MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
OF AN AUTOREGRESSIVE PROCESS WITH MOVING AVERAGE RESIDUALS
AND OTHER COVARIANCE MATRICES WITH LINEAR STRUCTURE

BY

T. W. ANDERSON

TECHNICAL REPORT NO. 15
DECEMBER 1973

PREPARED UNDER CONTRACT
NO0014-67-A-0112-0030 (NR-042-034)
FOR THE OFFICE OF NAVAL RESEARCH

THEODORE W. ANDERSON, PROJECT DIRECTOR

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
OF AN AUTOREGRESSIVE PROCESS WITH MOVING AVERAGE RESIDUALS
AND OTHER COVARIANCE MATRICES WITH LINEAR STRUCTURE

by

T. W. ANDERSON
STANFORD UNIVERSITY

TECHNICAL REPORT NO. 15
DECEMBER, 1973

PREPARED UNDER THE AUSPICES OF
OFFICE OF NAVAL RESEARCH CONTRACT N00014-67-A-0112-0030
T. W. ANDERSON, PROJECT DIRECTOR

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
1. Introduction

A stationary stochastic process that serves as a useful model for time series analysis is the autoregressive process with moving average residuals $\{v_t\}$ which satisfies

\[(1.1) \quad \sum_{s=0}^{p} \beta_s y_{t-s} = \sum_{j=0}^{q} \alpha_j v_{t-j},\]

$t = \ldots, -1, 0, 1, \ldots$, where the sequence $\{v_t\}$ consists of independently identically distributed random variables. [See Section 5.8 of T. W. Anderson (1971a) and Box and Jenkins (1970).] To avoid indeterminacy $\beta_0 = \alpha_0 = 1$. (An alternative of specifying the variance of v_t to be 1 and leaving α_0 as a free parameter is considered also.) The mean of v_t is independent of t and is taken to be 0 for convenience. (Modifications necessary to account for an arbitrary mean are also discussed.) When $\xi y_t = 0$, the stationarity implies

\[(1.2) \quad \xi y_t y_s = \sigma(t-s),\]

dependent only on the difference of the indices.

We shall assume that the v_t's are normally distributed, that is, that the process is Gaussian. Then the model is completely specified by the coefficients in (1.1) and the variance of v_t, say σ^2.

The statistical problem treated here is to estimate β_1, \ldots, β_p, $\alpha_1, \ldots, \alpha_q$, and σ^2 on the basis of a set of observations at T successive time points, y_1, \ldots, y_T.
If \(y = (y_1, \ldots, y_T)' \), the density of the multivariate normal distribution \(N(0, \Sigma) \) of \(y \) is

\[
(1.3) \quad \frac{1}{(2\pi)^{\frac{T}{2}\frac{n}{2}}} \exp\left(-\frac{1}{2} y' \Sigma^{-1} y\right),
\]

where

\[
(1.4) \quad \Sigma_{t,s} = \sigma_{ts}, \quad t, s = 1, \ldots, T,
\]

is the \(t,s \)-th element of \(\Sigma \). If the distribution is that defined by (1.1), then (1.4) is (1.2); the covariances are functions of the parameters \(\beta_1, \ldots, \beta_p, \alpha_1, \ldots, \alpha_q \), and \(\sigma^2 \).

The method of maximum likelihood can be considered, but in general an explicit solution cannot be found. The approach of this paper is to modify the model slightly so that the derivatives of the likelihood function set equal to 0 yield relatively simple equations. Since these equations are nonlinear, an iterative procedure is proposed that yields asymptotically efficient estimates at the first step (as \(T \to \infty \)).

The estimation problems for the pure autoregressive process and pure moving average process as well as the general mixed model are set up in terms of more general multivariate models. The case of \(N \) observations on the vector \(y \) is included. This work is a continuation of earlier research on covariance matrices with linear structure by T. W. Anderson (1969), (1970), (1971b), and (1973). The iterative procedures are extensions of that presented in the last paper, which is essentially the method of scoring (as pointed out to me by J. N. K. Rao).
Durbin (1959), (1960) and A. M. Walker (1961, 1962) have proposed estimates, but they are not asymptotically efficient (as $T \to \infty$). Box and Jenkins (1970) have suggested maximizing the likelihood function by numerical means.

The covariance sequence (1.2) of a stationary process has a spectral representation. In the case of an absolutely continuous spectral distribution function

$$
(1.5) \quad \sigma(h) = \int_{-\pi}^{\pi} f(\lambda) \cos \lambda h \, d\lambda , \quad h = 0, \pm 1, \ldots .
$$

The spectral density $f(\lambda)$ may be determined by

$$
(1.6) \quad f(\lambda) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \sigma(h) \cos \lambda h
$$

when the series on the right-hand side converges. In the case of model (1.1) the spectral density is

$$
(1.7) \quad f(\lambda) = \frac{\sigma^2}{2\pi} \cdot \left| \sum_{j=1}^{q} \alpha_j e^{i\lambda j} \right|^2 \cdot \left| \sum_{r=0}^{p} \beta_r e^{i\lambda r} \right|^2.
$$

Clevenson (1970) and Parzen (1971) and Hannan (1969) have proposed estimation methods based on the sample spectral density (the so-called periodogram). The relationship between these methods and the ones presented in this paper will be explicated in a later paper.

