ASYMPTOTIC ROBUSTNESS OF TESTS
OF OVERIDENTIFICATION AND EXOGENEITY

T. W. ANDERSON and NAOTO KUNITOMO

TECHNICAL REPORT NO. 38
JULY 1990

PREPARED UNDER
NATIONAL SCIENCE FOUNDATION GRANT DMS 89-04851

Econometric Workshop
Fourth Floor, Encina Hall
Stanford University
Stanford, California
ASYMPTOTIC ROBUSTNESS OF TESTS
OF OVERIDENTIFICATION AND EXOGENEITY

T. W. ANDERSON* and NAOTO KUNITOMO

TECHNICAL REPORT NO. 38
July 1990

PREPARED UNDER
NATIONAL SCIENCE FOUNDATION GRANT DMS 89-04851

Econometric Workshop
Fourth Floor, Encina Hall
Stanford University
Stanford, California

* Some of this research was conducted as a visitor at the University of Southern California and as a Visiting Distinguished Professor of the Norwegian Council for Scientific and Industrial Research at the University of Oslo.
Abstract

Many statistical test procedures have been proposed for identification restrictions on one or several equations ands the exogeneity (or predeterminedness) of one or several variables in a system of structural equations. This study is devoted to deriving the asymptotic distributions of the test statistics under a set of local alternative hypotheses and very general conditions on the disturbances. By making use of a new martingale central limit theorem and a martingale convergence theorem, we show that the limiting distributions of test statistics are noncentral χ^2-distributions under the local alternative hypotheses and central χ^2-distributions under the null hypotheses. These limiting distributions are robust in the sense that they hold for a variety of disturbance distributions and models. Our results show that many tests already known among econometricians can be carried out without making the usual relatively restrictive assumptions.

Key words and phrases: Overidentification, exogeneity, martingale limit theorems, non-central χ^2, local alternatives
1. Introduction

Two essential hypotheses or conditions in the traditional simultaneous equation approach in econometrics are identification restrictions on several equations and exogeneity (or predeterminedness) of several variables in the system of structural equations. Although assumptions may be based on a priori grounds, in practice it is often advisable to examine such conditions statistically. Many statistical testing procedures for these restrictions have been proposed. Some of those which have drawn considerable attention and have been applied widely are by Anderson and Rubin (1949), Koopmans and Hood (1953), Basman (1960), Wu (1973), Byron (1972), Revankar and Hartley (1973), Revankar (1978), Hausman (1978), Kariya and Hoshizima (1980), Hwang (1980a), and Revankar and Yoshino (1989).

In an earlier paper Anderson and Kunitomo (1989a) have derived systematically likelihood ratio (LR) tests, Lagrange multiplier (LM) tests and Wald tests for these hypotheses. The tests apply to subsets of equations and of variables; single equation procedures are special cases. The tests in the above cited papers, all of which were included in the general treatment, are special cases of our organized development.

This paper is devoted to deriving the asymptotic distributions of the test statistics under a set of very general conditions on the disturbance terms. In previous papers the disturbances were often assumed to be normally distributed, and the predetermined variables exogenous. We use a new martingale central limit theorem and a martingale convergence theorem based on a Lindeberg-type condition for martingale difference sequences developed by Anderson and Kunitomo (1989b). We allow lagged endogenous variables, and the disturbance terms are not necessarily independent. We show that the limiting distributions of test statistics considered in this paper are noncentral χ^2-distributions under local alternative hypotheses and are central χ^2-distributions under the null hypotheses when the disturbances are the martingale difference sequences. In fact, in each case the limiting distribution is common to all three types of tests. These limiting distributions are robust in the sense that they hold for a wide variety of disturbance distribution and models. The results show that the tests can be carried out without making the usual relatively restrictive assumptions.
In Section 2 we formulate the two hypotheses and in Section 3 we summarize the test statistics in a subsystem of structural equations. In Section 4 we give some general results on the asymptotic distributions of these test statistics. Detailed proofs of the theorems are given in Section 5.

2. Two Hypotheses in a Subsystem of Structural Equations

2.1 The model

We consider a subsystem of G_0 structural equations

\begin{equation}
YB = Z_1 \Gamma + U,
\end{equation}

where Y is a $T \times G$ matrix of observations on the endogenous variables appearing in the first G_0 structural equations, Z_1 is a $T \times K_1$ matrix of observations on the K_1 predetermined variables, B and Γ are $G \times G_0$ and $K_1 \times G_0$ matrices of (unknown) parameters, respectively, and U is a $T \times G_0$ matrix of unobservable disturbances. The columns of matrix B are linearly independent; that is, the rank of B is G_0. When $G_0 = 1$, (2.1) is the usual single structural equation.

The reduced form equation for the endogenous variables Y appearing in the first G_0 structural equations (2.1) with $K (= K_1 + K_2)$ predetermined variables is

\begin{equation}
Y = Z\Pi + V,
\end{equation}

where $Z = (Z_1, Z_2)$ is a $T \times K$ matrix of predetermined variables ($T > K$) of rank K, and Z_2 is a $T \times K_2$ matrix of the predetermined variables that are not included in (2.1). The predetermined variables may include lagged endogenous variables. V is a $T \times G$ matrix of disturbances whose t-th row is denoted by v_t'. We assume that

\begin{equation}
E(v_t) = 0,
\end{equation}

\begin{equation}
E(v_t v_t') = \Omega,
\end{equation}

where Ω is a $G \times G$ non negative definite matrix.

In this paper we shall consider two hypotheses. One is that the set of G_0 equations (2.1) is identified as a block. That is, any matrix B such that $Z\Pi B = Z_1 \Gamma$ for some Γ is obtained from any other by multiplication on the right by a nonsingular $G_0 \times G_0$
matrix. The other hypothesis that we consider is that a subset of the endogenous variables is uncorrelated with the disturbances in the block of equations.

2.2. Block identification

The relationship between the reduced form and the structural equations involves

\[(2.5) \quad \Gamma = \Pi_1 \cdot B,\]

\[(2.6) \quad U = VB,\]

where \(\Pi\) has been partitioned into submatrices of \(K_1\) and \(K_2\) rows:

\[(2.7) \quad \Pi = \begin{pmatrix} \Pi_1 \\ \Pi_2 \end{pmatrix}.\]

Let \(u_t^t\) be the \(t\)-th row of \(U\). From (2.3), (2.4), and (2.6), we obtain

\[(2.8) \quad E(u_t) = 0,\]

\[(2.9) \quad E(u_t u_t^t) = B' \Omega B = \Sigma,\]

say. \(\Sigma\) is a \(G_0 \times G_0\) nonnegative definite matrix. The block identifiability conditions are expressed as

\[(2.10) \quad H_{\xi} : \xi = 0,\]

where

\[(2.11) \quad \xi = \Pi_2 \cdot B.\]

From (2.11) we obtain the rank condition of the block identifiability in (2.1),

\[(2.12) \quad \text{rank}(\Pi_2) = G - G_0 = G_*,\]

The order condition is

\[(2.13) \quad L = K_2 - G_* \geq 0.\]

In the above notation \(L\) is often called the degree of overidentification.
Let \(\nu_G \geq \cdots \geq \nu_1 \geq 0 \) be the roots of

\begin{equation}
\left| \frac{1}{T} \Theta_T - \nu \Omega \right| = 0,
\end{equation}

where

\begin{equation}
\Theta_T = \Pi_2' A_{22.1} \Pi_2.,
\end{equation}

\begin{equation}
A_{22.1} = Z_1' Z_2 - Z_1' Z_1 (Z_1' Z_1)^{-1} Z_1' Z_2.
\end{equation}

Then from (2.10), it is clear that the block identifiability condition is equivalent to the hypothesis \(H_\nu : \nu_1 = \cdots = \nu_{G_0} = 0 \) and \(\nu_{G_0} + 1 > 0 \). The existence of a matrix \(B \) such that \(\xi = 0 \) is equivalent to (2.12), which in turn, is equivalent to \(H_\nu \). This testing problem is mathematically equivalent to the hypothesis for the rank test in multivariate analysis. (See Anderson (1984), Chapter 8.)

2.3. Exogeneity

An essential difference between a system of structural equations and regression models in the multivariate analysis is that in the former correlation may exist between the endogenous variables \(y'_t \), which is the \(t \)-th row of \(Y \), that is, \(u_t \), and the corresponding disturbance term \(u'_t \), but in the latter some components of \(y'_t \) and \(u'_t \) may be uncorrelated. In order to state this hypothesis we partition \(Y = (Y_1, Y_2) \) into \(G_1 \) and \(G_2 \) columns \((G = G_1 + G_2) \), \(V = (V_1, V_2) \), \(v_t = (v'_{1t}, v'_{2t})' \), and

\begin{equation}
\Omega = \begin{pmatrix}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{pmatrix}.
\end{equation}

From (2.9) the covariance matrix of \(v'_{2t} \) and \(u'_t \) is

\begin{equation}
\eta = \text{Cov}(v_{2t}, u_t) = (\Omega_{21}, \Omega_{22}) B.
\end{equation}

We define exogeneity (or predeterminedness) considered in this paper to be the hypothesis \(H_\eta : \eta = 0 \). The two hypotheses \(H_\xi \) and \(H_\eta \) imply the hypothesis \(H_{\xi, \eta} : \xi = 0, \eta = 0 \). When the disturbance terms follow the multivariate normal distribution, the uncorrelatedness implies independence between any subset of regressor \(Y_2 \) and disturbance terms in (2.1), This testing problem has been sometimes called the test of independence. The hypothesis of predeterminedness in this paper may be called weak exogeneity. (See Engle, Hendry, and Richard (1983) and Holly (1987).)
3. Test Statistics for Two Hypotheses

In this section we summarize test statistics for the block identifiability condition and the predeterminedness condition in a subsystem of structural equations. The derivations of the statistics have been given in Anderson and Kunitomo (1989a). Three types of test procedures were discussed: the likelihood ratio (LR) test, the Lagrange Multiplier (LM) test, and Wald test for two hypotheses. In order to derive test procedures the multivariate normal distributions for the disturbances \(v_t \) was assumed. However, this assumption shall be relaxed considerably in this paper.

