OPTIMALLY SPARSE REPRESENTATION IN GENERAL
(NON-ORTHOGONAL) DICTIONARIES VIA l_1 MINIMIZATION

by

David L. Donoho
Michael Elad

Technical Report No. 2002-36
December 2002

Department of Statistics
STANFORD UNIVERSITY
Stanford, California 94305-4065
OPTIMALLY SPARSE REPRESENTATION IN GENERAL
(NON-ORTHOGONAL) DICTIONARIES VIA l_1 MINIMIZATION

by

David L. Donoho
Department of Statistics
Stanford University

Michael Elad
Department of Computer Science (SCCM)
Stanford University

Technical Report No. 2002-36
December 2002

This research was supported in part by National Science Foundation grants DMS 00-77261, DMS 98-72890 (KDI), ANI-008584 (ITR), DMS 01-40698 (FRG), DARPA ACMP and by AFOSR MURI 95-P49620-96-1-0028.

Department of Statistics
STANFORD UNIVERSITY
Stanford, California 94305-4065

http://www-stat.stanford.edu
Optimally Sparse Representation in General (non-Orthogonal) Dictionaries via l_1 Minimization

David L. Donoho* and Michael Elad†

Abstract

Given a ‘dictionary’ $\mathbf{D} = \{d_k\}$ of vectors d_k, we seek to represent a signal \mathbf{S} as a linear combination $\mathbf{S} = \sum_k \gamma(k)d_k$, with scalar coefficients $\gamma(k)$. In particular, we aim for the sparsest representation possible, i.e. the representation having the fewest nonzero coefficients. In general, this requires a process of combinatorial optimization. Previous work by the authors and their colleagues considered the special case where \mathbf{D} is an overcomplete system consisting of exactly two orthonobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that \mathbf{S} has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ^1 norm of the coefficients γ.

In this paper, we obtain parallel results in a more general setting, where the dictionary \mathbf{D} can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, a measure of linear dependence in such a system; it is the size of the smallest linearly dependent subset (d_k). We show that, when the signal \mathbf{S} has a representation using less than $\text{Spark} (\mathbf{D})/2$ nonzeros, this representation is necessarily unique. We develop bounds on the Spark using two key quantities: $M(\mathbf{G})$, the maximal off-diagonal magnitude in the Gram matrix $\mathbf{G} = \mathbf{D}^H \mathbf{D}$, and μ_1, the minimal m for which any m non-diagonal entries in a single row or column of the Gram matrix sum to more than 1. Then $\text{Spark} (\mathbf{D}) > 1/M(\mathbf{G})$ and $\text{Spark} (\mathbf{D}) > \mu_1(\mathbf{G})$. These bounds reproduce uniqueness results given in special cases considered earlier. We also show that in the general dictionary case, any sufficiently sparse representation of \mathbf{S} is also the unique minimal ℓ^1-representation, using sparsity thresholds based on $M(\mathbf{G})$ and on a quantity $\mu_{1/2}(\mathbf{G})$ paralleling $\mu_1(\mathbf{G})$.

We sketch three applications: separating linear features from planar ones in $3-D$ data, noncooperative multiuser encoding, and identification of overcomplete independent components models.

Keywords: Sparse Representation, Overcomplete Representation. Matching Pursuit, Basis Pursuit. ℓ^1 methods, Convex Optimization, Linear Programming. Blind Separation.

Acknowledgements: Partial Support from NSF DMS 00-77261, by DMS 98-72890 (KDI) NSF ANI-008584 (ITR), NSF DMS 01-40698 (FRG), DARPA ACMP, and by AFOSR MURI 95-P49620-96-1-0028.

*Department of Statistics, Stanford University, Stanford 94305-9025 CA. USA.
†Department of Computer Science (SCCM), Stanford University, Stanford 94305-9025 CA. USA.
1 Introduction

Workers throughout engineering and the applied sciences frequently wish to represent data (signals, images) in the most parsimonious terms. In signal analysis specifically, they often consider models proposing that the signal of interest is sparse in some transform domain, such as the wavelet or Fourier domain [18]. However, there is a growing realization that many signals are mixtures of diverse phenomena, and no single transform can be expected to describe them well; instead, we should consider models making sparse combinations of generating elements from several different transforms [4, 5, 18, 26]. Unfortunately, as soon as we start considering general collections of generating elements, the attempt to find sparse solutions enters mostly uncharted territory, and one expects at best to use plausible heuristic methods [1, 6, 16, 24] and certainly to give up hope of rigorous optimality. In this paper, we will develop some rigorous results showing that it can be possible to find optimally sparse representations by efficient techniques in certain cases.

Suppose we are given a dictionary D of generating elements $\{d_k\}_{k=1}^L$, each one a vector in \mathbb{C}^N, which we assume normalized: $d_k^*d_k = 1$. The dictionary D can be viewed a matrix of size $N \times L$, with generating elements for columns. We do not suppose any fixed relationship between N and L; we may have $N \gg L$ or $N \ll L$. In particular, the dictionary can be overcomplete and contain linearly dependent subsets, and in particular need not be a basis (nor even contain a basis). As examples of such dictionaries, we can mention: wavelet packets and cosine packets dictionaries of Coifman and Meyer [5], which contain $L = N \log(N)$ elements, representing transient harmonic phenomena with a variety of durations and locations; wavelet frames, such as the directional wavelet frames of Ron and Shen [22], which contain $L = CN$ elements for various constants $C > 1$; and the combined Ridgelet/Wavelet systems of Starck, Candès, and Donoho [24, 25]. (Faced with such variety, we cannot call individual elements in the dictionary ‘basis elements’; we will use the term atom instead – see [4, 19] for further elaboration on the atoms/dictionary terminology and other examples).

Given a signal $S \in \mathbb{C}^N$, we seek the sparsest coefficient vector γ in \mathbb{C}^L such that $D\gamma = S$. Formally, we aim to solve the optimization problem

$$(P_0) \quad \text{Minimize } \|\gamma\|_0 \quad \text{subject to } S = D\gamma. \quad (1)$$

Here the ℓ_0 norm $\|\gamma\|_0$ is simply the number of nonzeros in γ. While this problem is easily solved if there happens to be a unique solution $D\gamma = S$ among general (not necessarily sparse) vectors γ, such uniqueness does not hold in any of our applications; in fact these mostly involve $L \gg N$, where such uniqueness is of course impossible. In general, solution of (P_0) requires enumerating subsets of the dictionary looking for the smallest subset able to represent the signal; of course, the complexity of such a subset search grows exponentially with L.