If we let (1.1) be u_t, the spectral density of the stationary process $\{u_t\}$ is
\[f_u(\lambda) = \frac{\sigma^2}{2\pi} \sum_{j=0}^{q} \alpha_j e^{i\lambda j} \sum_{j=0}^{Q} \alpha_j e^{-i\lambda j} \]

\[= \frac{1}{2\pi} \sum_{h=-q}^{q} \sigma_u(h) e^{ih} , \]

where

\[\sigma_u(h) = \sigma^2 \sum_{k=0}^{q} \alpha_k \alpha_{k+|h|} , \quad h = 0, \pm 1, \ldots, \pm q , \]

are the nonzero covariances of \(\{u_t\} \). The parameters \(\alpha_1, \ldots, \alpha_q \), and \(\sigma^2 \) can be replaced by \(\sigma_u(0), \sigma_u(1), \ldots, \sigma_u(q) \). We shall assume the roots of

\[M(z) = \sum_{j=0}^{q} \alpha_j z^{q-j} \]

are less than 1 in absolute value. Then given \(\sigma_u(0), \sigma_u(1), \ldots, \sigma_u(q) \neq 0 \)

\[\sum_{u=-q}^{q} \sigma_u(h) z^h \]

can be factored uniquely into \(M(z)M(z^{-1}) \), thus, defining

\(\alpha_1, \ldots, \alpha_q \), and \(\sigma^2 \). [See T. W. Anderson (1971a) and (1971b) for details.]

Estimation of the pure moving average model in terms of \(\sigma(0), \sigma(1), \ldots, \sigma(q) \)

was treated by T. W. Anderson (1971b), (1973).
2. Estimation of Coefficients of Linear Transformations to Approximate
Autoregressive Processes

2.1 A General Linear Transformation. Suppose y is a T-component
random vector defined by

\begin{equation}
\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} y = y
\end{equation}

where $K_{0}, K_{1}, \ldots, K_{P}$ are $p + 1$ known linearly independent
$T \times T$ matrices, $\beta_{0} = 1$ and $\beta_{1}, \ldots, \beta_{p}$ are
p parameters such that

$\sum_{\ell=0}^{p} \beta_{\ell} K_{\ell}$ is nonsingular; we assume that there is at least one such
set. Suppose y is a T-component random variable with mean vector
$\mathbf{c} \cdot y = 0$ and covariance matrix

\begin{equation}
\mathbf{G}(y) = \mathbf{c} \cdot y y' = \sigma^{2} \mathbf{I}
\end{equation}

Then

\begin{equation}
y = \left(\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right)^{-1} y
\end{equation}

has mean vector $\mathbf{c} \cdot y = 0$ and covariance matrix

\begin{equation}
\mathbf{G}(y) = \mathbf{c} \cdot y y' = \sigma^{2} \left(\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right)^{-1} \left(\sum_{k=0}^{P} \beta_{k} K_{k}^{'} \right)^{-1} = \sigma^{2} \left(\sum_{k=0}^{P} \beta_{k} \beta_{\ell} K_{k} K_{\ell} \right)
\end{equation}

with inverse

\begin{equation}
\mathbf{G}^{-1}(y) = \frac{1}{\sigma^{2}} \sum_{k=0}^{P} \beta_{k} K_{k} \sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} = \frac{1}{\sigma^{2}} \sum_{k=0}^{P} \beta_{k} \beta_{\ell} K_{k} K_{\ell}.
\end{equation}

Let y_{1}, \ldots, y_{N} be N observations on y, and let L denote the
likelihood function when y has a normal distribution. Then
\((2.6) \quad \frac{2}{N} \log L = -T \log 2\pi - T \log \sigma^2 + 2 \log | \sum \limits_{\ell=0}^{p} \beta_{\ell} K_{\ell} |
\quad - \frac{1}{N \sigma^2} \sum \limits_{\alpha=1}^{N} \left(\sum \limits_{k=0}^{P} \beta_{k} K_{kk} y_{\alpha} \right) \left(\sum \limits_{\ell=0}^{p} \beta_{\ell} K_{\ell\ell} y_{\alpha} \right)
\quad = -T \log 2\pi - T \log \sigma^2 + 2 \log | \sum \limits_{\ell=0}^{p} \beta_{\ell} K_{\ell} |
\quad - \frac{1}{\sigma^2} \text{tr} \sum \limits_{k, \ell=0}^{p} \beta_{k} \beta_{\ell} K'_{kk} K_{\ell\ell} C' \),

where

\((2.7) \quad C = \frac{1}{N} \sum \limits_{\alpha=1}^{N} y_{\alpha} y'_{\alpha} \),

and \(\text{tr} \) denotes the trace of the matrix that follows. To find the partial derivatives of \((2.6) \) with respect to \(\beta_{1}, \ldots, \beta_{p} \), we use the results