3.1. Tests for block identifiability

Under the assumption of multivariate normality of the disturbance terms \(\{ v_t \} \), the log likelihood ratio (LR) times \(-2\) for \(H_{\xi} : \xi = 0 \) vs \(H_A : \xi \neq 0 \) is

\[
LR_1 = T \sum_{i=1}^{G_0} \log(1 + \lambda_i),
\]

where \(\lambda_G \geq \cdots \geq \lambda_1 \geq 0 \) are the characteristic roots of

\[
|Y' (P_Z - P_{Z_1}) Y - \lambda Y' \overline{P}_Z Y| = 0,
\]

\(P_Z = Z(Z'Z)^{-1}Z' \) denotes the projection operator onto the space spanned by the column vectors of \(Z \), and \(\overline{P}_Z = I_T - P_Z \) for any (full column) matrix \(Z \).

The equation (3.2) is a sample analogue of (2.14). For \(G_0 = 1 \) the likelihood ratio statistic (3.1) was derived by Anderson and Rubin (1949). In this case \(LR_1 \) is a function of the smallest characteristic root in the limited information maximum likelihood (LIML) estimation method. When \(G_0 = 2 \), \(LR_1 \) is the statistic proposed by Koopmans and Hood (1953) for the nonidentification test.

The Lagrange Multiplier (LM) statistic, which is identical to the Rao Score statistic, has been developed as a statistic to test a hypothesis \(H \) about a vector parameter \(\theta \) in a likelihood \(L \). In these general terms the criterion is

\[
LM = \left(\frac{\partial \log L}{\partial \theta} \right)_{H} \left(-\frac{\partial^2 \log L}{\partial^2 \theta} \right)_{H}^{-1} \left(\frac{\partial \log L}{\partial \theta} \right)_{H},
\]

where \(H \) denotes the null hypothesis and the value of the parameter in (3.3) maximizes the likelihood under the null hypothesis. Applying this general principle to our present testing problem for \(H_{\xi} := 0 \) vs \(H_A : \xi \neq 0 \) yields

\[
LM_1 = \text{tr} \, \hat{\Sigma} Y' (P_Z - P_{Z_1}) Y \hat{\Sigma}^{-1},
\]
where \(\hat{B} \) and \(\hat{\Sigma} = \hat{B}'Y'\hat{P}_{Z_1}Y\hat{B} \) are the maximum likelihood estimators of \(B \) and \(\Sigma \) under the null hypothesis. When we use the roots of (3.2), this statistic is

\[
LM_1 = T \sum_{i=1}^{G_0} \frac{\lambda_i}{1 + \lambda_i}.
\]

When \(G_0 = 1 \), this statistic \(LM_1 \) is identical to the \(LM \) statistic proposed by Byron (1972). When \(G_0 = G \), (3.5) is the Bartlett-Nanda-Pillai trace criterion in multivariate statistical analysis.

In general terms the Wald test is based on the statistic

\[
h(\hat{\theta})' [C(\hat{\theta})]^{-1} h(\hat{\theta}),
\]

where \(\hat{\theta} \) is the maximum likelihood estimator of the parameter vector \(\theta \) under the alternative hypothesis and \(C(\hat{\theta}) \) is an estimator of the asymptotic covariance matrix of \(h(\hat{\theta}) \). In our problem the null hypothesis is that rank of \(\Pi_2 \) is \(G - G_0 = G_* \), say. We partition the matrix \(Y = (Y_0, Y_*) \) as \(T \times (G_0 + G*) \). By expressing (2.10) in the form of \(h(\theta) = \text{vec}(\Pi_2^T B) = 0 \), we obtain a Wald test as

\[
W_1 = \text{tr} [\hat{\Sigma}^{-1} \hat{B}_{TS}' Y'(P_Z - P_{Z_1})Y \hat{B}_{TS}],
\]

where \(\hat{B}_{TS} = (I_{G_0}, -\hat{B}_*) \) is the two-stage least-squares estimator and

\[
\hat{B}_* = [Y'_*(P_Z - P_{Z_1})Y_*]^{-1}Y'_*(P_Z - P_{Z_1})Y_0.
\]

The numbering of the columns of \(Y \) may be arbitrary. When we use the unrestricted estimator \(\hat{\Omega} = (1/T)Y'\hat{P}_{Z_1}Y \) for \(\Omega \), the resulting Wald statistic \(W_1 \) is the statistic derived by Wegge (1978) for \(G_0 = 1 \), which is also identical to the Wald statistic derived by Byron (1974). When we use the maximum likelihood estimator of \(\Omega \) under the null hypothesis \(\hat{\Omega} = (1/T)Y'\hat{P}_{Z_1}Y \), the resulting \(W_1 \) is the statistic proposed by Basman (1960) for the case of \(G_0 = 1 \).

The limited information maximum likelihood estimator \(\hat{B}_{LI} \) under \(H_\xi : \xi = 0 \) is asymptotically equivalent to \(\hat{B}_{TS} \) in the sense that \(\sqrt{T}(\hat{B}_{LI} - \hat{B}_{TS}) \rightarrow 0 \). Thus we may substitute \(\hat{B}_{LI} \) for \(\hat{B}_{TS} \) for an estimator of \(\Sigma \). (See Lemma 1 in Section 4; it is assumed that the rank of \(\Pi_{2*} \) consisting of the last \(G_* \) columns of \(\Pi_2 \) is \(G_* \).) To construct \(\hat{B}_{LI} \) define the vector \(c_i \) by

\[
[Y'(P_Z - P_{Z_1})Y - \lambda_i Y'\hat{P}_{Z}Y]c = 0
\]

(3.9)
and \(c'Y'\bar{P}ZYc = T, \ i = 1, \ldots, G_0, \) and define the matrices \(C, C_0, \) and \(C_* \) by

\[
C = (c_1, \ldots, c_{G_0}) = \begin{pmatrix} C_0 \\ C_* \end{pmatrix},
\]

where \(C_0 \) is \(G_0 \times G_0. \) Then

\[
\hat{B}_* = C_* C_0^{-1}
\]

and \(\hat{B}_{LI} = (J_{G_0}, -\hat{B}_*)'. \) The statistic \(W_1 \) can be modified by replacing \(\hat{B}_{TS} \) by \(\hat{B}_{LI} \) to obtain

\[
W_1' = T \sum_{i=1}^{G_0} \lambda_i,
\]

where \(\lambda_i, \ i = 1, \ldots, G_0, \) are the \(G_0 \) smallest roots of (3.2). When \(G = G_0, \) \(W_1' \) is the Lawley-Hotelling Trace Criterion.

3.2. Test statistics for predeterminedness against unrestricted alternatives

Under the assumption of the multivariate normal distribution for the disturbance terms \(\{v_{it}\}, \) the log likelihood ratio criterion (LR) times \(-2\) for \(H_{\xi,\eta} : \xi = 0, \eta = 0 \) vs \(H_A : \xi \neq 0, \eta \neq 0 \) is

\[
LR_2 = T \sum_{i=1}^{G_0} \log (1 + \lambda_i^*),
\]

where \(\lambda_{G_0}^* \geq \cdots \geq \lambda_1^* \geq 0 \) are the roots of

\[
|Y_1(Y_1(P_{Y_2,Z} - P_{Y_2,Z_1})Y_1 - \lambda^* Y_1'\bar{P}Y_2,Z_1Y_1| = 0.
\]

A Lagrange multiplier statistic for testing \(H_{\xi,\eta} : \xi = 0, \eta = 0 \) vs \(H_A \) is similar to \(LM_1; \) it is

\[
LM_2 = T \sum_{i=1}^{G_0} \frac{\lambda_i^*}{1 + \lambda_i^*}.
\]

A (modified) Wald statistic for \(H_{\xi,\eta} : \xi = 0, \eta = 0 \) vs \(H_A \) is similar to \(W_1' \); it is

\[
W_2 = T \sum_{i=1}^{G_0} \lambda_i^*.
\]

When \(G_0 = G_1 = 1, \) \(W_2 \) reduces to the statistic proposed by Revankar and Hartley (1973).
3.3. Test statistics for predeterminedness against the alternative of overidentification

Another possible alternative hypothesis against $H_{\xi,\eta}$ is H_{ξ}, which defines the structural equations with the block identifiability restrictions. Because $H_{\xi,\eta}$ is nested within H_{ξ}, the log likelihood ratio criterion for $H_{\xi,\eta}$ vs H_{ξ} is the difference between the statistic for $H_{\xi,\eta}$ vs H_A and the statistic for H_{ξ} vs H_A, namely,

$$LR_3 = T \sum_{i=1}^{G_0} \log \left(\frac{1 + \lambda_i^*}{1 + \lambda_i} \right),$$

where λ_i^* and λ_i are the roots of equations (2.14) and (3.14), respectively. For $G_0 = 1$ and $G_1 \geq 1$, LR_3 is the statistic obtained by Hwang (1980a). For $G_0 = G_1 = 1$, LR_3 reduces to the statistic obtained by Kariya and Hodoshima (1980).