It is now known that in several interesting dictionaries, highly sparse solutions can be obtained by convex optimization; this has been found empirically [3, 4] and theoretically [7, 10, 11]. Consider replacing the ℓ_0 norm in (P_0) by the ℓ_1-norm, getting the minimization problem

$$(P_1) \quad \text{Minimize } \|\gamma\|_1 \quad \text{subject to } S = D\gamma. \quad (2)$$

This can be viewed as a kind of convexification of (P_0). For example, over the set of signals which can be generated with coefficient magnitudes bounded by 1, the ℓ_1 norm is the smallest convex
function exceeding the ℓ^0 norm; (P_1) is in a sense the ‘closest’ convex optimization problem to (P_0).

Convex optimization problems are extremely well-studied [2, 13], and this study has led to a substantial body of algorithmic knowledge and high-quality software. In fact (P_1) can be cast as a linear programming problem and solved by modern interior point methods [4], even for very large N and L.

Given the tractability of (P_1) and the general intractability of (P_0), it is perhaps surprising that for certain dictionaries solutions to (P_1), when sufficiently sparse, are the same as the solutions to (P_0). Indeed, results in [7, 10, 11] show that for certain dictionaries, if there exists a highly sparse solution to (P_0) then it is identical to the solution of (P_1); and, if we obtain the solution of (P_1) and observe that if it happens to be sparse beyond a certain specific threshold, then we know (without checking) that we have also solved (P_0).

Previous work studying this phenomenon [7, 10, 11] considered dictionaries D built by concatenating two orthobases Φ and Ψ, thus giving that L = 2N. For example, one could let Φ be the Fourier basis and Ψ be the Dirac basis, so that we are trying to represent a signal as a combination of spikes and sinusoids. In this dictionary, the latest results in [11] show that if a signal is built from fewer than 0.914√N spikes and sinusoids, then this is the sparsest possible representation by spikes and sinusoids — i.e. the solution of (P_0) — it is also necessarily the solution found by (P_1).

We are aware of numerous applications where the dictionaries would not be covered by the results just mentioned. These include: cases where the dictionary is overcomplete by more than a factor 2 (i.e. L > 2N), and where we have a collection of nonorthogonal elements, for example a frame or other system. In this paper, we consider general dictionaries D and obtain results paralleling those in [7, 10, 11]. We then sketch applications in the more general dictionaries.

We address two questions for a given dictionary D and signal S:

1. **Uniqueness**: Under which conditions is a highly sparse representation necessarily the sparsest possible representation? This question is answered by generalizing the Uniqueness Theorem in [7, 10, 11].

2. **Equivalence**: Under which conditions is a highly sparse solution to the (P_0) problem also necessarily the solution to the (P_1) problem? This question is answered by generalizing the Equivalence Theorem in [7, 10, 11].

Our analysis avoids reliance on the orthogonal sub-dictionary structure in [7, 10, 11]; our results are just as strong as those of [7] while working for a much wider range of dictionaries. We base our analysis on the concept of the Spark of a matrix — the size of the smallest linearly dependent subset. We show that uniqueness follows whenever the signal S is built from fewer than Spark(D)/2 atoms. We develop two bounds on Spark which yield previously known inequalities in the two-orthobasis case, but which can be used more generally. The simpler bound involves the quantity M(G), the largest off-diagonal entry in the Gram matrix G = D^H D. The more general bound involves μ_1(G), the size of the smallest group of non-diagonal entries in any row or column of G that sums to more than one. We have Spark(D) > 1/M and also Spark(D) > μ_1.

We also show that in the general dictionary case, M(G) and a related quantity μ_{1,2}(G) can be
used to determine a threshold on sparsity such that any sufficiently sparse representation of S must be the unique minimal ℓ^1-representation.

We sketch three applications of our results.

- **Separating Lines and Planes.** Suppose we have a data vector S representing 3-D volumetric data. It is supposed that the volume contains some number of lines and planes in superposition. Under what conditions can we correctly identify the lines and planes and the densities on each? This is a caricature of a timely problem in extragalactic astronomy [8]. Here, the dictionary to be studied is a collection of nonorthogonal elements representing uniform distributions along all digital lines and along all digital planes in $\{0, \ldots, N-1\}^3$.

- **Robust Multiuser Private Broadcasting.** J different individuals encode information by superposition in a single signal vector S which is intended to be received by a single intended recipient. The encoded vector must look like random noise to anyone but the intended recipient (including the transmitters), must be decodable perfectly and the perfect decoding must be robust against corruption of some limited number of entries in the vector. We show that a scheme with these properties can be made by concatenating together J random dictionaries and a Dirac dictionary, with decoding by solving (P_1).

- **Blind Identification of Sources.** Suppose that a random signal S is a superposition of independent components taken from an overcomplete dictionary D. Without assuming sparsity of this representation, we cannot in general know which atoms from D are active in S or what their statistics are. However, we show that it is possible, without any sparsity, to determine the activity and higher-order statistics of the sources. In this application, the dictionary is a non-orthogonal collection of m-th order tensor products of basis elements, the 'signal' is the m-th order cumulant array of S, and sparsity emerges automatically for large m even when the original signal is not sparsely represented.

This paper is organized as follows: In the next section we briefly recall the main results found in [7, 10, 11] on the Uniqueness and Equivalence Theorems for dictionaries made from two-orthobases. Section 3 then extends the Uniqueness Theorem to arbitrary dictionaries. Section 4 similarly extends the equivalence results for general form dictionary. Applications are discussed in Section 5. We summarize and discuss future research directions in Section 6.