\((2.8) \quad \frac{\partial \log |A|}{\partial \theta} = 1 \cdot \frac{\partial |A|}{\partial \theta} \)
\quad = 1 \cdot \frac{1}{|A|} \sum \limits_{i, j=1}^{p} \frac{\partial |A|}{\partial a_{ij}} \frac{\partial a_{ij}}{\partial \theta}
\quad = 1 \cdot \frac{1}{|A|} \sum \limits_{i, j=1}^{p} \text{cof} a_{ij} \frac{\partial a_{ij}}{\partial \theta}
\quad = \frac{1}{|A|} \sum \limits_{i, j=1}^{p} a'_{ij} \frac{\partial a_{ij}}{\partial \theta}
\quad = \text{tr} A^{-1} \frac{\partial}{\partial \theta} A \).

(The cofactor of \(a_{ij} \) in \(A \) is denoted by \(\text{cof} a_{ij} \).) Then

\((2.9) \quad \frac{\partial}{\partial \beta_{\ell}} \frac{2}{N} \log L = 2 \text{tr} \left(\sum \limits_{k=0}^{P} \beta_{k} K_{k} \right)^{-1} K_{\ell\ell}
\quad - \frac{2}{N \sigma^2} \sum \limits_{\alpha=1}^{N} y'_{\alpha} \sum \limits_{k=0}^{p} \beta_{k} K'_{kk} K_{\ell\ell} y_{\alpha} \).
\[= 2 \text{tr} \left(\sum_{k=0}^{p} \beta_k K_k \right)^{-1} K_k - \frac{2}{\sigma^2} \text{tr} \sum_{k=0}^{p} \beta_k K_k' K_k \text{C}, \]

\[\lambda = 1, \ldots, p. \]

(2.10) \[\frac{3}{2} \frac{2}{\sigma N} \log L = - \frac{T}{2} \sigma^2 + \frac{1}{4n} \text{tr} \sum_{k, \lambda=0}^{p} \beta_k \beta_k' K_k K_k \text{C}. \]

If \(N = 1 \) and \(\bar{\gamma}_1 = \bar{\gamma} \), the derivatives (2.9) are

(2.11) \[2 \text{tr} \left(\sum_{k=0}^{p} \beta_k K_k \right)^{-1} K_k' K_k' K_k \text{y} \gamma, \lambda = 1, \ldots, p, \]

and (2.10) is

(2.12) \[- \frac{T}{2} \sigma^2 + \frac{1}{4n} \sum_{k, \lambda=0}^{p} \beta_k \beta_k' K_k' K_k' \text{y}. \]

The maximum likelihood estimates may be defined by setting the derivatives equal to 0. [By the argument used in T. W. Anderson (1970) it follows that there is at least one relative maximum defined by the derivative equations.]

The derivative equations are

(2.13) \[\text{tr} \left(\sum_{k=0}^{p} \hat{\beta}_k K_k \right)^{-1} K_k = \frac{1}{\sigma^2} \sum_{k=0}^{p} \hat{\beta}_k \text{tr} K_k' K_k \text{C}, \]

(2.14) \[\hat{\sigma}^2 = \frac{1}{T} \sum_{k, \lambda=0}^{p} \hat{\beta}_k \hat{\beta}_k' \text{tr} K_k' K_k \text{C}. \]

We can develop these equations in an alternative way by letting

(2.15) \[K_k \bar{\gamma}_\alpha = \bar{\gamma}_\alpha^{(k)}, \quad k = 0, 1, \ldots, p, \alpha = 1, \ldots, N. \]

Then

(2.16) \[\frac{2}{N} \log L = - T \log 2\pi - T \log \sigma^2 + 2 \log \left| \sum_{\lambda=0}^{p} \beta_\lambda K_\lambda \right| \]

\[- \frac{1}{N \sigma^2} \sum_{\alpha=1}^{N} \left(\sum_{k=0}^{p} \beta_k \gamma_\alpha^{(k)} \right) \left(\sum_{\lambda=0}^{p} \beta_\lambda \gamma_\alpha^{(\lambda)} \right) \]

\[= - T \log 2\pi - T \log \sigma^2 + 2 \log \left| \sum_{\lambda=0}^{p} \beta_\lambda K_\lambda \right| - \frac{1}{\sigma^2} \beta' \text{M} \beta, \]
where

\[
(2.17) \quad \beta = \begin{pmatrix}
\beta_0 \\
\beta_1 \\
\vdots \\
\beta_p
\end{pmatrix},
\]

\[
(2.18) \quad M = \frac{1}{N} \sum_{\alpha=1}^{N} \begin{pmatrix}
\bar{y}_x(0) & \bar{y}_x(0) & \bar{y}_x(0) & \bar{y}_x(1) & \cdots & \bar{y}_x(0) & \bar{y}_x(p) \\
\bar{y}_x(0) & \bar{y}_x(0) & \bar{y}_x(0) & \bar{y}_x(0) & \cdots & \bar{y}_x(1) & \bar{y}_x(p) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\bar{y}_x(p) & \bar{y}_x(0) & \bar{y}_x(0) & \bar{y}_x(0) & \cdots & \bar{y}_x(p) & \bar{y}_x(p)
\end{pmatrix}.
\]