The development of the Lagrange multiplier statistic for testing for $H_{\xi,\eta}$ vs H_{ξ} is more complicated. The statistic is

$$LM_3 = \text{tr} \left[\hat{B}_1 Y_1' \bar{P}_{Y_2} \bar{P}_{Z} Y_2' (Y_2' \bar{P}_{Z} \bar{P}_{RF} \bar{P}_{Z} Y_2)^{-1} Y_2' \bar{P}_{Z} \bar{P}_{Y_2,z_1} Y_1 \hat{B}_1 \hat{\Sigma}^{-1} \right]$$

$$= \text{tr} \left[\hat{B}_1 Y_1' (P_X - P_{RF}) Y_1 \hat{B}_1 \hat{\Sigma}^{-1} \right],$$

where $R = (Y_2, Z)$, $X = (Y_2, Z_1, \bar{P}_{Z} Y_2)$, $J_1 = (0, I_{G_1 - G_0})'$, $\rho = \Omega_1^{-1} \Omega_2$, and

$$F = \begin{bmatrix} \Pi_1 \rho \Pi_2, - \rho \end{bmatrix} \begin{pmatrix} I_{G_2 + K_1} 0 \end{pmatrix}$$

is evaluated at its maximum likelihood estimator. We have used Lemma A.6 in Anderson and Kunitomo (1989a). When $G_1 = G_0$, we have $P_{RF} = P_{Y_2,z_1}$ and

$$LM_3 = \text{tr} \left[Y_1' (\bar{P}_{Y_2} \bar{P}_{Z} - \bar{P}_X) Y_1 \hat{\Sigma}^{-1} \right]$$

$$= T \sum_{i=1}^{G_0} \frac{\lambda_i^{**}}{1 + \lambda_i^{**}},$$

where λ_i^{**} are the roots of

$$|Y_1' (P_X - P_{Y_2,z_1}) Y_1 - \lambda^{**} Y_1' \bar{P}_X Y_1| = 0,$$

and $X = (Y_2, Z_1, \bar{P}_{Z} Y_2)$ is a $T \times (G_2 + K_1 + G_2)$ matrix. In the present formulation of the LM test, $\hat{\Sigma}$ should be the maximum likelihood estimator Σ under the null hypothesis

$$\hat{\Sigma} = \hat{B}_1 \hat{\Omega}_{11} \hat{B}_1 = \frac{1}{T} \hat{B}_1 Y_1' \bar{P}_{Y_2} \bar{P}_{Z} Y_1 \hat{B}_1.$$
Several alternative estimators of Σ could be used. If $\hat{\Sigma} = (1/(T-2G_2-K_1))\hat{B}_1'Y_1\hat{P}_X Y_1\hat{B}_1$, LM_3 is the statistic proposed by Wu (1973) and Wu (1974) when $G_0 = G_1 = 1$. Hausman (1978) proposed a specification test statistic that is proportional to LM_3 when $G_0 = G_1 = 1$. (See Nakamura and Nakamura (1980) and Hwang (1985).) Another possible estimator of Σ is $\hat{\Sigma} = [1/(T-K-G_2)]\hat{B}_1'Y_1\hat{P}_Y Y_1\hat{B}_1$ because it is an unrestricted sum of squares of the regression residuals. Then the statistic LM_3 is the statistic proposed by Revankar (1978) when $G_0 = G_1 = 1$.

A Wald statistic for the null hypothesis $H_{\xi,\eta} : \xi = 0, \eta = 0$ vs H_{ξ} is

$$ W_3 = \text{tr} \hat{B}'\hat{Y}'\hat{P}_{Z_1} Y_2 (T\hat{\Omega}_{22}(\hat{\rho}J_1,I_{G_2},0)(\hat{D}'Z'Z\hat{D})^{-1}(\hat{\rho}J_1,I_{G_2},0)'\hat{\Omega}_{22} + \hat{\Omega}_{22})^{-1} Y_2'\hat{P}_{Z_1} Y \hat{B}\hat{\Sigma}^{-1}, $$

where $\hat{\rho} = \hat{\Omega}_{22}^{-1}\hat{\Omega}_{21}$ and \hat{B} are the maximum likelihood estimators of B and ρ under H_{ξ}, that is, $\hat{B} = C$ given by (3.10). This Wald-type statistic is similar to that of Smith (1985).

4. Asymptotic Distributions of Statistics

We shall show that the test statistics given in the previous sections have χ^2-distributions under conditions much more general than the conditions under which the tests were derived. Let the σ-field F_{t-1} be generated by $z_1, v_1, \ldots, z_{t-1}, v_{t-1}, z_t$. We assume that

$$ E(v_t | F_{t-1}) = 0 \quad \text{a.s.,} $$

$$ E(v'_t v_t | F_{t-1}) = \Omega_t \quad \text{a.s.} $$

Note that Ω_t can be a function of $z_1, v_1, \ldots, z_{t-1}, v_{t-1}, z_t$. Since $u_t = Bv_t$, we obtain

$$ E(u_t | F_{t-1}) = 0 \quad \text{a.s.,} $$

$$ E(u'_t u_t | F_{t-1}) = \Sigma_t = B\Omega_t B' \quad \text{a.s.} $$

In the conditional expectation operator in (4.1) to (4.4) F_{t-1} is the information set available at $t - 1$. The predetermined variables z_t may include a finite number of past endogenous variables $y_{t-1}, y_{t-2}, \ldots, y_{t-p}$. In order to investigate the asymptotic distribution of the test statistics, we use two theorems for martingale difference sequences given by Anderson and Kunitomo (1989b).
Theorem 1. Let \(\{z_t, v_t\}, t = 1, 2, \ldots \), be a sequence of pairs of random vectors, and let \(\{F_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(F_{t-1} \)-measurable and \(v_t \) is \(F_t \)-measurable. Suppose

\[
\frac{1}{T} \sum_{t=1}^{T} z_t z'_t \overset{p}{\to} M,
\]

where \(M \) is a constant matrix, and

\[
\max_{1 \leq t \leq T} \frac{z'_t z_t}{T} \overset{p}{\to} 0
\]
as \(T \to \infty \). Suppose further that \(E(v_t | F_{t-1}) = 0 \) a.s., \(E(v_t v'_t | F_{t-1}) = \Omega_t \) a.s.,

\[
\frac{1}{T} \sum_{t=1}^{T} (\Omega_t \otimes z_t z'_t) \overset{p}{\to} (\Omega \otimes M),
\]

where \(\Omega \) is a nonnegative constant matrix, and

\[
\sup_{t=1,2,\ldots} E(v'_t v_t I(v'_t v_t > a) | F_{t-1}) \overset{p}{\to} 0
\]
as \(a \to \infty \). Then

\[
\text{vec} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_t v'_t \right) \overset{L}{\to} N(0, \Omega \otimes M).
\]

Theorem 2. Let \(\{v_t\}, t = 1, 2, \ldots \), be a sequence of random vectors, and let \(\{F_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(v_t \) is \(F_t \)-measurable. Let \(E(v_t | F_{t-1}) = 0 \) a.s., \(E(v_t v'_t | F_{t-1}) = \Omega_t \) a.s., and

\[
\frac{1}{T} \sum_{t=1}^{T} \Omega_t \overset{p}{\to} \Omega,
\]

where \(\Omega \) is a constant matrix, and for any \(\varepsilon > 0 \),

\[
\frac{1}{T} \sum_{t=1}^{T} E(v'_t v_t I(v'_t v_t > T\varepsilon) | F_{t-1}) \overset{p}{\to} 0
\]
as \(T \to \infty \). Then

\[
\frac{1}{T} \sum_{t=1}^{T} v'_t v_t \overset{p}{\to} \Omega.
\]
The proofs of the above theorems are given in Anderson and Kunitomo (1989b). Actually, Theorem 1 was stated and proved in greater generality than stated here. In effect, instead of \((1/\sqrt{n})z_t\), conditions and conclusions were stated in terms of \(D_n^{-1}z_t\), \(t = 1, \ldots, n\). In the current paper we want to include some components of \(y_{t-1}, \ldots\) in the \(z_t\); then \(1/\sqrt{n}\) is the suitable normalizing factor. It is less complicated to retain the factor \(1/\sqrt{n}\) throughout. Theorem 1 generalizes Theorem 5(i) of Lai and Robbins (1981), where the scalar \(v_t\)'s are independently identically distributed. Theorem 2 is a martingale convergence result. Because it is relatively easy to check the conditions in the theorems, they may be useful for many applications. The most important point is that we do not require any condition other than the conditional second-order moments. Both Theorems 1 and 2 allow conditional (as well as unconditional) heteroscedasticities for the martingale difference disturbance terms. We note that condition (4.8) implies condition (4.11). Hence conditions (4.5)-(4.8) and (4.10) are sufficient for the following results.

Consider a sequence of local alternatives for the identifiability restrictions,

\[
\Pi B = \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} + \frac{1}{\sqrt{T}} \xi_1 = \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} + \frac{1}{\sqrt{T}} \begin{pmatrix} \xi_{11} \\ \xi_{21} \end{pmatrix},
\]

where \(\xi_1\) is a \(K \times G_0\) matrix. We consider \(\Pi = \Pi(T)\) as depending on \(T\) in such a way that \(\Pi(T) \rightarrow \Pi(0)\), where \(\Pi_{2*}(0)\) has rank \(G_\ast\). The matrices \(B\) and \(\Gamma\) do not depend on \(T\). In the rest of the paper we suppress the index \(T\). The condition \(\Pi_{2*}(0)\) having rank \(G_\ast\) is written as \(\Pi_{2*}\) having rank \(G_\ast\). When \(\xi_1 = 0\), (4.13) reduces to the block identifiability restrictions. Kunitomo (1988) discussed the formulation of these local alternatives in some detail. We obtain the following theorems.

Theorem 3. Suppose (4.5) to (4.8) and (4.10) hold, \(M\) is nonsingular, and \(\Pi_{2*}\) has rank \(G_\ast\). Let \(\tilde{B}\) be defined by (3.8) and \(\tilde{\Gamma}\) by

\[
\tilde{\Gamma} = (Z_1'Z_1)^{-1}Z_1'(Y_0 - Y_\ast \tilde{B}_\ast).
\]