2 The Two-Orthobasis Case

Consider a special type of dictionary: the concatenation of two orthobases Φ and Ψ, each represented by $N \times N$ unitary matrices; thus $D = [\Phi, \Psi]$. Let ϕ_i and ψ_j ($1 \leq i, j \leq N$) denote the elements in the two bases. Following [7] we define the mutual incoherence between these two bases by

$$M(\Phi, \Psi) = \sup\{|\langle \phi_i, \psi_j \rangle|, \forall 1 \leq i, j \leq N\}.$$

It is easy to show [7, 11] that $1/\sqrt{N} \leq M \leq 1$; the lower bound is attained by a basis pair such as spikes and sinusoids [7] or spikes and Hadamard-Walsh functions [11]. The upper bound is
attained if at least one of the vectors in \(\Phi \) is also found in \(\Psi \). A condition for uniqueness of sparse solutions to \((P_0)\) can be stated in terms of \(M \); the following is proved in [10, 11].

Theorem 1 - Uniqueness: A representation \(S = D_\gamma \) is necessarily the sparsest possible if \(\|\gamma\|_0 < 1/M \).

In words, having obtained a sparse representation of a signal, for example by \((P_1)\) or by any other means, if the the \(l_0 \) norm of the representation is sufficiently small (below \(1/M \)), we conclude that this is also the \((P_0)\) solution. In the ‘best case’ where \(1/M = \sqrt{N} \), the sparsity requirement translates into \(\|\gamma\|_0 < \sqrt{N} \).

A condition for equivalence of the solution to \((P_1)\) with that for \((P_0)\) can also be stated in terms of \(M \); see [10, 11].

Theorem 2 - Equivalence: If there exists any sparse representation of \(S \) satisfying \(\|\gamma\|_0 < (\sqrt{2} - 0.5)/M \), then this is necessarily the unique solution of \((P_1)\).

Note the slight gap between the criteria in the above two Theorems. Recently, Feuer and Nemirovsky managed to prove that the bound in the equivalence theorem is sharp, so this gap is unbridgeable [12].

To summarize, if we solve the \((P_1)\) problem and observe that it is sufficiently sparse, we know we have obtained the \((P_0)\) solution as well. Moreover, if the signal \(S \) has sparse enough representation to begin with, \((P_1)\) will indeed find it.

These results correspond to the case of dictionaries built from two orthobases. Both Theorems immediately extend in a limited way to non-orthogonal bases \(\Phi \) and \(\Psi \) [7]. We merely replace \(M \) by the quantity \(\tilde{M} \) in the statement of both results:

\[
\tilde{M} = \text{Sup} \left\{ \left| \Phi^{-1} \Psi \right|_{i,j}, \left| \Psi^{-1} \Phi \right|_{i,j}, \; \forall 1 \leq i, j \leq N \right\}.
\]

However, as we may easily have \(\tilde{M} \geq 1 \), this is of limited value.

3 A Uniqueness Theorem for Arbitrary Dictionaries

We return to the setting of the Introduction; the dictionary \(D \) is a matrix of size \(N \times L \), with normalized columns \(\{d_k\}_{k=1}^L \). An incoming signal vector \(S \) is to be represented using the dictionary by \(S = D_\gamma \). Assume that we have two different suitable representations, i.e.

\[
\exists \gamma_1 \neq \gamma_2 \mid S = D_\gamma_1 = D_\gamma_2.
\]

Thus the difference of the representation vectors, \(\delta = \gamma_1 - \gamma_2 \), must be in the null space of the representation: \(D(\gamma_1 - \gamma_2) = D\delta = 0 \). Hence some group of columns from \(D \) must be linearly dependent. To discuss the size of this group we introduce terminology.

Definition - Spark: Given a matrix \(A \) we define the non-negative integer \(\sigma = \text{Spark}(A) \) as the smallest possible number such that there is at least one sub-group of \(\sigma \) columns from \(A \) that are linearly dependent, and all sub-groups of \(\sigma - 1 \) columns of \(A \) are linearly independent.
Clearly, if there are no zero columns in A, then $\sigma \geq 2$, with equality only if two columns from A are linearly dependent. Note that, although spark and rank are in some ways similar, they are totally different. The rank of a matrix A is defined as the maximal number of columns from A that are linearly independent, and its evaluation is a sequential process that requires L steps. Spark, on the other hand, is the minimal number of columns from A that are linearly dependent, and its computation requires a combinatorial process of complexity 2^L steps. The matrix A can be of full rank and yet have $\sigma = 2$. At the other extreme we get that $\sigma \leq \min\{L, \text{Rank} + 1\{A\}\}$.

As an interesting example, let us consider a two-ortho basis case made of spikes and sinusoids. Here $D = [\Phi, \Psi]$, $\Phi = I_N$ (identity matrix of size $N \times N$), and $\Psi = F_N$ (the Discrete Fourier Transform matrix of size $N \times N$). Then, supposing N is a perfect square, [7] used the Poisson Summation formula to show that an equispaced train of equal-amplitude spikes in the signal domain, with \sqrt{N} spacing, transforms to the exact same form in the Fourier domain. As a result, there is a group of $2\sqrt{N}$ linearly-dependent vectors in this D, and so Spark(D) $\leq 2\sqrt{N}$. As we shall see later, Spark(D) = $2\sqrt{N}$.

We now use the Spark to bound the sparsity of non-unique representations of S. Let $\sigma = \text{Spark}(D)$. Every non-uniqueness pair (γ_1, γ_2) generates $\hat{\delta} = \gamma_1 - \gamma_2$ in the column null-space, and

$$D\hat{\delta} = 0 \implies \|\gamma_1 - \gamma_2\|_0 = \|\hat{\delta}\|_0 \geq \sigma. \quad (4)$$

On the other hand the ℓ^0 pseudo-norm obeys the triangle inequality $\|\gamma_1 - \gamma_2\|_0 \leq \|\gamma_1\|_0 + \|\gamma_2\|_0$. Thus, for the two supposed representations of S, we must have

$$\|\gamma_1\|_0 + \|\gamma_2\|_0 \geq \sigma. \quad (5)$$

Formalizing matters:

Theorem 3 - Sparsity Bound: If a signal S has two different representations $S = D\gamma_1 = D\gamma_2$, the two representations must have no less than Spark(D) non-zero entries combined.

From (5), if there exists a representation satisfying $\|\gamma_1\|_0 < \sigma/2$, then any other representation γ_2 must satisfy $\|\gamma_2\|_0 \geq \sigma/2$, implying that γ_1 is the sparsest representation. This gives:

Corollary 4 - Uniqueness: A representation $S = D\gamma$ is necessarily the sparsest possible if $\|\gamma\|_0 < \text{Spark}(D)/2$.