The partial derivatives of \((2/N) \log L\) set equal to 0 can be written in terms of the elements of \(M\) as

\[
(2.19) \quad \begin{bmatrix}
\text{tr} \left(\sum_{k=0}^{P} \hat{\beta}_k K_{k} \right)^{-1} K_{k}
\end{bmatrix} = \frac{1}{\sigma^2} \hat{\beta}' M \hat{\beta},
\]

\[
(2.20) \quad \hat{\sigma}^2 = \frac{1}{T \bar{y}} \text{tr} \hat{\beta}' M \hat{\beta};
\]

the left-hand side of (2.19) denotes a row vector with the \(k\)-th component given explicitly.

If \(N > 1\) and \(\xi y = \mu\), where \(\mu\) is an arbitrary vector, then the sample mean

\[
(2.21) \quad \bar{y} = \frac{1}{N} \sum_{y=1}^{N} y_{\alpha}
\]

is the maximum likelihood estimate of \(\mu\), and in the likelihood equations (2.13) and (2.14), \(\zeta\) should be replaced by

\[
(2.22) \quad \hat{\zeta} = \frac{1}{N} \sum_{\alpha=1}^{N} (y_{\alpha} - \bar{y})(y_{\alpha} - \bar{y})',
\]

In some models one wants \(\xi y_j = \mu\); that is, \(\xi y = \mu \xi\), where
\[\varepsilon = (1, 1, \ldots, 1)' \]. Then \(2/N\) times the logarithm of the likelihood function is (2.6) with \(C \) replaced by

\[
(2.23) \quad C^* \equiv \frac{1}{N} \sum_{\alpha=1}^{N} (y_\alpha - \mu \varepsilon) (y_\alpha - \mu \varepsilon)',
\]

The derivative of \(2/N\) times the logarithm of the likelihood with respect to \(\mu \) is

\[
(2.24) \quad \frac{\partial}{\partial \mu} \log L = \frac{2}{N} \rho \varepsilon' \sum_{k,l=0}^{N} \beta_k \beta'_l K_k K_l \sum_{\alpha=1}^{N} (y_\alpha - \mu \varepsilon) \varepsilon' \varepsilon \
\]

If \(\varepsilon \) is a characteristic vector of \(K_0, K_1, \ldots, K_p \), then

\[
(2.25) \quad \hat{\mu} = \frac{1}{N^T} \sum_{\alpha=1}^{N} \rho \varepsilon' \varepsilon \varepsilon',
\]

and in the other derivative equations \(C \) is replaced by

\[
(2.26) \quad \frac{1}{N} \sum_{\alpha=1}^{N} (y_\alpha - \hat{\mu} \varepsilon) (y_\alpha - \hat{\mu} \varepsilon)',
\]

If \(\varepsilon \) is not a characteristic vector of \(K_0, K_1, \ldots, K_p \), then usually (2.25) will not be the maximum likelihood estimate of \(\mu \).

The second derivatives of \((2/N) \log L\) defined by (2.6) are

\[
(2.27) \quad \frac{\partial^2}{\partial \beta_j \partial \beta'_l} \log L = -\frac{2}{N^T} \text{tr} \left(\frac{P}{L} \beta_k \beta' K_k K_l \right)^{-1} K_j K_l \left(\frac{P}{L} \beta_k \beta' K_k K_l \right)^{-1} K'_j K'_l - \frac{2}{\sigma^2} \text{tr} K'_j K'_l C , \quad j, l = 1, \ldots, p,
\]

\[
(2.28) \quad \frac{\partial^2}{\partial \beta_j \partial \sigma^2} \log L = -\frac{2}{\sigma^4} \text{tr} \sum_{k,l=0}^{P} \beta'_k K'_j K'_l C , \quad j = 1, \ldots, p,
\]

\[
(2.29) \quad \frac{\partial^2}{\partial \sigma^4} \log L = \frac{T}{\sigma^4} - \frac{2}{\sigma^6} \text{tr} \sum_{k,l=0}^{P} \beta_k \beta'_l K'_k K'_l C .
\]

The elements of the information matrix are \(N \) times
(2.30) \[-\frac{d^2}{\beta_j \beta_k} \frac{1}{N} \log L = t \left(\frac{P}{k=0} \beta_k K_{k,k} \right)^{-1} K_{j,l} \left(\frac{P}{k=0} \beta_k K_{k,k} \right)^{-1} \]
\[+ \text{tr} \left(\frac{P}{k=0} \beta_k K_{k,k} \right)^{-1} K_{j,l} \left(\frac{P}{k=0} \beta_k K_{k,k} \right)^{-1}, \]
\[j,l = 1, \ldots, p, \]