Then under the local alternatives (4.13) \(\tilde{B}_\ast \overset{p}{\rightarrow} B_\ast\), \(\tilde{\Gamma} \overset{p}{\rightarrow} \Gamma\), and

\[
\text{vec} \sqrt{T} \begin{pmatrix} \tilde{B}_\ast - B_\ast \\ \tilde{\Gamma} - \Gamma \end{pmatrix} \overset{d}{\rightarrow} N\{ \text{vec} [(D'MD)^{-1}D'M\xi_1], \Sigma \otimes (D'MD)^{-1} \},
\]

where

\[
D = \begin{bmatrix} \Pi_{2*} & \left(\begin{array}{c} I_{K_1} \\ 0 \end{array} \right) \end{bmatrix},
\]

\[
\Pi = (\Pi_{1*}, \Pi_{2*}).
\]
Corollary 1. Suppose (4.5) to (4.8) and (4.10) hold and \(M \) is nonsingular. Let \(\hat{B}_* \) be defined by (3.11) and \(\hat{\Gamma} \) by
\[
(4.18) \quad \hat{\Gamma} = (Z_1'Z_1)^{-1}Z_1'(Y_0 - Y_\bullet \hat{B}_*).
\]
Then under local alternatives (4.13) \(\hat{B}_* \xrightarrow{p} B_*, \hat{\Gamma} \xrightarrow{p} \Gamma \), and
\[
(4.19) \quad \text{vec} \sqrt{T} \left(\begin{array}{c}
\hat{B}_* - B_* \\
\hat{\Gamma} - \Gamma
\end{array} \right) \xrightarrow{d} N \{ \text{vec} [(D'MD)^{-1}D'M\xi_1], \Sigma \otimes (D'MD)^{-1} \}
\]
The matrices in the limiting distributions are
\[
(4.20) \quad D'M = \begin{pmatrix}
\Pi'_* M_{11} & \Pi'_* M_{12} \\
M_{11} & M_{12}
\end{pmatrix},
\]
\[
(4.21) \quad D'MD = \begin{pmatrix}
\Pi'_* M\Pi_\bullet & \Pi'_* M_{11} \\
M_{11,\bullet} & M_{11}
\end{pmatrix},
\]
\[
(4.22) \quad (D'MD)^{-1} =
\begin{pmatrix}
(\Pi'_* M_{22,1} \Pi_\bullet)^{-1} & -(\Pi'_* M_{22,1} \Pi_\bullet)^{-1} \Pi'_* M_{11} M_{11}^{-1} \\
-M_{11,\bullet} \Pi_\bullet (\Pi'_* M_{22,1} \Pi_\bullet)^{-1} & M_{11,\bullet} M_{11}^{-1} \Pi_\bullet (\Pi'_* M_{22,1} \Pi_\bullet)^{-1} \Pi'_* M_{11} M_{11}^{-1} + M_{11}^{-1}
\end{pmatrix},
\]
where
\[
(4.23) \quad M = \begin{pmatrix}
M_1 \\
M_2
\end{pmatrix} = (M_1, M_2),
\]
\[
(4.24) \quad M_{22,1} = M_{22} - M_{21} M_{11}^{-1} M_{12},
\]
Then
\[
(4.25) \quad (D'MD)^{-1} D'M\xi_1 = \begin{pmatrix}
0 \\
I_{K_1}
\end{pmatrix} \begin{pmatrix}
(\Pi'_* M_{22,1} \Pi_\bullet)^{-1} \Pi'_* M_{22,1} \\
-M_{11,\bullet} \Pi_\bullet (\Pi'_* M_{22,1} \Pi_\bullet)^{-1} \Pi'_* M_{22,1} + M_{11,\bullet} M_{11}^{-1} M_{12}
\end{pmatrix} \begin{pmatrix}
\xi_1 \\
\xi_2
\end{pmatrix}.
\]
For the case of \(G_0 = 1 \) Anderson and Rubin (1950) gave the result of Theorem 3 under different conditions and using a different proof. Textbooks in econometrics often
refer to Mann and Wald (1943) for the asymptotic results in the case of $G_0 = 1$ under the
identifiability conditions. (See Chapter 10 of Theil (1971), for instance.) Anderson (1951)
proved the theorem for arbitrary G_0 under the null hypothesis and normality. However,
earlier results were obtained under stronger conditions than ours here. Our proof seems
much shorter and simpler than the ones already known.

Theorem 4. Suppose \((4.5)\) to \((4.8)\) and \((4.10)\) hold, \(M\) is nonsingular, and \(\Pi_{2*}\) has
rank \(G_*\). Then under the local alternatives \((4.13)\) each of the statistics \(LR_1, LM_1, W_1,\)
and \(W'_1\) has the limiting distribution of the noncentral \(\chi^2\) with \(G_0 \times [K_2 - (G - G_0)] =\)
\(G_0 \times [K_2 - G_*]\) degrees of freedom and noncentrality parameter

\[
\delta_1^2 = \text{tr} (\Theta_1 \Sigma^{-1}),
\]

where

\[
\Theta_1 = \xi'_1 [M - MD(D'MD)^{-1}D'M] \xi_1 \\
= \xi'_2 [M_{22,1} - M_{22,1} \Pi_{2*} (\Pi'_{2*} M_{22,1} \Pi_{2*})^{-1} \Pi'_{2*} M_{22,1}] \xi_21.
\]

When \(\xi_{21} = 0\), each of the above statistics has the limiting distribution of \(\chi^2\) with
\(G_0 \times [K_2 - (G - G_0)] = G_0 \times [K_2 - G_*]\) degrees of freedom. This result for the case
of \(G_0 = 1\) has been obtained previously under the assumptions that disturbances are
independently, identically, and normally distributed and there are no lagged endogenous
variables in the explanatory variables.

Next we consider a local alternative hypothesis for the predeterminedness condition,

\[
(\rho, I_{G_2})B = \frac{1}{\sqrt{T}} \eta_1
\]

where \(\rho = \Omega^{-1} \Omega_{21}\) and \(\eta_1\) is a nonzero \(G_2 \times G_0\) matrix. We consider \(\Omega = \Omega(T)\) as
depending on \(T\) such that \(\Omega(T) \to \Omega(0)\), which is nonsingular. In order to avoid severe
complications in Theorems 5 and 6 we shall assume that

\[
\mathcal{E}(v_t v'_t | \mathcal{F}_{t-1}) = \Omega(T) \quad \text{a.s.}
\]

Then \((4.7)\) and \((4.10)\) are satisfied automatically (for \(\Omega_t = \Omega(T), \ t = 1, \ldots, T\)). More
general theorems could be stated, but to prove them would require a central limit theorem
more general than our Theorem 1.

13
Theorem 5. Suppose $\mathcal{E}(\nu_t | F_{t-1}) = 0$ a.s., (4.5), (4.6), (4.8), and (4.29) hold, M and Ω are nonsingular, and Π_{2*} has rank G_*. Then under the local alternatives (4.13) and (4.28) each of the statistics LR_2, LM_2, and W_2 has the limiting distribution of the noncentral χ^2 with $G_0 \times [K_2 - (G_1 - G_0)]$ degrees of freedom and noncentrality parameter

$$\delta^2_2 = \text{tr}(\theta_2 \Sigma^{-1})$$

where

$$\theta_2 = \xi_1' [Q^{-1} - F(F'QF)^{-1}] \zeta_1$$

$$= (Q^{-1} \xi_1)' [Q - QF(F'QF)^{-1}Q] (Q^{-1} \xi_1)$$

$$= (\xi_{21} - \Pi_{22} \eta_1)' [M_{221} - M_{221} \Pi_{2*} (\Pi_{2*}' M_{221} \Pi_{2*} + \Omega_{2*}^{-1} \Omega_{2*})^{-1} \Pi_{2*}' M_{221}] \cdot (\xi_{21} - \Pi_{22} \eta_1),$$

$$Q = \begin{pmatrix} \Pi_{2*}' M \Pi_{2*} & \Pi_{2*}' M \\ \Pi_{2*}' M \Pi_{2*} & M \end{pmatrix},$$

$$F = \begin{bmatrix} \begin{pmatrix} \rho & 0 \\ \Pi_{11} - \Pi_{12} \rho & 0 \\ \Pi_{21} - \Pi_{22} \rho & 0 \end{pmatrix} J_1, \begin{pmatrix} I_{G_2} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ I_{K_1} \end{pmatrix} \end{bmatrix},$$

$$\zeta_1 = \begin{pmatrix} \Pi_{12}' \\ I_K \end{pmatrix} M \xi_1 + \begin{pmatrix} \Omega_{22} \eta_1 \\ 0 \end{pmatrix},$$

$$Q^{-1} \zeta_1 = \begin{pmatrix} \eta_1 \\ \xi_1 - \Pi_{2*} \eta_1 \end{pmatrix},$$

$$J_1 = \begin{pmatrix} 0 \\ I_{G_1 - G_0} \end{pmatrix}, \quad G_1 \times G_0,$$

$$\Omega_{21}, \Omega_{22} = (\Omega_{20}, \Omega_{2*}).$$

Theorem 6. Assume $\mathcal{E}(\nu_t | F_{t-1}) = 0$ a.s., (4.5), (4.6), (4.8), and (4.29) hold, M and Ω are nonsingular, and Π_{2*} has rank G_*. Then under the local alternatives (4.13) and (4.28) each of the statistics LR_3, LM_3, and W_3 has the limiting distribution of the
noncentral χ^2 with $G_0 \times G_2$ degrees of freedom and noncentrality parameter $\delta_3^2 = \delta_2^2 - \delta_1^2 = \text{tr}[(\theta_2 - \theta_1)\Sigma^{-1}]$.

The noncentrality parameter can also be written

\begin{equation}
\theta_3 = \zeta_{2}^{*}[\Omega_{22} - \Omega_{2*}(\Pi_{2*}'M_{22-1,2*} + \Omega_{2*}\Omega_{22}^{-1}\Omega_{2*})^{-1}\Omega_{2*}]\zeta_{2}^{*},
\end{equation}

where

\begin{equation}
\zeta_{2}^{*} = \eta_1 - \Omega_{22}^{-1}\Omega_{2*}(\Pi_{2*}'M_{22-1,2*})^{-1}\Pi_{2*}'M_{22-1,2*}\xi_{21}.
\end{equation}

Note that when $\xi_{21} = 0$ the noncentrality parameter for LR_2, LM_2, and W_2 is the same as for LR_3, LM_3, and W_3. However, since the number of degrees of freedom for the first set of statistics is greater than for the second set, the second set yield greater asymptotic power. If, in addition, $G_0 = G_1$, the noncentrality parameter is

\begin{equation}
\theta_3 = \theta_3
\end{equation}

\begin{equation}
= \eta_1[\Pi_{2*}'M_{22-1,2*} - \Pi_{2*}'M_{22-1,2*}(\Pi_{2*}'M_{22-1,2*} + \Omega_{22})^{-1}\Pi_{2*}'M_{22-1,2*}]\eta_1
\end{equation}

\begin{equation}
= \eta_1[\Pi_{2*}'M_{22-1,2*}(\Pi_{2*}'M_{22-1,2*} + \Omega_{22})^{-1}\Omega_{22}]\eta_1.
\end{equation}

When $\eta_1 = 0$, the noncentrality parameter for LR_3, LM_3, and W_3 is

\begin{equation}
\theta_3 = \theta_3
\end{equation}

\begin{equation}
= \xi_{21}'M_{22-1,2*}[(\Pi_{2*}'M_{22-1,2*})^{-1}
- (\Pi_{2*}'M_{22-1,2*} + \Omega_{2*}\Omega_{22}^{-1}\Omega_{2*})^{-1}]\Pi_{2*}'M_{22-1,2*}\xi_{21}.
\end{equation}

Thus LR_3, LM_3, and W_3 could be used to test H_ξ. The noncentrality parameter for LR_1, LM_1, and W_1 is smaller than the parameter for LR_2LM_2, and W_2, but the number of degrees of freedom is also smaller. A comparison of asymptotic powers may depend on the significance level.