We note that these results are sharp, essentially by definition.

3.1 Lower Bounds on Spark(D)

Let $G = D^HD$ be the Gram matrix of D. As every entry in G is an inner product of a pair of columns from the dictionary, the diagonal entries are all 1, owing to our normalization of D's columns; the off-diagonal entries have magnitudes between 0 and 1.

Let $S = \{k_1, \ldots, k_s\}$ be a subset of indices, and suppose the corresponding columns of D are linearly independent. Then the corresponding leading minor $G_S = (G_{k_i,k_j} : i = 1, \ldots, s)$ is positive definite [15]. The converse is also true. This proves
Lemma 5 $\sigma \leq \text{Spark}(D)$ if and only if every $(\sigma - 1) \times (\sigma - 1)$ leading minor of G is positive definite.

To apply this criterion, we use the notion of Diagonal Dominance [15]: If a symmetric matrix $A = (A_{ij})$ satisfies $A_{ii} > \sum_{j \neq i} |A_{ij}|$ for every i, then A is positive definite. Applying this criterion to all principal minors of the Gram matrix G leads immediately to a lower bound for $\text{Spark}(G)$.

Theorem 6 - Lower-Bound Using μ_1: Given the dictionary D and its corresponding Gram matrix $G = D^H D$, let $\mu_1(G)$ be the smallest integer m such that at least one collection of m non-diagonal magnitudes from any single row or column of G sums to no less than 1. Then $\text{Spark}(D) > \mu_1(G)$.

Indeed, by hypothesis, every $\mu_1 \times \mu_1$ principal minor has its off-diagonal entries summing to less than 1 in any row or column. Hence every such principal minor is diagonally dominant, and hence every group of μ_1 columns from D is linearly independent.

For a second bound on Spark, define

$$M(G) = \max_{i \neq j} |G_{ij}|,$$

giving a uniform bound on off-diagonal elements. Note that the earlier quantity $M(\Psi, \Phi)$ defined in the two-orthobasis case agrees with the new quantity:

$$M(\Psi, \Phi) = M(G), \text{ when } G = D^H D, \text{ with } D = [\Phi, \Psi].$$

Now consider the implications of $M = M(G)$ for $\mu_1(G)$. Since we have to sum at least $1/M$ off-diagonal entries of size M to reach a cumulative sum exceeding 1, we always have $\mu_1(G) > 1/M(G)$. This proves

Theorem 7 - Lower Bound Using M: If the Gram matrix has all off-diagonal entries $\leq M$,

$\text{Spark}(D) > 1/M$.

Combined with our earlier observations on Spark, we have: a representation with fewer than $(1 + 1/M)/2$ non-zeros is necessarily maximally sparse. (Note that the requirement $\|\gamma\|_0 < (1 + 1/M)/2$ is actually equivalent to $\|\gamma\|_0 \leq 1/(2M)$ since $\|\gamma\|_0$ is an integer). This result was found in [7] for the two-orthobasis case, so we see that the same form of result holds in general, with the extended definition of M.

3.2 Refinements

In general, Theorems 6 and 7 can contain slack, in two ways.

First, there may be additional dictionary structure to be exploited. For example, return to the special two-orthobasis case of spikes and sinusoids: $D = [\Phi, \Psi]$, $\Phi = I_N$ and $\Psi = F_N$. Here $M = 1/\sqrt{N}$, and so the theorem says that $\text{Spark}(D) > \sqrt{N}$. In fact the exact value is $2\sqrt{N}$, so there is room to do better. This improvement follows directly from the uncertainty theorem
given in [10, 11]. This theorem refers to a given signal $S \in \mathbb{C}^N$ and two unitary matrices Φ and Ψ. We define the two unique representations $S = \Phi \alpha = \Psi \beta$. The theorem states that $\|\alpha\|_0 + \|\beta\|_0 \geq \frac{2}{M}$. Thus, defining $\gamma^H = [\alpha^H, -\beta^H]$ we get $-\gamma^H \gamma = 0$, and we conclude that in this two-orthobasis case, $\text{Spark}(D) \geq 2/M$. The reasoning is general, and applies to any two-orthobasis dictionary, giving

Theorem 8 - Improved Lower Bound – Two Orthobasis Case: Given a two-orthobasis dictionary with mutual coherence value at most M, $\text{Spark}(D) \geq 2/M$.

This bound, together with Corollary 4, gives precisely Theorem 1 in [10, 11]. Returning again to the spikes/sinusoids example, from $M = 1/\sqrt{N}$ we have $\text{Spark}(D) \geq 2/\sqrt{N}$. On the other hand, if N is a perfect square, the spike train example provides a linearly-dependent subset of $2\sqrt{N}$ atoms, and so in fact $\sigma = 2\sqrt{N}$.

Secondly, Theorem 7 can contain slack simply because the metric information in the Gram matrix is not sufficiently expressive on linear dependence issues. We may construct examples where $\text{Spark}(D) \gg 1/M(G)$. Our bounds measure diagonal dominance rather than positive definiteness, and this is well-known to introduce a gap in a wide variety of settings [15].

For a specific example, consider a two-basis dictionary made of spikes and exponentially-decaying sinusoids [7]. Thus, let $\Phi = I_N$ and, for a fixed $\alpha \in (0, 1)$, construct the non-orthogonal basis $\Psi^{(\alpha)}_N = \{\psi^{(\alpha)}_k\}$, where $\psi^{(\alpha)}_k(i) = \alpha^i \exp\left\{\sqrt{-1} \frac{2\pi k i}{N}\right\}$. Let S_1 and S_2 be subsets of indices in each basis. Now suppose this pair of subsets generates a linear dependency in the combined representation, so that, for appropriate N-vectors of coefficients ρ and ω,

$$0 = \sum_{k \in S_1} \rho(k) \delta_k(i) + \sum_{k \in S_2} \omega(k) \psi^{(\alpha)}_k(i), \quad \forall i.$$

Then, as $\psi^{(\alpha)}_k(i) = \alpha^i \psi^{(0)}_k(i)$ it is equally true that

$$\alpha^{-i} \cdot 0 = \sum_{k \in S_1} \alpha^{-k} \rho(k) \delta_k(i) + \sum_{k \in S_2} \omega(k) \psi^{(0)}_k(i), \quad \forall i.$$

Hence, there would have been a linear-dependency in the two-orthobasis case $[I_N, F_N]$, with the same subsets and with coefficients $\rho(k) = \alpha^k \rho(k)$, $\forall k$, and $\omega(k) = \omega(k)$. In short, see that

$$\text{Spark}([I_N, \Psi^{(\alpha)}_N]) = \text{Spark}([I_N, F_N]).$$

On the other hand, picking α close to zero, we get that the basis elements in $\Psi^{(\alpha)}_N$ decay so quickly that the decaying sinusoids begin to resemble spikes; thus $M(I_N, \Psi^{(\alpha)}_N) \rightarrow 1$ as $\alpha \rightarrow 0$.