(2.31) \[-\frac{d^2}{\beta_j \sigma^2} \frac{1}{N} \log L = -\frac{1}{2} \text{tr} \left(\frac{P}{k=0} \beta_k K_{k,k} \right)^{-1} K_{j,j}, \quad j = 1, \ldots, p, \]

(2.32) \[-\frac{d^2}{\sigma^2} \frac{1}{N} \log L = \frac{t}{2\sigma^4}. \]

As \(N \to \infty \), the normalized maximum likelihood estimates have a limiting normal distribution with covariance matrix whose inverse has elements given by (2.30), (2.31), and (2.32).

2.2 Autoregressive Process Approximated by a Linear Transformation.

The autoregressive process \(\{y_t\} \) is (1.1) for \(\alpha_1 = \ldots = \alpha_q = 0 \), that is,

(2.33) \[\sum_{s=0}^P \beta_s y_{t-s} = v_t, \]

\(t = \ldots, -1, 0, 1, \ldots \). Let \(y = (y_1, \ldots, y_T)' \). Then the distribution of \(y_1, \ldots, y_T \) is approximated by the distribution of \(y \) defined by (2.1) when \(K_g = I_g \), \(g = 0, 1, \ldots, p \), where

(2.34) \[L = \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0
\end{pmatrix}. \]
Then

\[
L^2 = \begin{pmatrix}
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 & 0 \\
\end{pmatrix},
\]

(2.35)

In general \(L^g \) has all 0's except for 1's \(g \) units below the main diagonal. We suppose \(p + 1 \leq T \). Note that

\[
L^g L^h = L^{g+h}, \quad g, h = 0, 1, \ldots,
\]

(2.36)

\[
L^g = 0, \quad g = T, T+1, \ldots.
\]

(2.37)

In this case

\[
\sum_{k=0}^{p} \beta_k K_k = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\beta_1 & 1 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\beta_2 & \beta_1 & 1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
\beta_p & \beta_{p-1} & \beta_{p-2} & \ldots & 1 & 0 & \ldots & 0 \\
0 & \beta_p & \beta_{p-1} & \ldots & \beta_1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & \ldots & 1 \\
\end{pmatrix},
\]

(2.38)

which is triangular with 0's above the main diagonal and has determinant 1.
The components of (2.1) are
\[(2.40)\]
\[
\sum_{s=0}^{t-1} \beta_s y_{t-s} = v_t, \quad t=1, \ldots, p,
\]
\[(2.41)\]
\[
\sum_{s=0}^{p} \beta_s y_{t-s} = v_t, \quad t=p+1, \ldots, T.
\]

The equation (2.41) agrees with the autoregressive process (2.33), but the equation (2.40) is such that the sequence \(y_1, \ldots, y_T \) does not start out as a stationary process. An alternative way of considering the equation (2.40) is that (2.41) holds with \(y_0 = y_{-1} = \ldots = y_{-(p-1)} = 0 \).

In this model we are often interested in \(N = 1 \) and \(y_{-1} = \bar{y} \). Then
\[(2.42)\]
\[
y^{(k)} = L_k \bar{y} = L_k \begin{pmatrix} 0 \\ \vdots \\ y_{T-k} \end{pmatrix}, \quad k=0, 1, \ldots, T-1,
\]
where there are \(k \) 0's, and
\[(2.43)\]
\[
L_k \bar{y} = 0, \quad k=T, T+1, \ldots.
\]
Since \(L_{k=0}^P \beta_k L_k \) is triangular with 0's above the main diagonal, then \((\sum_{k=0}^{P} \beta_k L_k)^{-1} \) is triangular with 0's above the main diagonal, and the determinant of \(\sum_{k=0}^{P} \beta_k L_k \) is 1. [The diagonal terms of \((\sum_{k=0}^{P} \beta_k L_k)^{-1} L_k \) are 0, \(k=1, \ldots, p \).] Then the derivative of \(2/N \) times the logarithm of the determinant with respect to \(\beta_\ell \) is
\[(2.44)\]
\[
\frac{\partial}{\partial \beta_\ell} \log \left| \sum_{k=0}^{P} \beta_k L_k \right| = \text{tr} \left(\sum_{k=0}^{P} \beta_k L_k \right)^{-1} L_\ell = 0 \quad \ell = 1, \ldots, p.
\]
The derivative equations (2.13) can be written in this case as

\[(2.45) \quad \sum_{k=1}^{p} \hat{\beta}_k \chi^{(k)}(t) = -\chi^{(0)}(t), \quad k=1, \ldots, p.\]

In components these are

\[(2.46) \quad \sum_{k=1}^{p} \hat{\beta}_k \sum_{t=1}^{T} y_{t-k} y_{t-l} = -\sum_{t=1}^{T} y_t y_{t-l}, \quad l=1, \ldots, p,\]

where \(y_0 = y_{-1} = \ldots = y_{-(p-1)} = 0\). These are the usual maximum likelihood estimates of \(\beta_1, \ldots, \beta_p\) for initial values \(y_0 = y_{-1} = \ldots = y_{-(p-1)} = 0\) or the "least squares estimates" since they minimize

\[(2.47) \quad \sum_{t=1}^{T} \left(\sum_{k=0}^{p} \beta_k y_{t-k} \right)^2.\]

[See T. W. Anderson (1971), Sections 2.2 and 5.4, for example.]