When $\eta_1 = 0$ and $\xi_1 = 0$, each of the three statistics LR_2, LM_2, and W_2 has a limiting distribution of χ^2 with $G_0 \times [K_2 - (G_1 - G_0)]$ degrees of freedom. When $\eta_1 = 0$ and $\xi_1 = 0$, LR_3, LM_3, and W_3 are asymptotically distributed as χ^2 with $G_0 \times G_2$ degrees of freedom. Some of these results for the case of $G_0 = G_1 = 1$ have been obtained previously under the assumptions that the disturbances are independently and identically distributed and there are no lagged endogenous variables. Furthermore, in this case it is known that
Wu's statistic, Revankar's statistic, and the Revankar-Hartley statistic adjusted by their numbers of degrees of freedom are distributed as F when the disturbances are normally distributed.

5. Proofs of Theorems

5.1. Asymptotic normality

Proof of Theorem 3. To prove the consistency of \tilde{B}_* we use the fact that

$$(5.1) \quad \frac{1}{T} Y'(P_Z - P_{Z_1})Y \xrightarrow{p} \Pi'(M - M_1M_1^{-1}M_1)\Pi = \Pi_2M_{22;1}\Pi_2.$$

From (5.1) we obtain

$$(5.2) \quad \tilde{B}_* \xrightarrow{p} (\Pi_2^*M_{22;1}\Pi_2^*)^{-1}\Pi_2^*M_{22;1}\Pi_{20}.$$

Since $\Pi_2^*M_{22;1}\Pi_2^*$ is nonsingular and $\Pi_{20} = \Pi_2^*B_*$, it follows that $\tilde{B}_* \xrightarrow{p} B_*$. Then with $\tilde{B} = (I, -\tilde{B}_*)'$

$$\tilde{\Gamma} = \left(\frac{1}{T}Z_1'Z_1\right)^{-1}\frac{1}{T}Z_1'(Z\Pi + V)\tilde{B} \xrightarrow{p} M_{11}^{-1}(M_{11} M_{12})_{\Pi_2.}B = \Gamma.$$

From (3.8) and (4.14) we derive

$$(5.4) \quad Y_*'P_ZY_*\tilde{B}_* + Y_*'Z_1\tilde{\Gamma} = Y_*'P_ZY_0,$$

$$(5.5) \quad Z_1'Y_*\tilde{B}_* + Z_1'Z_1\tilde{\Gamma} = Z_1'Y_0.$$

From these two equations we obtain

$$(5.6) \quad \frac{1}{T} \left(\begin{array}{cc} Y_*'P_ZY_* & Y_*'Z_1 \\ Z_1'Y_* & Z_1'Z_1 \end{array}\right) \sqrt{T} \left(\tilde{B}_* - B_*\right) = \frac{1}{\sqrt{T}} \left(\begin{array}{c} Y_*'P_ZU + \frac{1}{\sqrt{T}}Y_*'P_Z\xi_1 \\ Z_1'U + \frac{1}{\sqrt{T}}Z_1'Z_1\xi_1 \end{array}\right).$$

The matrix on the left-hand side of (5.6) converges in probability to $D'MD$. The right-hand side is

$$(5.7) \quad \frac{1}{\sqrt{T}} \left[\frac{1}{T}(\Pi_*'Z' + V')Z\left(\frac{1}{T}Z'Z\right)^{-1}Z' \right] U + \left[\frac{1}{T}(\Pi_*'Z' + V')Z \right] \xi_1.$$

16
The first vector in (5.7) converges in distribution to \(N[0, \Sigma \otimes (D'MD)] \) and the second vector converges in probability to \(D'M\xi_1 \). Theorem 3 follows.

To prove Corollary 1 we want to show that \(\widehat{B}_* \) is asymptotically equivalent to \(\tilde{B}_* \). We use the following lemma.

Lemma 1. Under the local alternatives given by (4.13), for any \(0 \leq \delta < 1 \)

\[
T^\delta \lambda_i \xrightarrow{P} 0, \quad i = 1, 2, \ldots, G_0,
\]

where \(\lambda_i \) are the \(G_0 \) smallest roots of (3.2).

Proof of Lemma 1. From (3.2) we have

\[
T \sum_{i=1}^{G_0} \lambda_i = \min_B \text{tr} B'Y'(P_Z - P_{Z_1})YB
\]

under the condition

\[
\frac{1}{T} B'Y'P_Z YB = I_{G_0}.
\]

(This is a modification of Lemma A.3 in Anderson and Kunitomo (1989a) for a sum replacing a product of roots.) However,

\[
\min_B \text{tr} B'Y'(P_Z - P_{Z_1})YB \leq \text{tr} B'Y'(P_Z - P_{Z_1})YB
\]

\[
= \text{tr} (B'\Pi'Z' + B'V')(P_Z - P_{Z_1})(Z\Pi B + VB)
\]

\[
= \text{tr} \left(U + \frac{1}{\sqrt{T}} Z\xi_1 \right)'(P_Z - P_{Z_1}) \left(U + \frac{1}{\sqrt{T}} Z\xi_1 \right)
\]

\[
\leq \text{tr} \left(U + \frac{1}{\sqrt{T}} Z\xi_1 \right)' P_{\gamma} \left(U + \frac{1}{\sqrt{T}} Z\xi_1 \right)
\]

since \(P_Z - P_{Z_1} \) is positive semidefinite. The minimum on the left-hand side of (5.11) is over matrices \(B \) satisfying (5.10) and the parameter matrix in the second term also satisfies (5.10). In turn, the right-hand side of (5.11) is not greater than

\[
2 \text{tr} U'P_Z U + \frac{2}{T} \text{tr} \xi_1'Z'P_Z Z\xi_1.
\]
The second term converges to $2\xi_1^t M \xi_1$ and the first term converges in distribution to a Wishart matrix with covariance matrix Σ and K degrees of freedom. Then for $0 \leq \delta < 1$

\begin{equation}
T^\delta \sum_{i=1}^{G_0} \lambda_i \overset{p}{\rightarrow} 0.
\end{equation}

Because $\lambda_i \geq 0$, $i = 1, \ldots, G_0$, we obtain (5.1).

Lemma 2. Under the conditions of Theorem 3

\begin{equation}
\sqrt{T}(\tilde{B}_* - \tilde{B}_*) \overset{p}{\rightarrow} 0.
\end{equation}

Proof of Lemma 2. From (3.8) and $c'Y'P_zYc = T$ we obtain

\begin{equation}
\frac{1}{T} Y'(P_z - P_z_1)YC = \frac{1}{T} Y'P_z YCA,
\end{equation}

\begin{equation}
C' \frac{1}{T} Y'P_z YC = I_{G_0},
\end{equation}

where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{G_0})$. As $T \to \infty$, the limits of these equations are

\begin{equation}
\Pi'_2 M_{22,1} \Pi_2 C = 0,
\end{equation}

\begin{equation}
C' \Omega C = I_{G_0}.
\end{equation}

The solutions C to (5.17) and (5.18) are not unique; they are generated by multiplying a given solution on the right by orthogonal matrices. Define $\tilde{C} = (\tilde{C}_0', \tilde{C}_*)'$ and the orthogonal Q by

\begin{equation}
C = \begin{pmatrix} C_0 \\ C_* \end{pmatrix} = \begin{pmatrix} \tilde{C}_0 \\ \tilde{C}_* \end{pmatrix} Q
\end{equation}

and the requirement that \tilde{C}_0 be lower triangular. Similarly define $\tilde{C} = (\tilde{C}_0', \tilde{C}_*)'$ by

\begin{equation}
Y_*'(P_z - P_z_1)Y\tilde{C} = 0,
\end{equation}

$C'P_z\tilde{C} = TI_{G_0}$, and \tilde{C}_0 lower triangular. We can write the last G_* components of (5.15) as

\begin{equation}
\frac{1}{T} Y_*'(P_z - P_z_1)YCQ' = \frac{1}{T} Y'P_z YCAQ'.
\end{equation}
Subtraction of (5.20) from (5.21) yields

\begin{equation}
\frac{1}{T} Y'(P_Z - P_{Z_1}) Y \sqrt{T} (\hat{C} - \hat{C}) = \frac{1}{T} Y' \hat{P}_Z Y \hat{C} \sqrt{T} Q \Lambda Q'.
\end{equation}

By Lemma 1 and the fact that $Q \Lambda Q'$ is positive definite, $\sqrt{T} Q \Lambda Q' \overset{p}{\rightarrow} 0$. Hence $\sqrt{T} (\hat{C} - \hat{C}) \overset{p}{\rightarrow} 0$. The lemma follows because $\hat{B}_* = -\overline{C}_* \overline{C}_0^{-1}$ and $\tilde{B}_* = -\overline{C}_* \overline{C}_0^{-1}$.

Proof of Corollary 1. We have

\begin{equation}
\sqrt{T} (\hat{C} - \hat{C}) = \left(\frac{1}{T} Z_1' Z_1 \right)^{-1} \frac{1}{T} Z_1' (Z \Pi + V) \sqrt{T} (\hat{B} - \tilde{B}) \overset{p}{\rightarrow} 0.
\end{equation}

5.2. Tests of overidentification

In order to prove Theorem 4, we give the following two lemmas on the convergence of two random matrices.

Lemma 3. Under the local alternatives given by (4.13),

\begin{equation}
\frac{1}{T} \hat{B}' Y \hat{P}_Z Y \hat{B} \overset{p}{\rightarrow} \Sigma,
\end{equation}

where \hat{B} is the maximum likelihood estimator of B under the identifiability restrictions.