This is a special case of a more general phenomenon, invariance of the Spark under row and column scaling, combined with non-invariance of the Gram matrix under row scaling. For any diagonal nonsingular matrices W_1 ($N \times N$) and W_2 ($L \times L$), we have

$$\text{Spark}(W_1D W_2) = \text{Spark}(D),$$

while Gram matrix $G = G(D)$ exhibits no such invariance; even if we force normalization so that $\text{diag}(G) = I_L$, we have only invariance against the action of W_2 (column scaling), but not W_1 (row scaling). In particular, while the positive-definiteness of any particular minor of $G(W_1 D)$ is invariant under such row scaling, the diagonal dominance is not.
3.3 Upper Bounds on Spark

Consider a concrete method for evaluating Spark(D). We define a sequence of optimization problems, for $k = 1, \ldots, L$

$$(R_k) \quad \text{Minimize } \| \gamma \|_0 \quad \text{subject to } \quad D \gamma = 0 \quad \gamma_k = 1. \quad (6)$$

Suppose the Spark value σ is achieved by a subset of columns from D containing the first column, i.e. that this set exhibits linear dependence, but no subset of smaller cardinality exhibits it. Then the solution, $\gamma_1^0, *$ say, of (R_1) necessarily satisfies $\| \gamma_1^0, * \|_0 = \sigma$. More generally, letting $\gamma_k^0, *$ denote the solution of problem (R_k), we get

$$\text{Spark}(D) = \min_{1 \leq k \leq L} \| \gamma_k^0, * \|_0. \quad (7)$$

On the other hand, the implied l_0 optimization is computationally intractable. On the other hand, any sequence of vectors obeying the same constraints furnishes an upper bound. To obtain such a sequence, (and because it will be useful below for other purposes), we replace minimization of the l_0 norm by the more tractable l_1 norm. Defining the sequence of optimization problems for $k = 1, 2, \ldots, L$:

$$(Q_k) \quad \text{Minimize } \| \gamma \|_1 \quad \text{subject to } \quad D \gamma = 0 \quad \gamma_k = 1. \quad (8)$$

(The same sequence of optimization problems was defined in [7] who noted the formal identity with the definition of analytic capacities in harmonic analysis, and called them capacity problems). The problems can in principle be tackled straightforwardly using Linear-Programming solvers. Denote the solution of the (Q_k) problem as $\gamma_k^{1, *}$ Then, clearly $\| \gamma_k^0, * \|_0 \leq \| \gamma_k^{1, *} \|_0$ so

$$\text{Spark}(D) \leq \min_{1 \leq k \leq L} \| \gamma_k^{1, *} \|_0. \quad (9)$$

4 A Equivalence Theorem for Arbitrary Dictionaries

We now set conditions under which, if a signal S admits a highly sparse representation in the dictionary D, the l_1 optimization problem (P_1) must necessarily obtain that representation.

Let γ_0 denote the sparsest representation of S, so $D \gamma_0 = S$. For any other γ_1 providing a representation (i.e. $D \gamma_1 = S$) we therefore have $\| \gamma_1 \|_1 > \| \gamma_0 \|_0$. To show that γ_0 solves (P_1), we need to show that $\| \gamma_1 \|_1 \geq \| \gamma_0 \|_1$.

Consider the optimization problem

$$\text{Minimize } \| \gamma_1 \|_1 - \| \gamma_0 \|_1 = \sum_{k=1}^L | \gamma_1(k) | - \sum_{k=1}^L | \gamma_0(k) | \quad \text{Subject to } \quad D \gamma_1 = D \gamma_0. \quad (10)$$

If the minimum is no less than zero, the l_1 norm for any alternate representation at least as large as for the sparsest representation. This in turn means that the (P_1) problem admits γ_0 as a solution. If, also, the minimum is uniquely attained then the minimizer is γ_0.

9
As in [7, 11], we develop a simple lower bound. Let S denote the support of γ_0. Relabelling the summations in (10) gives

$$
\sum_{k=1}^{L} |\gamma_1(k)| - \sum_{k=1}^{L} |\gamma_0(k)| = \sum_{s \in S} |\gamma_1(k)| + \sum_{s} (|\gamma_1(k)| - |\gamma_0(k)|) \\
\geq \sum_{s \in S} |\gamma_1(k)| - \sum_{s} (|\gamma_1(k) - \gamma_0(k)|) \\
= \sum_{s \in S} |\delta(k)| - \sum_{s} |\delta(k)|,
$$

where we introduced the vector $\delta = \gamma_1 - \gamma_0$. Note that the right-hand side of this display is positive just in case

$$
\sum_{s} |\delta(k)| < \frac{1}{2} \|\delta\|_1,
$$

i.e. just in case at least 50% of the magnitude in δ is concentrated in S. This motivates a constrained optimization problem:

$$(C_S) \quad \text{Maximize } \sum_{s} |\delta(k)| \quad \text{Subject to } D\delta = 0, \quad \|\delta\|_1 = 1. \quad (12)$$

This new problem is closely related to the previous one. It has this interpretation: if $val(C_S) < 1/2$, then every direction of movement away from γ_0 which remains a representation of S (i.e. stays in in the nullspace) causes a definite increase in the objective function for (10). Recording this formally,

Lemma 9 - Less than 50% Concentration Implies Equivalence. If $\text{supp}(\gamma_0) \subset S$, and $val(C_S) < 1/2$, then γ_0 is the unique solution of (P_1) from data $S = D\gamma_0$.