Let

\[(2.48) \quad c_h = \frac{1}{T} \sum_{i=1}^{T-h} y_i y_{i+h}, \quad h=0, 1, \ldots, T-1,\]

The right-hand side of (2.46) is \(-Tc_\ell\). The sum

\[(2.49) \quad \sum_{t=1}^{T} y_{t-k} y_{t-l}\]

differs from \(Tc_{|k-l|}\) by omission of

\[(2.50) \quad \sum_{t=T-\max(k,l)+1}^{T-|k-l|} y_t y_{t+|k-l|}.\]

These terms can be added to the coefficients so as to make the equations agree with

\[(2.51) \quad \sum_{g=1}^{p} \hat{\beta}_g c_{g-f} = -c_{f}, \quad f=1, \ldots, p.\]
[See T. W. Anderson (1971a), Sec. 5.6, for example.] Then the estimates derived from (2.51) are the coefficients of a stationary process. [See Anderson (1971c), for example.] If we let

\[
\begin{bmatrix}
0 \\
\vdots \\
0 \\
y_1 \\
\vdots \\
y_T \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

where the first \(k \) components are 0 and the last \(p-k \) components are 0, then (2.51) can be written

\[
(2.53) \quad \sum_{k=1}^{P} \beta_k \tilde{y}^{(k)}(l) = - \tilde{y}^{(0)} (0) \tilde{y}^{(l)} \quad l=1, \ldots, p.
\]

In this case of \(K = \lambda^k \), the elements of the information matrix are \(N \) times

\[
(2.54) \quad - \frac{\partial^2}{\partial \beta_j \partial \beta_k} \log L = - \frac{1}{N} \log L = \text{tr} \left(\sum_{k=0}^{P} \beta_k L^k \right)^{-1} \sum_{j=0}^{p} \beta_k L^k \left(\sum_{k=0}^{P} \beta_k L^k \right)^{-1},
\]

\[
(2.55) \quad - \frac{\partial^2}{\partial \sigma^2} \log L = - \frac{1}{N} \log L = 0 \quad j = 1, \ldots, p,
\]

and (2.32).
It is of interest to compare the covariance matrix of \(y \) defined by (2.1) with that of \(T \) terms from the stationary process defined by (2.33).

For \(p=1 \) and \(\beta_1=\beta \) the covariance matrix of the stationary process is

\[
\begin{pmatrix}
1 & -\beta & & \ldots & (-\beta)^{T-1} \\
-\beta & 1 & -\beta & \ldots & (-\beta)^{T-2} \\
\beta^2 & -\beta & 1 & \ldots & (-\beta)^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(-\beta)^{T-1} & (-\beta)^{T-2} & (-\beta)^{T-3} & \ldots & 1
\end{pmatrix}
\]

and

\[
(2.57) \quad \Sigma(y)^{\sim} = \frac{\sigma^2}{1-\beta^2} \begin{pmatrix}
1-\beta^2 & -\beta(1-\beta^2) & \beta^2(1-\beta^2) & \ldots & (-\beta)^{T-1}(1-\beta^2) \\
-\beta(1-\beta^2) & 1-\beta^4 & -\beta(1-\beta^4) & \ldots & (-\beta)^{T-2}(1-\beta^4) \\
\beta^2(1-\beta^2) & -\beta(1-\beta^4) & 1-\beta^6 & \ldots & (-\beta)^{T-3}(1-\beta^6) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(-\beta)^{T-1}(1-\beta^2) & (-\beta)^{T-2}(1-\beta^4) & (-\beta)^{T-3}(1-\beta^6) & \ldots & 1-\beta^{2T}
\end{pmatrix}
\]

For a stationary process \(|\beta| < 1 \), and hence the \(i,j \)-th element of \(\Sigma(y)^{\sim} \) is close to the \(i,j \)-th element of (2.56) if \(i \) and \(j \) are large.
3. Estimation of Coefficients of Linear Transformations to Approximate
Moving Average Processes