Proof of Lemma 3. From Theorem 3 $\hat{B} \overset{p}{\rightarrow} B$ as $T \rightarrow \infty$. By Theorem 2 we have

\begin{equation}
\frac{1}{T} V' \hat{P}_Z V = \frac{1}{T} V' V - \left(\frac{1}{T} V' Z \right) \left(\frac{1}{T} Z' \hat{Z} \right)^{-1} \left(\frac{1}{T} \hat{Z}' V \right) \overset{p}{\rightarrow} \Omega.
\end{equation}

Lemma 4. Under the local alternatives given by (4.13),

\begin{equation}
\hat{B}' Y'(P_Z - P_{Z_1}) Y \hat{B} \overset{L}{\rightarrow} W_{G_0} (\Sigma, L, \theta_1),
\end{equation}

where $W_{G_0} (\Sigma, L, \theta_1)$ is the noncentral Wishart distribution with L degrees of freedom, covariance matrix Σ, and noncentrality matrix θ_1 given by (4.27).
Proof of Lemma 4. Since $\hat{B} = B + (\hat{B} - B)$, the left-hand side of (5.26) is decomposed as

$$
(5.27) \quad B'Y'(P_Z - P_{Z_1})YB + B'Y'(P_Z - P_{Z_1})Y(\hat{B} - B) \\
+ (\hat{B} - B)'Y'(P_Z - P_{Z_1})YB + (\hat{B} - B)'Y'(P_Z - P_{Z_1})Y(\hat{B} - B).
$$

Since $YB = (Z\Pi + V)B = Z\xi_1 + U = Z_1\Gamma + U^*$, where $U^* = U + \frac{1}{\sqrt{T}}Z\xi_1$, the first term of (5.24) is

$$
(5.28) \quad U^*(P_Z - P_{Z_1})U^*.
$$

By the standardization of $\hat{B}_0 = B_0 = I_{G_0}$, we have $Y(\hat{B} - B) = -Y_*(\hat{B}_* - B_*)$. Then

$$
(5.29) \quad (P_Z - P_{Z_1})Y(\hat{B} - B) = (P_Z - P_{Z_1})(Y_*, Z_1) \left[\begin{array}{c} -(\hat{B}_* - B_*) \\ -\hat{\Gamma} - \Gamma \end{array} \right]
= -(P_Z - P_{Z_1}) \left[\frac{1}{\sqrt{T}}ZD + \frac{1}{\sqrt{T}}(V_*, 0) \right] \left[\sqrt{T}(\hat{B}_* - B_*) \right].
$$

By Theorem 3 $(P_Z - P_{Z_1})Y(\hat{B} - B)$ is asymptotically equivalent to

$$
(5.30) \quad -(P_Z - P_{Z_1}) \left[\frac{1}{\sqrt{T}}ZD + \frac{1}{\sqrt{T}}(V_*, 0) \right] \left(D' \frac{1}{T}Z'ZD \right)^{-1} \left(\frac{1}{\sqrt{T}}ZD \right)' U^*.
$$

Note $P_ZP_{ZD} = P_{ZD}$ and $P_{Z_1}P_{ZD} = P_{Z_1}$. Then the second term of (5.27) is asymptotically equivalent to

$$
(5.31) \quad -U^*(P_Z - P_{Z_1})P_{ZD}U^* = -U^*(P_{ZD} - P_{Z_1})U^*.
$$

By similar consideration of the third and fourth terms of (5.24), we find that (5.27) is asymptotically equivalent to

$$
(5.32) \quad U^*(P_Z - P_{ZD})U^* =
\frac{1}{\sqrt{T}}U^*Z \left(\frac{1}{T}Z'Z \right)^{-1/2} \left[I_K - \left(\frac{1}{T}Z'Z \right)^{1/2} D \left(\frac{1}{T}D'Z'ZD \right)^{-1} D' \left(\frac{1}{T}Z'Z \right)^{1/2} \right]
\left(\frac{1}{T}Z'Z \right)^{-1/2} \frac{1}{\sqrt{T}}Z'U^*.
$$

Since the matrix in brackets in (5.32) is idempotent and of rank $K - (G_* + K_1) = K_2 - G_*$ (the rank of $P_Z - P_{ZD}$), we obtain (5.26) by applying Theorem 1 to $Z'U^*/\sqrt{T}$.

\[\blacksquare\]
Proof of Theorem 4. From $\hat{B} = CC_0^{-1}$ we obtain

\begin{equation}
W'_1 = \text{tr} \Lambda
= \text{tr} \left(C' \left(\frac{1}{T} Y' \hat{P}_2 Y C \right)^{-1} C' Y' (P_Z - P_{Z_1}) Y C \right)
= \text{tr} \left(\hat{B} Y' \hat{P}_2 Y \hat{B} \right)^{-1} \hat{B} Y' (P_Z - P_{Z_1}) Y \hat{B}
= \text{tr} \left(\Sigma^{-\frac{1}{2}} \hat{B} Y' \hat{P}_2 Y \hat{B} \Sigma^{-\frac{1}{2}} \right)^{-1} \Sigma^{-\frac{1}{2}} \hat{B} Y' (P_Z - P_{Z_1}) Y \hat{B} \Sigma^{-\frac{1}{2}}
\end{equation}

converges in distribution to the trace of a noncentral Wishart matrix with covariance matrix I, L degrees of freedom, and noncentrality parameter $\Sigma^{-\frac{1}{2}} \theta_1 \Sigma^{-\frac{1}{2}}$. Then Theorem 4 follows for W'_1. Since LR_1, LM_1, and W_1 are asymptotically equivalent to W'_1 we have Theorem 4.

5.3. Tests of exogeneity and overidentification

If $Y = (Y_1, Y_2)$ is normally distributed, the model for the conditional distribution of Y_1 given Y_2 is

\begin{equation}
Y_1 = Y_2 \rho + Z_1 \Pi_{11}^{**} + Z_2 \Pi_{21}^{**} + V_1^*,
\end{equation}

where

\begin{equation}
\rho = \Omega_{22}^{-1} \Omega_{21},
\end{equation}

\begin{equation}
\Pi_{11}^{**} = \Pi_{11} - \Pi_{12} \rho,
\end{equation}

\begin{equation}
\Pi_{21}^{**} = \Pi_{21} - \Pi_{22} \rho.
\end{equation}

The random matrix

\begin{equation}
V_1^* = V_1 - V_2 \rho
\end{equation}

is normally distributed with mean 0; each row has covariance matrix

\begin{equation}
\Omega_{11,2} = \Omega_{11} - \Omega_{12} \Omega_{22}^{-1} \Omega_{21}.
\end{equation}

In (5.34) Y_2 is treated as predetermined.
The set of structural equations under the null hypothesis is

\begin{align*}
(5.40) \quad Y_1 B_1 &= Y_2 \rho B_1 + Z_1 \Pi_1^{**} B_1 + Z_2 \Pi_2^{**} B_1 + V_1^* B_1 \\
&= Y_2 \rho B_1 + Z_1 (\Pi_{11} - \Pi_{12} \rho) B_1 + Z_2 (\Pi_{21} - \Pi_{22} \rho) B_1 + (V_1 - V_2 \rho) B_1 \\
&= Y_2 B_2 + Z_1 \Gamma + U.
\end{align*}

This has the same form as (2.1) and (5.34) has the same form as (2.2) with the following correspondences:

<table>
<thead>
<tr>
<th>(2.1) and (2.2)</th>
<th>(5.34) and (5.40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>(Y_1)</td>
</tr>
<tr>
<td>(G)</td>
<td>(G_1)</td>
</tr>
<tr>
<td>(Z_1)</td>
<td>((Y_2, Z_1))</td>
</tr>
<tr>
<td>(K_1)</td>
<td>(K_1 + G_2)</td>
</tr>
<tr>
<td>(V)</td>
<td>(V_1^*)</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\Omega_{11.2})</td>
</tr>
<tr>
<td>(B)</td>
<td>(B_1)</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>((B_2, \Gamma))</td>
</tr>
<tr>
<td>(Z_2)</td>
<td>(Z_2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>((Y_2, Z) = R)</td>
</tr>
<tr>
<td>(\Pi_1)</td>
<td></td>
</tr>
<tr>
<td>(\Pi_2)</td>
<td></td>
</tr>
<tr>
<td>(\Pi_2^*)</td>
<td>(\Pi_2^{**})</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
\Pi_1 \\
\Pi_2
\end{bmatrix}
B =
\begin{bmatrix}
\Gamma \\
0
\end{bmatrix}
+ \frac{1}{\sqrt{T}}
\begin{bmatrix}
\xi_{11} \\
\xi_{21}
\end{bmatrix}
\begin{bmatrix}
\rho \\
\Pi_{11}^{**} \\
\Pi_{21}^{**}
\end{bmatrix}
B_1 =
\begin{bmatrix}
B_2 \\
\Gamma \\
0
\end{bmatrix}
+ \frac{1}{\sqrt{T}}
\begin{bmatrix}
\eta_1 \\
\xi_{11} + \Pi_{12} \eta_1 \\
\xi_{21} + \Pi_{22} \eta_1
\end{bmatrix}
\]

\[
Q = \lim_{T \to \infty} \frac{1}{T}
\begin{bmatrix}
Y_2' Y_2 & Y_2' Z' \\
Z' Y_2' & Z' Z
\end{bmatrix}
= \begin{bmatrix}
\Pi_2' M \Pi_2 + \Omega_{22} & \Pi_2' M \\
M \Pi_2 & M
\end{bmatrix}
= \begin{bmatrix}
\Pi_2' \\
I_K
\end{bmatrix}
M(\Pi_2, I_K) + \begin{bmatrix}
\Omega_{22} & 0 \\
0 & 0
\end{bmatrix}
\]

\[
M = \lim_{T \to \infty} \frac{1}{T} Z' Z
\]