On the other hand, if $val(C_S) \geq \frac{1}{2}$, it can happen that γ_0 is not a solution to (P_1).

Lemma 10 If $val(C_S) \geq \frac{1}{2}$, there exists a vector γ_0 supported in S, and a corresponding signal $S = D\gamma_0$, such that γ_0 is not a unique minimizer of (P_1).

Proof. Given a solution δ^* to problem (C_S) with value $\geq \frac{1}{2}$, pick any γ_0 supported in S with sign pattern arranged so that $\text{sign}(\delta^*(k)\gamma_0(k)) < 0$ for $k \in S$. Then consider γ_1 of the general form $\gamma_1 = \gamma_0 + t\delta^*$, for small $t > 0$. Equality must hold in (11) for sufficiently small t, showing that $\|\gamma_1\|_1 < \|\gamma_0\|_1$ and so γ_0 is not the unique solution of (P_1) when $S = D\gamma_0$.

We now bring the Spark into the picture.

Lemma 11 Let $\sigma = \text{Spark}(D)$. There is a subset S^* with $\#(S^*) \leq \sigma/2 + 1$ and $val(C_{S^*}) \geq \frac{1}{2}$.

Proof. Let S index a subset of dictionary atoms exhibiting linear dependency. There is a nonzero vector δ supported in S with $D\delta = 0$. S^* be the subset of S containing the $\lceil \#(S)/2 \rceil$ largest-magnitude entries in δ. Then $\#(S^*) \leq \#(S)/2 + 1$ while

$$
\sum_{s^*} |\delta(k)| \geq \frac{1}{2} \|\delta\|_1.
$$
It follows necessarily that \(\text{val}(C_{s^*}) > 1/2 \).

In short, the size of \(\text{Spark}(D) \) controls uniqueness not only in the \(\ell^0 \) problem, but also in the \(\ell^1 \) problem. No sparsity bound \(\| \gamma_0 \|_0 < s \) can imply \((P_0)-(P_1)\) equivalence in general unless \(s \leq \text{Spark}(D)/2 \).

4.1 Equivalence Using \(M(G) \)

Theorem 12 Suppose that the dictionary \(D \) has a Gram matrix \(G \) with off-diagonal entries bounded by \(M \). If \(S = D \gamma_0 \) where \(\| \gamma_0 \|_0 < (1 + 1/M)/2 \), then \(\gamma_0 \) is the unique solution of \((P_1)\).

We prove this by showing that if \(D\delta = 0 \), then for any set \(S \) of indices,

\[
\sum_s |\delta(k)| \leq \frac{M \#(S)}{M+1} \cdot \|\delta\|_1.
\]

Then because \(\#(S) < (1 + 1/M)/2 \), it is impossible to achieve 50\% concentration on \(S \) - \(\text{val}(S) < 1/2 \) - and so Lemma 9 gives our result.

To get \((13)\), we recall the sequence of capacity problems \((Q_k)\) introduced earlier. By their definition, if \(\delta \) obeys \(D\delta = 0 \),

\[
|\delta(k)| \leq \text{val}(Q_k)^{-1} \|\delta\|_1.
\]

It follows (see also [7]) that for any set \(S \),

\[
\sum_{k \in S} |\delta(k)| \leq \left(\sum_{k \in S} \text{val}(Q_k)^{-1} \right) \cdot \|\delta\|_1.
\]

The result \((13)\), and hence Theorem 12 follows immediately on substituting the following bound for the capacities:

Lemma 13 Suppose the Gram matrix has off-diagonal entries bounded by \(M \). Then

\[
\text{val}(Q_k) \geq \frac{1}{M + 1}, \quad k = 1, \ldots, L.
\]

To prove the lemma, we remark that as \(D\delta = 0 \) then also \(G\delta = D^HD\delta = 0 \). In particular \((G\delta)_k = 0 \), where \(k \) is the specific index mentioned in the statement of the lemma. Now as \(\delta_k = 1 \) by definition of \((Q_k)\), and as \(G_{k,k} = 1 \) by normalization, in order that \((G\delta)_k = 0 \) we must have

\[
1 = G_{k,k}\delta_k = - \sum_{j \neq k} G_{k,j}\delta_j.
\]

Now

\[
1 = \left| \sum_{j \neq k} G_{k,j}\delta_j \right| \leq \sum_{j \neq k} |G_{k,j}| |\delta_j| \leq M \sum_{j \neq k} |\delta_j| = M(\|\delta\|_1 - 1).
\]

Hence \(\|\delta\|_1 \geq 1/M + 1 \), and the Lemma follows.
4.2 Equivalence Using $\mu_{1/2}(G)$

Recall the quantity μ_1 defined in our analysis of the uniqueness problem in Section 3. We now define an analogous concept relevant to equivalence.

Definition 14 For G a symmetric matrix, $\mu_{1/2}(G)$ denotes the smallest number m such that any m non-diagonal elements in a single row or column of G sum to no less than $1/2$.

We remark that $\mu_{1/2}(G) \leq \frac{1}{2} \mu_1(G) \leq \mu_1(G)$. Using this notion, we can show:

Theorem 15 Consider a dictionary D with Gram matrix G. If $S = D\gamma_0$ where $\|\gamma_0\|_0 < \mu_{1/2}(G)$, then γ_0 is the unique solution of (P_1).

Indeed, let S be a set of size $\#(S) < \mu_{1/2}(G)$. We will show that any vector in the nullspace of D exhibits less than 50% concentration to S, so that

$$\sum_S |\delta(k)| < \frac{1}{2} \|\delta\|_1, \quad \forall \delta: D\delta = 0. \quad (14)$$

The Theorem then follows from Lemma 9.