3.1 A General Linear Transformation. Another model is defined by

\[y = \sum_{k=0}^{q} \alpha_k J_k y, \]

where \(J_0, J_1, \ldots, J_q \) are \(q + 1 \) known linearly independent \(T \times T \)
matrices, \(\alpha_0 = 1 \), and \(\alpha_1, \ldots, \alpha_q \) are \(q \) parameters such that \(\sum_{\ell=0}^{q} \alpha_\ell J_\ell \)
is nonsingular; we assume that there is at least one such set. Suppose \(y \)
is a random vector with mean vector \(\mu_y = 0 \) and covariance matrix \(\Sigma_y = \sigma^2 I \).
Then the mean vector of \(y \) is \(\mu_y = 0 \) and the covariance matrix is

\[\Sigma(y) = \Sigma_{yy} = \sigma^2 \sum_{k, \ell=0}^{q} \alpha_k \alpha_\ell J_k J_\ell' = \sigma^2 \left(\sum_{k=0}^{q} \alpha_k J_k \right) \left(\sum_{\ell=0}^{q} \alpha_\ell J_\ell' \right). \]

If \(L \) denotes the likelihood function, then

\[\frac{3}{N} \log L = -T \log 2\pi - T \log \sigma^2 - 2 \log \left| \sum_{k=0}^{q} \alpha_k J_k \right| \]

\[- \frac{1}{2} \sum_{\alpha=1}^{N} y_\alpha' \left(\sum_{k=0}^{q} \alpha_k J_k \right)^{-1} y_\alpha \]

\[- \frac{1}{\sigma^2} \text{tr} \left(\sum_{k=0}^{q} \alpha_k J_k \right)^{-1} \left(\sum_{\ell=0}^{q} \alpha_\ell J_\ell' \right)^{-1} \]

We use the result that

\[\frac{3}{N} \,
\]

\[\frac{3}{N} \, A^{-1} = - A^{-1} \left(\frac{3}{N} A \right) A^{-1}, \]

which follows from differentiating \(A A^{-1} = I \). The partial derivatives of

\(\frac{2}{N} \) log L are
\begin{align}
(3.5) \quad \frac{3}{2 \sigma_1} \frac{2}{N} \log L &= -2 \; \text{tr} \left(\frac{q}{l=0} \alpha_k \; J_{k,l} \right) \; J_{j,l}^{-1} \\
&\quad + \frac{2}{\sigma^2} \; \text{tr} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \; C \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right)^{-1}, \\
&\quad j=1, \ldots, q, \\

(3.6) \quad \frac{3}{2 \sigma_2} \frac{2}{N} \log L &= -\frac{T}{\sigma^2} + \frac{1}{\sigma^2} \; \text{tr} \left(\frac{q}{l=0} \alpha_k \; J_{k,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \; C, \\
&\quad j=1, \ldots, q.
\end{align}

The likelihood equations can be written [with the second term on the right-hand side of (3.5) transposed]
\begin{align}
(3.7) \quad \text{tr} \left(\frac{q}{l=0} \hat{\alpha}_k \; J_{k,l} \right) \; J_{j,l}^{-1} \;
&= \frac{1}{\sigma^2} \; \text{tr} \left(\frac{q}{l=0} \hat{\alpha}_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \hat{\alpha}_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \hat{\alpha}_l \; J_{j,l} \right)^{-1}, \\
&\quad j=1, \ldots, q, \\

(3.8) \quad \sigma^2 &= \frac{1}{T} \; \text{tr} \left(\frac{q}{l=0} \hat{\alpha}_k \; J_{k,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \hat{\alpha}_l \; J_{j,l} \right) \; J_{j,l}^{-1} \; C.
\end{align}

The second partial derivatives of \((2/N) \log L\) are
\begin{align}
(3.9) \quad \frac{\partial^2}{\partial \alpha_1 \partial \alpha_j} \frac{2}{N} \log L &= 2 \; \text{tr} \left(\frac{q}{l=0} \alpha_k \; J_{k,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \\
&\quad - \frac{2}{\sigma^2} \; \text{tr} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; C \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right) \; J_{j,l}^{-1} \left(\frac{q}{l=0} \alpha_l \; J_{j,l} \right)^{-1}, \\
&\quad j=1, \ldots, q.
\end{align}
\[
\frac{\partial^2}{\partial \alpha_j \partial \sigma^2} \frac{2}{N} \log L = - \frac{2}{\sigma^4} \text{tr} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} \mathcal{C} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} \mathcal{J}_{\ell} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} ,
\]

\[j = 1, \ldots, q , \]

\[
\frac{\partial^2}{\partial \sigma^2} \frac{2}{N} \log L = \frac{T}{\sigma^4} - \frac{2}{\sigma^6} \text{tr} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k} \right)^{-1} \mathcal{J}_{k} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} \mathcal{C} .
\]

The information matrix has elements which are \(N\) times

\[
\frac{\partial^2}{\partial \alpha_i \partial \alpha_j} \frac{1}{N} \log L = \text{tr} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k} \right)^{-1} \mathcal{J}_{i} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} \mathcal{J}_{j} + \text{tr} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k} \right)^{-1} \mathcal{J}_{i} \mathcal{J}_{j} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} ,
\]

\[i, j = 1, \ldots, q , \]

\[
\frac{\partial^2}{\partial \sigma^2} \frac{3}{\sigma^4} \frac{1}{N} \log L = \frac{1}{\sigma^2} \text{tr} \mathcal{J}_{i} \left(\sum_{\ell=0}^{q} \alpha_\ell \mathcal{J}_{\ell} \right)^{-1} , \quad j = 1, \ldots, q ,
\]

\[
\frac{\partial^2}{\partial \sigma^2} \frac{2}{\sigma^2} \frac{1}{N} \log L = - \frac{T}{2 \sigma^4} .
\]

As \(N \to \infty\), the maximum likelihood estimates have a limiting normal distribution with covariance matrix whose inverse has elements given by (3.12), (3.13), and (3.14).

