n}m_n^{\frac{1+p}{p}}\alpha_X([m_n/4]) = C_t\frac{k_n}{n}m_n^\beta\alpha_X([m_n/4]), \]
which tends to zero by assumptions on the mixing coefficients and the fact that \(k_n/n \to 0 \).

8 An Example

The goal of this section is to illustrate the idea of data-dependent choice of block size by presenting a heuristic algorithm and a small simulation study. Our algorithm is based on the fact that for the subsampling method to be consistent, the block size \(b \) needs to tend
to infinity with the sample size n but at a smaller rate, satisfying $b/n \to 0$. Indeed, for b too close to n all subsample statistics ($\hat{\theta}_{n,b,t}$ or $\bar{\theta}_{n,b,t}$) will be almost equal to $\hat{\theta}_n$, resulting in the subsampling distribution being too tight and in undercoverage of subsampling confidence intervals. Lahiri (1998) makes this intuition precise by proving, in the context of mean-like statistics, that for $b/n \to 1$, the subsampling approximation collapses to a point mass at zero.

On the other hand, if b is too small, the intervals can undercover or overcover depending on the state of nature; e.g., see Table 1. This leaves a number of b values in the 'right range' where we would expect almost correct results, at least for large sample sizes. Hence, in this range, the confidence intervals should be 'stable' when considered as a function of the block size. This idea is exploited by computing subsampling intervals for a large number of block sizes b and then looking for a region where the intervals do not change very much. Within this region, an interval is then picked according to some reasonable criterion.

While this method can be carried out by 'visual inspection', it is desirable to also have some automatic selection procedure, at the very least when simulation studies are to be carried out. The procedure we propose is based on minimizing a running standard deviation. Assume that b computes subsampling intervals for block sizes b in the range of b_{small} to b_{big}. The endpoints of the confidence intervals should change in a smooth fashion, as b changes. A running standard deviation applied to the endpoints determines the volatility around a specific b value, and the value of b associated with the smallest volatility is chosen. Here is a more formal description of the algorithm.

Algorithm 8.1 (Minimizing confidence interval volatility)

1. For $b = b_{\text{small}}$ to $b = b_{\text{big}}$ compute a subsampling interval for $\theta(P)$ at the desired confidence level, resulting in endpoints $I_{b,\text{low}}$ and $I_{b,\text{up}}$.

2. For each b, compute a volatility index VI_b as the standard deviation of the interval endpoints in a neighborhood of b. More specifically, for a small integer k, let VI_b be equal to the standard deviation of the endpoints $\{I_{b-k,\text{low}}, \ldots, I_{b+k,\text{low}}\}$ plus the standard deviation of the endpoints $\{I_{b-k,\text{up}}, \ldots, I_{b+k,\text{up}}\}$.

3. Pick the value b^* corresponding to the smallest volatility index and report $[I_{b^*,\text{low}}, I_{b^*,\text{up}}]$ as the final confidence interval.

Remark 8.1 The range of b values, determined by b_{small} and b_{big}, which is included in the minimization algorithm is not very important, as long as it is not too narrow. In the terminology of Sections 4 and 7, we can think of b_{small} as corresponding to j_n and of b_{big} as corresponding to k_n. Of course, the dependence on n has been suppressed in the notation here.
Remark 8.2 The algorithm contains a model parameter k. Simulation studies have shown that the algorithm is not very sensitive to the choice of this parameter. We typically employ $k = 2$ or $k = 3$.

Using a simulation study, we can compare the performance of this data-driven choice of block size with that of the best fixed block size, which in practice is unknown. Performance will be measured by empirical coverage probability of nominal 95% symmetric confidence interval for the univariate mean. As the data generating process, a simple AR(1) model is used given by

$$X_t = \rho X_{t-1} + \epsilon_t,$$

where the ϵ_t are i.i.d. standard normal or (centered) exponential with mean 1. The closer the AR(1) parameter ρ is to one in absolute value, the stronger is the dependence of the $\{X_t\}$ sequence. The values of ρ included in the study are $\rho = 0.2$, 0.5, 0.8, 0.95, and -0.5 and the sample size considered is $n = 250$. We compare the fixed block sizes $b = 4$, 8, 16, and 32 with the above data-dependent choice of block size using $b_{\text{small}} = 4$ and $b_{\text{big}} = 40$. The results are presented in Table 1.

One can see that the best fixed block size changes significantly with the AR(1) parameter ρ and the larger is ρ in absolute value, the larger is in general the optimal block size. This is not surprising, since bigger block sizes should be needed to capture stronger dependence structures. For positive ρ, the intervals tend to undercover and, again not surprising, the performance decreases for larger ρ. For the negative value $\rho = -0.5$, the intervals overcover for small block sizes, but undercover eventually (which is a consequence of the formerly stated theoretical results). The data-driven method of choosing the block size does about as well as the best fixed block size. This is encouraging, since the data-driven method is feasible while the optimal block size is unknown in practice.

9 Conclusions

In this paper, the basic notions of subsampling in the context of i.i.d. and time series data were presented. Some general consistency theorems were stated and proved, validating our statements that subsampling presents a viable approach to inference under very weak conditions. Indeed, subsampling works in a first order asymptotic sense under weaker conditions than the bootstrap. First, we presented the basic theory of subsampling for i.i.d. data, and removed the condition $\tau_b/\tau_n \to 0$ in Corollary 2.1. Next, we presented a general test construction based on subsampling which avoids having to relate the hypotheses to a parameter and merely requires recomputing a test statistic over subsamples. In Section 4, a general theorem asserts that subsampling is consistent, even accounting for a data-dependent choice of subsampling size.
Sections 5, 6, and 7 extend these ideas to the time series case. The same ideas apply, and the proofs only highlight the differences from the i.i.d. case. An example, illustrating the idea of data-dependent choice of subsampling size was presented in Section 8.

References

Bickel, P. and Ren, J. (1997). On choice of m for the m out of n bootstrap in hypothesis testing. Preprint, Department of Statistics, University of California, Berkeley.

10 Tables

Table 1: Univariate mean, AR(1) model, n = 250.
Estimated coverage probabilities of nominal 95% symmetric confidence intervals for the univariate mean. The estimates are based on 1000 replications for each scenario.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$b = 4$</th>
<th>$b = 8$</th>
<th>$b = 16$</th>
<th>$b = 32$</th>
<th>Data-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho = 0.2$</td>
<td>0.93</td>
<td>0.92</td>
<td>0.91</td>
<td>0.89</td>
<td>0.93</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.87</td>
<td>0.90</td>
<td>0.89</td>
<td>0.88</td>
<td>0.92</td>
</tr>
<tr>
<td>$\rho = 0.8$</td>
<td>0.74</td>
<td>0.84</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.41</td>
<td>0.53</td>
<td>0.64</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td>$\rho = -0.5$</td>
<td>0.97</td>
<td>0.95</td>
<td>0.94</td>
<td>0.92</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Gaussian innovations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$b = 4$</th>
<th>$b = 8$</th>
<th>$b = 16$</th>
<th>$b = 32$</th>
<th>Data-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho = 0.2$</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.88</td>
<td>0.90</td>
<td>0.90</td>
<td>0.88</td>
<td>0.91</td>
</tr>
<tr>
<td>$\rho = 0.8$</td>
<td>0.70</td>
<td>0.81</td>
<td>0.86</td>
<td>0.86</td>
<td>0.90</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.44</td>
<td>0.57</td>
<td>0.67</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>$\rho = -0.5$</td>
<td>0.97</td>
<td>0.95</td>
<td>0.93</td>
<td>0.91</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Exponential innovations