22
\[D = \begin{bmatrix} 1 \otimes \pi_{1*}, \left(\begin{array}{c} I_{K_1} \\ 0 \end{array} \right) \end{bmatrix} \]

\[F = \begin{bmatrix} \rho \\ \Pi^{**}_{21} \\ \Pi_{11}^{**} \\ \Pi_{21}^{**} \end{bmatrix} \begin{bmatrix} 0 \\ I_{G_1-G_0} \end{bmatrix} \begin{bmatrix} I_{G_2+K_1} \\ 0 \end{bmatrix} \]

\[M_{22-1} = M_{22-1} - M_{22-1} \Pi_{22} (\Pi_{22} M_{22-1} \Pi_{22} + \Omega_{22})^{-1} \Pi_{22} M_{22-1}. \]

Finally

\[(5.41) \quad M_{22-1} = M_{22-1} - M_{22-1} \Pi_{2*} (\Pi_{2*} M_{22-1} \Pi_{2*})^{-1} \Pi_{2*} M_{2*} M_{22-1} \]

corresponds to

\[(5.42) \quad M_{22-1}^{**} - M_{22-1} \Pi_{21}^{**} \begin{bmatrix} 0 \\ I_{G_1-G_0} \end{bmatrix} \begin{bmatrix} (0, I_{G_1-G_0}) \Pi_{21}^{**} M_{22-1} \Pi_{21}^{**} \begin{bmatrix} 0 \\ I_{G_1-G_0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} (0, I_{G_1-G_0}) \Pi_{21}^{**} M_{22-1} \end{bmatrix}. \]

When (5.34) is multiplied by \(B_1 \) under the local alternatives

\[(5.43) \quad Y_1 B_1 = Y_2 \rho B_1 + Z_1 (\Pi_{11} - \Pi_{12} \rho) B_1 + Z_2 (\Pi_{21} - \Pi_{12} \rho) B_1 \]

\[+ (V_1 - V_2 \rho) B, \]

\[= Y_2 B_2 + Z_1 \Gamma + \frac{1}{\sqrt{T}} Z \xi_1 + U - \frac{1}{\sqrt{T}} V_2 \eta_1 \]

\[= Y_2 B_2 + Z_1 \Gamma + U_1^*, \]

where

\[(5.44) \quad U_1^* = U + \frac{1}{\sqrt{T}} \Xi, \]

and

\[(5.45) \quad \Xi = Z \xi_1 + V_2 \eta_1 \]

under the local alternatives (4.28). Then the limiting distribution of

\(\hat{B}_1 Y_1' (P_{Y_2, z} - P_{Y_2, z_1}) Y_1 \hat{B}_1 \) is the limiting distribution of

\[(5.46) \quad U_1^{**} (P_R - P_{RF}) U_1^* \]

\[= \left(\frac{1}{\sqrt{T}} U_1^{**} R \right) \left(\frac{1}{T} R' R \right)^{-1/2} \left[I_{G_2+K} - \left(\frac{1}{T} R' R \right)^{1/2} \right] \left(\frac{1}{T} R' R \right)^{1/2} \left(\frac{1}{T} R' R \right)^{-1/2} \left(\frac{1}{\sqrt{T}} U_1^* \right). \]

\[23 \]
This limiting distribution is the distribution of

\[A_1 = C'Q^{-\frac{1}{2}}(I_{G_2 + K} - Q^{\frac{1}{2}}F(F'QF)^{-1}F'Q^{\frac{1}{2}})Q^{-\frac{1}{2}}C, \]

where vec C has the distribution $N(\text{vec } \zeta_1, \Sigma \otimes Q)$ and

\[\zeta_1 = \begin{pmatrix} \Pi_2 \cr I_K \end{pmatrix} M \xi_1 + \begin{pmatrix} \Omega_{22} \eta_1 \\ 0 \end{pmatrix}. \]

Since the rank of A_1 is $G_2 + K - (G_2 + G_1 - G_0 + K_1) = K_2 - (G_1 - G_0)$ and $\hat{\Sigma}^*$ is a consistent estimator of Σ, we obtain the asymptotic distribution of LR_2, LM_2, and W_2 in Theorem 5 by applying the same argument as in the proof of Theorem 4.

To justify the application of Theorem 3 we have to show that

\[\frac{1}{\sqrt{T}} \begin{pmatrix} Y'_2 \\ Z' \end{pmatrix} V'_1 \xrightarrow{L} N(0, \Omega_{11-2} \otimes Q); \]

that is, we have to show that the conditions of Theorem 3 are met when v_t is replaced by $v_{1t}^* = v_{1t} - \rho'v_{2t}$ and z_t is replaced by $(y_{2t}', z_t')'$. The condition corresponding to (4.5) is met by the facts $\frac{1}{T} Z'Z \xrightarrow{P} M$ and $\frac{1}{T} V'V \xrightarrow{P} \Omega$. The condition corresponding to (4.6) is met by (4.6) and $\max_{t=1,\ldots,T} \|v_t\|^2 \xrightarrow{P} 0$, which is a consequence of (4.8). Clearly $\mathcal{E}(v_{1t}^*|\mathcal{F}_{t-1}) = 0$,

\[\mathcal{E}(v_{1t}^*v'^*_{1t}|\mathcal{F}_{t-1}) = \Omega_{11}(t) - \rho'\Omega_{21}(t) - \Omega_{12}(t)\rho + \rho'\Omega_{22}(t)\rho \\
= \Omega_{11-2}(t), \]

\[\frac{1}{T} \sum_{t=1}^{T} \Omega_{11-2}(t) \xrightarrow{P} \Omega_{11-2}, \]

which corresponds to (4.10). From the assumptions of Theorem 5

\[\frac{1}{T} \sum_{t=1}^{T} \left[\Omega_{11-2}(t) \otimes \begin{pmatrix} y_{2t}' \\ z_t' \end{pmatrix} \right] (y_{2t}', z_t') \xrightarrow{P} \Omega_{11-2} \otimes Q. \]

Finally (4.8) for v^*_{1t} follows from (4.8) for v_t. This justifies the application of Theorem 3.

5.4. Tests of exogeneity against alternative of overidentification

Proof of Theorem 6 for the likelihood ratio test. First, we consider the asymptotic distribution of LR_3. Let $J_3' = (0, I_K)$ be a $K \times (G - G_0 + K)$ choice matrix and $Z = RJ_3$. Then from the derivation of (5.36), the limiting distribution of
\(\tilde{B}'Y'(P_Z - P_{Z_1})Y \tilde{B} \) is the limiting distribution of \(U^*(P_Z - P_{ZD})U^* \), which can be written as

\[
\left(\frac{1}{\sqrt{T}} U'_{1*} R \right) J_3 \left\{ \left[J_3' \left(\frac{1}{T} R'R \right) J_3 \right]^{-1} - D \left[D'J_3' \left(\frac{1}{T} R'R \right) J_3 D \right]^{-1} D' \right\} J_3 ' \left(\frac{1}{\sqrt{T}} R'U_1^* \right).
\]

The limiting distribution of (5.53) is the distribution of

\[
A_2 = C' J_3 M^{-\frac{1}{2}} (I_K - M^{\frac{1}{2}} D (D'MD)^{-1} D'M^{\frac{1}{2}}) M^{-\frac{1}{2}} J_3'C
= C' Q^{-\frac{1}{2}} \left\{ Q^{\frac{1}{2}} \begin{bmatrix} 0 & 0 \\ 0 & M^{-1} \end{bmatrix} Q^{\frac{1}{2}} - Q^{\frac{1}{2}} \begin{bmatrix} 0 & 0 \\ 0 & D(D'MD)^{-1}D' \end{bmatrix} Q^{\frac{1}{2}} \right\} Q^{-\frac{1}{2}} C.
\]

Let

\[
P_1 = I_{G_2 + K} - Q^{\frac{1}{2}} F(F'QF)^{-1}F'Q^{\frac{1}{2}},
\]

\[
P_2 = Q^{\frac{1}{2}} \left(\begin{bmatrix} I_{G_2} & 0 \\ 0 & M^{-\frac{1}{2}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I_K - M^{\frac{1}{2}} D (D'MD)^{-1} D'M^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} I_{G_2} & 0 \\ 0 & M^{-\frac{1}{2}} \end{bmatrix} \right) Q^{\frac{1}{2}}.
\]

Then

\[
A_i = C' Q^{-\frac{1}{2}} P_i Q^{-\frac{1}{2}} C, \quad i = 1, 2.
\]

We see that \(P_1^2 = P_1 \), \(P_2^2 = P_2 \), \(P_1 P_2 = P_2 P_1 = P_2 \) (since \(P_2 QF = 0 \)), and \((P_1 - P_2)^2 = P_1 - P_2 \). Since \(\text{tr} P_1 = G_2 + K - (G_1 - G_0 + G_2 + K_1) = G_1 - G_0 + K_2 \) and \(\text{tr} P_2 = K - (G_0 + K_1) = G - G_0 + K_2 \), it follows that \(\text{tr}(P_1 - P_2) = G_2 \). Hence, \(A_1 - A_2 \) has the distribution \(W_{G_1}(\Sigma, G_2, \theta_3) \), where

\[
\theta_3 = \zeta_1' Q^{-\frac{1}{2}} (P_1 - P_2) Q^{-\frac{1}{2}} \zeta_1 = \theta_2 - \theta_1.
\]

The limiting distribution of \(LR_3 \) follows because it has the same limiting distribution as

\[
T \sum_{i=1}^{G_0} \lambda_i^* - T \sum_{i=1}^{G_0} \lambda_i.
\]

Proof of Theorem 6 for the Lagrange multiplier test. Next we obtain the asymptotic distribution of \(LM_3 \). In Anderson and Kunitomo (1989a) the Lagrange multiplier matrix is

\[
\Lambda_0 = -Y_2' P_Z \bar{P}_{Y_2, z_1} Y_1 \hat{B}_1 \tilde{\Sigma}^{-1},
\]
where \(\hat{B}_1 \) and \(\hat{\Sigma} \) are the maximum likelihood estimators of \(B_1 \) and \(\Sigma \) under the null hypothesis. The matrix \(\Lambda_0 \) is asymptotically equivalent to

\[
\Lambda_0^* = -Y_2'P_2^T \bar{P}_{Y_2, z_1} Y_1 B_1 \Sigma^{-1} - Y_2'P_2^T \bar{P}_{Y_2, z_1} Y_1 (\hat{B}_1 - B_1) \Sigma^{-1}.
\]