Note again that $D\delta$ implies $G\delta = 0$. In particular, $(G - I)\delta = -\delta$. Let $m = \#S$ and let $H = (H_{i,k})$ denote the $m \times L$ matrix formed from the rows of $G - I$ corresponding to indices in S. Then $(G - I)\delta = -\delta$ implies

$$\sum_S |\delta(k)| = \|H\delta\|_1. \quad (15)$$

As is well known, H, viewed as a matrix mapping ℓ^1_L into ℓ^1_m has its norm controlled by its maximum ℓ^1 column sum:

$$\|Hx\|_1 \leq \|||H|||_{(1,1)} \cdot \|x\|_1, \quad \forall x \in R^L,$$

where

$$\|||H|||_{(1,1)} = \max_k \sum_{i=1}^m |H_{i,k}|.$$

By the assumption that $\mu_{1/2}(G) \geq \#S$,

$$\max_j \sum_{k \in S} |G_{k,j} - 1_{\{k=j\}|} < \frac{1}{2}$$

It follows that $\|||H|||_{(1,1)} < 1/2$. Together with (15) this yields (14) and hence also the Theorem.
5 Stylized Applications

We now sketch a few application scenarios in which our results may be of interest.

5.1 Separating Points, Lines, and Planes

A timely problem in extragalactic astronomy is to analyze $3-D$ volumetric data and quantitatively identify and separate components concentrated on ‘filaments’ and ‘sheets’ from those scattered uniformly through $3-D$ space; see [8] for related references, and [24] for some examples of empirical success in performing such separations. It seems of interest to have a theoretical perspective assuring us that, at least in an idealized setting, such separation is possible in principle.

For sake of brevity, we work with specific algebraic notions of digital line, digital point, and digital plane. Let p be a prime (e.g. 127, 257) and consider as ‘vector’ to be represented a $p \times p \times p$ array $S(i_1, i_2, i_3) = S(\mathbf{i})$. As representatives of digital points we consider the Kronecker sequences

$$\text{Point}_k(\mathbf{i}) = 1_{\{k_1=i_1, k_2=i_2, k_3=i_3\}}$$

as $\mathbf{k} = (k_1, k_2, k_3)$ ranges over all triples with $0 \leq k_i < p$. We consider as digital plane $\text{Plane}_p(\mathbf{i}, \mathbf{k})$ the collection of all triples (i_1, i_2, i_3) obeying

$$i_3 = k_1i_1 + k_2i_2 \mod p$$

We consider as digital line $\text{Line}_p(\mathbf{i}_0, \mathbf{k})$ the collection of all triples

$$\mathbf{i} = \mathbf{i}_0 + \ell\mathbf{k} \mod p, \quad \ell = 0, \ldots, p.$$

(Note that while these notions of digital geometry may seem algebraically natural, because of ‘wrap-around’ artifacts, they may not be geometrically persuasive. For further discussion, see [20]).

By using properties of arithmetic $\mod p$, it is not hard to show the following:

- Any digital plane contains p^2 points.
- Any digital line contains p points.
- Any two digital lines are disjoint, or intersect in a single point.
- Any two digital planes are parallel, or intersect in a digital line.
- Any digital line intersects a digital plane not at all, in a single point, or along the whole extent of the digital line.

Suppose now that we construct a dictionary D consisting of indicators of points, of digital lines and of digital planes. These should all be normalized to unit l^2 norm. Let G denote the Gram matrix. We make the observation that

$$M(G) = 1/\sqrt{p}.$$
Indeed, if d_1 and d_2 are each normalized indicator functions corresponding to subsets $I_1, I_2 \subset \mathbb{Z}_p^3$, then
\[
\langle d_1, d_2 \rangle = \frac{|I_1 \cap I_2|}{|I_1|^{1/2} |I_2|^{1/2}}
\]

Using this fact and the above incidence estimates we get the following:
\[
\langle Plane_1, Plane_2 \rangle \leq \frac{p}{\sqrt{p^2} \cdot \sqrt{p^2}} = 1/p,
\]
while
\[
\langle Plane, Line \rangle \leq \frac{p}{\sqrt{p^2} \cdot \sqrt{p}} = 1/\sqrt{p},
\]
and
\[
\langle Line_1, Line_2 \rangle \leq \frac{1}{\sqrt{p} \cdot \sqrt{p}} = 1/p,
\]
and
\[
\langle Point, Line \rangle \leq \frac{1}{1 \cdot \sqrt{p}} = 1/\sqrt{p},
\]
where for example by $Plane$ in the above display we mean the indicator function of a digital plane normalized to have ℓ^2-norm one, and similarly for $Line$ and $Point$. We obtain immediately:

Theorem 16 If the $3 - D$ array S can be written as a superposition of fewer than \sqrt{p} digital planes, lines, and points, this is the unique sparsest decomposition. If it can be written as a superposition of fewer than $\sqrt{p}/2$ digital planes, lines, and points, this is the unique minimal ℓ^1 decomposition.

This shows that there is at least some possibility to rigorously separate 3-D data into unique geometric components. It is in accord with existing experiments in [24] successfully separating data into a relatively few such components.

5.2 Robust Multiuser Private Broadcasting

Consider now a stylized problem in private digital communication. Suppose that J individuals are to communicate privately and without coordination over a broadcast channel with an intended recipient. The j-th individual is to create a signal S_j which is superposed with all the other individuals’ signals, producing $S = \sum_{j=1}^{J} S_j$. The intended recipient gets a copy of S. The signals S_j are encoded in a way that, to everyone but the intended recipient, encoders included, S looks like a white Gaussian noise; participating individuals cannot understand each other's messages, but nevertheless the recipient is able to unambiguously separate S into its underlying components S_i and decipher each such apparent noise signal into meaningful data. Finally, it is desired that all this remain true even if the recipient gets a defective copy of S that may be badly corrupted in a few entries.

Here is a way to approach this problem. The intended recipient arranges things in advance that each of the J individuals has a private 'codebook' C_j containing K different N-vectors whose entries are generated by sampling independent Gaussian white noises. The codebook is
known to the j-th encoder and to the recipient. An overall dictionary is created by concatenating these together with an identity matrix, producing

$$D = [I_N, C_1, \ldots, C_J].$$

The j-th individual creates a signal by selecting a random subset of I_j indices in C_j and generating

$$S_j = \sum_{i\in I_j} \alpha^j_i \epsilon_{j,i}.$$

The positions of the indices $i \in I_j$ and coefficients α^j_i are the meaningful data to be conveyed. Now each $\epsilon_{j,i}$ is the realization of a Gaussian white noise; hence each S_j resembles such a white noise. Individuals don’t know each other’s codebooks, so they are unable to decipher each other’s meaningful data (in a sense which can be made precise; compare [23].)

The recipient can extract all the meaningful data simply by performing minimum ℓ^1 atomic decomposition in dictionary D. This will provide a list of coefficients associated with spikes and with the components associated with each codebook. Provided the participants encode a sparse enough set of coefficients, the scheme works perfectly to separate errors and the components of the individual message.

To see this, note that by using properties of extreme values of Gaussian random vectors (compare [7]) we can show that the normalized dictionary obeys

$$M(G) \leq \frac{\sqrt{2\log(K \cdot J + 1)}}{\sqrt{N}} (1 + \epsilon_N),$$

where ϵ_N is a random variable that tends to zero in probability as $N \to \infty$. Hence we have:

Theorem 17 If each participant transmits an S_j using a number of coefficients bounded by

$$\#(I_j) \leq \frac{\sqrt{N}}{2(J + 1) \sqrt{2 \log(K \cdot J + 1)}},$$

and if there are fewer than

$$\frac{\sqrt{N}}{2(J + 1) \sqrt{2 \log(K \cdot J + 1)}}$$

errors in the recipient’s copy \hat{S} of vector S_j, then the minimum ℓ^1 decomposition of \hat{S} precisely recovers the indices I_j and the coefficients α^j_i.

An attractive feature of the scheme is that the logarithmic dependence on K means that a considerable ‘oversupply’ of codebooks and codebook sizes does not dramatically impact performance of the method. Also, the system can be initialized so that a certain number of new individuals can be added to the scheme in the future without coordination with others.
5.3 Identification of Overcomplete Blind Sources

Suppose that a statistically independent set of random variables \(X = (X_i) \) generates an observed data vector according to

\[
\mathbf{Y} = \mathbf{A} \mathbf{X}
\]

(16)

where \(\mathbf{Y} \) is the vector of observed data and \(\mathbf{A} \) represents the coupling of independent 'sources' to observable 'sensors'. Such models are often called independent components models [17]. We are interested in the case where \(\mathbf{A} \) is known, but is overcomplete, in the sense that \(L \gg N \) (many more sources than sensors, a realistic assumption). We are not supposing that the vector \(\mathbf{X} \) is highly sparse; hence there is no hope in general to uniquely recover the components \(\mathbf{X} \) generating a single realization \(\mathbf{Y} \). We ask instead whether it is possible to recover statistical properties of \(\mathbf{X} \); in particular higher-order cumulants.

The order 1 and 2 cumulants (mean and variance) are well-known; the order 3 and 4 cumulants (essentially skewness and kurtosis) are also well-known; for general definitions see [17] and other standard references, such as McCullagh [21]. In general, the \(m \)-th order joint cumulant tensor of a random variable \(\mathbf{Y} \in \mathbb{C}^N \) is an \(m \)-way array \(\text{Cum}_Y^m(i_1, \ldots, i_m) \) with \(1 \leq i_m \leq N \). If \(\mathbf{Y} \) is generated in terms of the independent components model (16) then we have an additive decomposition:

\[
\text{Cum}_Y^m(\mathbf{i}) = \sum_k \text{Cum}_{X_k}^m(a_k \otimes a_k \otimes \ldots a_k)(\mathbf{i}),
\]

where \(\text{Cum}_{X_k}^m \) is the \(m \)-th order cumulant of the scalar random variable \(X_k \). Here \((a_k \otimes a_k \otimes \ldots a_k) \) denotes an \(m \)-way array built from exterior powers of columns of \(\mathbf{A} \):

\[
(a_k \otimes a_k \otimes \ldots a_k)(i_1, \ldots, i_m) = a_k(i_1) \cdot a_k(i_2) \cdots a_k(i_m).
\]

Define then a dictionary \(\mathbf{D}^{(m)} \) for \(m \)-way arrays with \(k \)-th entry the \(m \)-the exterior power of \(a_k \)

\[
d_k = (a_k \otimes a_k \otimes \ldots a_k), \quad k = 1, \ldots, L.
\]

Let now \(S^{(m)} \) denote the \(m \)-order Cumulant array \(\text{Cum}_Y^m \). Then

\[
S^{(m)} = \mathbf{D}^{(m)} \gamma^{(m)}
\]

(17)

where \(\mathbf{D}^{(m)} \) is the dictionary and \(\gamma^{(m)} \) is the vector of \(m \)-order scalar cumulants of the independent components random variable \(\mathbf{X} \). If we can uniquely solve this system, then we will have a way of learning cumulants of the (unobservable) \(\mathbf{X} \) from cumulants of the (observable) \(\mathbf{Y} \). Abusing notation so that \(M(\mathbf{D}) = M(\mathbf{D}^H \mathbf{D}) \) etc., we have

\[
M(\mathbf{D}^{(m)}) = M(\mathbf{D})^m.
\]

In short, if \(M(\mathbf{D}) < 1 \) then \(M(\mathbf{D}^{(m)}) \) can very small for large enough \(m \). Hence, even if the \(M \)-value for determining a not-very-sparse \(\mathbf{X} \) from \(\mathbf{Y} \) is unfavorable, the corresponding \(M \)-value for determining \(\text{Cum}_X^m \) from \(\text{Cum}_Y^m \) can be very favorable, for \(m \) large enough. Suppose for example that \(\mathbf{A} \) is an \(N \) by \(L \) system with \(M(\mathbf{A}) = 1/\sqrt{N} \), but \(\mathbf{X} \) has (say) \(N/3 \) active components. This is not very sparse; on typical realizations \(\| \mathbf{X} \|_0 = N/3 \gg \sqrt{N} = 1/M \). In short, unique
recovery of \(X \) based on sparsity will not hold. However the second-order cumulant array (the covariance) \(\text{Cum}_X^2 \) still has \(N/3 \) active components, while \(M(D^{(2)}) = M(D^{(2)})^2 = 1/N \); as \(N/3 < 1/2M \), the cumulant array \(\text{Cum}_X^2 \) is sparsely represented and \(\text{Cum}_X^2 \) is recovered uniquely by \(\ell^1 \) optimization. Generalizing, we have

Theorem 18 Consider any coupling matrix \(A \) with \(M < 1 \), then all sufficiently large \(m = m(L, M) \), the minimum \(\ell^1 \) solution to cumulant decomposition problem (17) is unique (and correct!).

References