Under the local alternatives (4.13) and (4.28), the first term of \(\Lambda_0^* \Sigma / \sqrt{T} \) is

\[
Y_2'P_2^T \bar{P}_{Y_2, z_1} U_1^* / \sqrt{T}
\]

and the second term is

\[
\frac{1}{\sqrt{T}} Y_2'P_2^T \bar{P}_{Y_2, z_1} (Y_1, Y_2, Z_1) \begin{bmatrix} -0 \\ -(\hat{B}_* - B) \\ -(-\hat{\Gamma} - \Gamma) \end{bmatrix}
\]

\[
= \frac{1}{\sqrt{T}} Y_2'P_2^T \bar{P}_{Y_2, z_1} \begin{bmatrix} Y_2' RF + 1 \sqrt{T} \begin{bmatrix} V_{1*} J_1, 0, 0 \end{bmatrix} \end{bmatrix} \sqrt{T} \begin{bmatrix} -(-\hat{B}_* - B) \\ -(-\hat{\Gamma} - \Gamma) \end{bmatrix}.
\]

The limiting distribution of \(\sqrt{T} \begin{bmatrix} \hat{B}_* - B \end{bmatrix} \) is the limiting distribution of

\[
\left(\frac{1}{T} F' RF \right)^{-1} \frac{1}{\sqrt{T}} (RF)' U_1^*.
\]

Then by the similar argument as in the proof of Lemma 3 the limiting distribution of \(\text{vec} \Lambda_0^* / \sqrt{T} \) is the limiting distribution of

\[
\frac{1}{\sqrt{T}} Y_2'P_2^T \bar{P}_{Y_2, z_1} U_1^* - \frac{1}{\sqrt{T}} Y_2'P_2^T \bar{P}_{Y_2, z_1} P_{RF} U_1^*
\]

\[
= \frac{1}{\sqrt{T}} Y_2' (P_2 - P_{RF} P_{Y_2, z_1} - P_2 P_{RF} + P_Z P_{Y_2, z_1} P_{RF}) U_1^*
\]

\[
= \frac{1}{\sqrt{T}} Y_2' \bar{P}_Z P_{RF} U_1^*
\]

\[
= \frac{1}{\sqrt{T}} V_2' \bar{P}_Z P_{RF} \left(U + \frac{1}{\sqrt{T}} \Xi \right),
\]

where \(U_1^* \) is given by (5.35) and \(u_t^* \) is the \(t \)-th row of \(U_1^* \). (We have used the relations \(P_{Y_2, z_1} P_{RF} = P_{Y_2, z_1} \) and \(Y_2' P_2 P_{RF} = -Y_2' \bar{P}_{Z} \bar{P}_{RF} \).) Since the first term of \(Y_1^* \) is asymptotically uncorrelated to \(P_{Y_2, z_1} \) and \(P_{X*} \), the noncentrality parameter is given by

\[
\delta_4^2 = \text{tr}(\theta_4 \Sigma^{-1}),
\]

where

\[
\theta_4 = \lim_{T \to \infty} \frac{1}{T} \Xi' \bar{P}_{RF} \bar{P}_Z Y_2 \left(\frac{1}{T} Y_2' \bar{P}_Z \bar{P}_{RF} \bar{P}_Z Y_2 \right)^{-1} Y_2' \bar{P}_Z \bar{P}_{RF} \Xi
\]

\[
= \lim_{T \to \infty} \frac{1}{T} \Xi' \left(\bar{P}_{RF} - \bar{P}_{X*} \right) \Xi
\]

\[
= \lim_{T \to \infty} \frac{1}{T} \Xi' \left(P_{X*} - P_{RF} \right) \Xi,
\]

26
where $X^* = (RF, \overline{P}_2 Y_2)$ is a $T \times (G_1 - G_0 + G_2 + K_1 + G_2)$ matrix. The second equality is based on Lemma 6 of Anderson and Kunitomo (1989a). Since $V'V/T \rightarrow \Omega$ in probability and

\[(5.65) \quad \frac{1}{T} R' \overline{P}_2 Y_2 = \frac{1}{T} \begin{pmatrix} V'_2 \\ 0 \end{pmatrix} \overline{P}_2 V_2 \xrightarrow{p} \begin{pmatrix} \Omega_{22} \\ 0 \end{pmatrix},\]

we have

\[(5.66) \quad P = \operatorname{plim} \frac{1}{T} X'^* X^* = \begin{bmatrix} F'QF & F' \left(\begin{array}{c} \Omega_{22} \\ 0 \end{array} \right) \\ 0 & F \end{bmatrix} \left(\begin{array}{c} \Omega_{22} \\ 0 \end{array} \right) \Omega_{22} \eta_1.\]

Similarly,

\[(5.67) \quad \zeta_2 = \operatorname{plim} \frac{1}{T} X'^* \Xi = \operatorname{plim} \frac{1}{T} \begin{bmatrix} F' \left(\begin{array}{c} Y'_2 \\ Z'_2 \end{array} \right) \\ Y'_2 \overline{P}_Z \end{bmatrix} (Z \xi_1 + V_2 \eta_1) = \begin{bmatrix} F' \left(\begin{array}{c} \Pi'_2 \\ 0 \end{array} \right) \\ 0 \end{bmatrix} M \xi_1 + \begin{bmatrix} F' \left(\begin{array}{c} I_G \\ 0 \end{array} \right) \\ 0 \end{bmatrix} \Omega_{22} \eta_1 = \begin{bmatrix} D' \\ 0 \end{bmatrix} M \xi_1 + \begin{bmatrix} I_G \\ 0 \end{bmatrix} \Omega_{22} \eta_1,\]

where $J'_2 = (I_G, 0, I_G)$ is a $G_2 \times (G_2 + K_1 + G_2)$ choice matrix. We note that $|P| = |D' M D||\Omega_{22}| \neq 0$ if both $D' M D$ and Ω are nonsingular. Express $RF = X^* J_2$, where $J'_2 = (I_{G-G_0+K_1}, 0)$ is a $(G - G_0 + K_1) \times (G - G_0 + K_1 + G_2)$ choice matrix. Then

\[(5.68) \quad \theta_4 = \zeta_2' (P^{-1} - J_2 (J'_2 P J_2)^{-1} J'_2) \zeta_2.\]

By applying Theorem 2 to (5.68), LM_3 is asymptotically distributed with $W_{G_0, \Sigma, G_2, \theta_4}$. Under the local alternatives (4.13) and (4.20), the estimator of $\hat{\Sigma}$ is written as

\[(5.69) \quad \hat{\Sigma} = \frac{1}{T} \hat{B}_1 \left(V'_1 \overline{P}_X \left(V'_1 + \frac{1}{\sqrt{T}} \Xi \right) \right) \hat{B}_1.\]

As $T \rightarrow \infty$, $\hat{\Sigma} \rightarrow \Sigma$ in probability, which is the limit of the covariance matrix of the rows of U_1^*. Some matrix algebra shows that $\theta_4 = \theta_3$ and, hence, $\delta_4^2 = \delta_3^2$.

27
Proof of Theorem 6 for the Wald test. We now turn to the asymptotic distribution of W_3. We write

\begin{equation}
\frac{1}{\sqrt{T}} Y' \bar{P}_Z Y \hat{B} = \sqrt{T} J'_5 \Omega B + J'_5 \Omega \sqrt{T} (\hat{B} - B) + \sqrt{T} J'_5 \left(\frac{1}{T} Y' \bar{P}_{Z_1} Y B - \Omega B \right) + \sqrt{T} J'_5 \left(\frac{1}{T} Y' \bar{P}_{Z_1} Y B - \Omega B \right) (\hat{B} - B),
\end{equation}

where $J'_5 = (0, I_{G_2})$ is the $G_2 \times (G_1 + G_2)$ choice matrix. The limiting distribution of $J'_5 \Omega \sqrt{T} (\hat{B} - B)$ is the limiting distribution of

\begin{equation}
-(\Omega_{21} J_1, \Omega_{22}, 0)(D' M D)^{-1} D' \frac{1}{\sqrt{T}} Z' U^*.
\end{equation}

Similarly,

\begin{equation}
\sqrt{T} J'_5 \left(\frac{1}{T} Y' \bar{P}_{Z_1} Y B - \Omega B \right) = \frac{1}{\sqrt{T}} V'_2 \bar{P}_{Z_1} U^* - \eta_1,
\end{equation}

and the limiting covariance matrix of $\text{vec} \left(\frac{1}{\sqrt{T}} V'_2 \bar{P}_2 U^* - \eta_1 \right)$ is $\Sigma \otimes \Omega_{22}$. Because the last term in (5.70) is asymptotically negligible and $U^* = V_1^* B_1 + \frac{1}{\sqrt{T}} \Xi$, the noncentrality parameter is

\begin{equation}
\zeta_3 = \Omega_{22} \eta_1 - (\Omega_{21} J_1, \Omega_{22}, 0)(D' M D)^{-1} D' \text{plim} \frac{1}{T} Z' \Xi
\end{equation}

\[+ \text{plim} \left(\frac{1}{T} V'_2 \bar{P}_Z \Xi - \eta_1 \right) \]

\[= \Omega_{22} \eta_1 - (\Omega_{21} J_1, \Omega_{22}, 0)(D' M D)^{-1} D' M \xi_1. \]

Furthermore

\begin{equation}
\hat{\Omega}_{22}(\hat{\rho} J_1, I_{G_2}, 0) \left(\frac{1}{T} \bar{D'} Z' Z D \right)^{-1} \begin{bmatrix} J'_1 \hat{\rho}' \\ I_{G_2} \\ 0 \end{bmatrix} \hat{\Omega}_{22} + \hat{\Omega}_{22}
\end{equation}

\[\xrightarrow{p} \Omega_{22}(\rho J_1, I_{G_2}, 0)(D' M D)^{-1} \begin{bmatrix} J'_1 \hat{\rho}' \\ I_{G_2} \\ 0 \end{bmatrix} \Omega_{22} + \Omega_{22}. \]

Further matrix algebra verifies that the noncentrality parameter is δ_3^2. [1]
References

TECHNICAL REPORTS
NATIONAL SCIENCE FOUNDATION
GRANTS DMS 82-19748, DMS 86-03779, DMS 89-04851, and SES 82-08180
Econometric Workshop