The likelihood equations (3.7) and (3.8) cannot in general be solved explicitly. However, the method of scoring can be used. If \(L(y|\theta)\) is the likelihood function of a vector parameter \(\theta\), the Taylor's expansion of the (vector) derivative is

\[
\frac{\partial}{\partial \theta} \log L(y|\theta) = \left. \frac{\partial}{\partial \theta} \log L(y|\theta) \right|_{\theta = \theta^*} + \left. \frac{\partial^2}{\partial \theta \partial \theta'} \log L(y|\theta) \right|_{\theta = \theta^*} (\theta - \theta^*) + R(y|\theta, \theta^*) .
\]

\[
\frac{\partial^2}{\partial \theta^2} \log L(y|\theta) = \left. \frac{\partial^2}{\partial \theta \partial \theta'} \log L(y|\theta) \right|_{\theta = \theta^*} (\theta - \theta^*) + R(y|\theta, \theta^*) .
\]
The matrix \(\left(\frac{\partial^2}{\partial \theta \partial \theta'} \right) \log L(y|\theta) \) will be close to its expected value, which is a function of \(\hat{\theta} \), taken to be the "true" value of the parameter vector. Under certain conditions if \(\hat{\theta}^* \) is a consistent estimate of the "true" value, the solution to

\[
(3.16) \quad \begin{bmatrix}
\frac{\partial^2}{\partial \theta \partial \theta'} \log L(y|\theta) \\
\frac{\partial}{\partial \theta} \log L(y|\theta)
\end{bmatrix}
\begin{bmatrix}
\hat{\theta}^* \\
\hat{\theta}^*
\end{bmatrix}
= \frac{\partial}{\partial \hat{\theta}} \log L(y|\theta)
\]

is a consistent, asymptotically efficient and asymptotically normal estimate of \(\hat{\theta} \). The procedure can be iterated; in suitable circumstances the sequence of vectors will converge to the maximum likelihood estimate, that is, a solution to the left-hand side of (3.15) set equal to \(\hat{\theta} \).

In the present case let \(\hat{\alpha}_1^{(0)}, \ldots, \hat{\alpha}_q^{(0)}, \hat{\sigma}_0^2 \) be a set of initial estimates, and let \(\hat{\alpha}_1^{(i)}, \ldots, \hat{\alpha}_q^{(i)}, \hat{\sigma}_i^2 \) be the solution to the i-th set of equations. It will be convenient to let

\[
(3.17) \quad \hat{A}_{i-1} = \sum_{k=0}^{q} \hat{\alpha}_k^{(i-1)} \hat{J}_k.
\]

Then the i-th iteration involves the equations

\[
(3.18) \quad \sum_{j=1}^{q} \left[\text{tr} \hat{A}_{i-1}^{-1} J_j \hat{A}_{i-1}^{-1} J_j + \text{tr} \hat{A}_{i-1}^{-1} \hat{J}_j \hat{A}_{i-1}^{-1} \hat{J}_j \right] \left(\hat{\alpha}_j^{(i)} - \hat{\alpha}_j^{(i-1)} \right)
\]

\[
+ \frac{1}{\hat{\sigma}_{i-1}^2} \text{tr} \hat{A}_{i-1}^{-1} \hat{J}_i \left(\hat{\sigma}_i^2 - \hat{\sigma}_{i-1}^2 \right)
\]

\[
= - \text{tr} \hat{A}_{i-1}^{-1} \hat{J}_i + \frac{1}{\hat{\sigma}_{i-1}^2} \text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}^{-1} \hat{J}_i \hat{A}_{i-1}^{-1} \hat{C} \hat{J}_i \hat{A}_{i-1}^{-1} \hat{C},
\]

\(i = 1, \ldots, q\),
(3.19) \[\frac{1}{\hat{\sigma}_{i-l}^2} \sum_{j=1}^{q} \text{tr} \hat{A}^{-1}_{i-l} J_j \left(\hat{a}_j(i) - \hat{a}_j(i-1) \right) + \frac{T}{2\hat{\sigma}_{i-l}^4} \hat{\sigma}_{i-l}^2 - \hat{\sigma}_{i-l}^2 \]

\[= - \frac{T}{2\hat{\sigma}_{i-l}^2} + \frac{1}{2\hat{\sigma}_{i-l}^4} \text{tr} \hat{A}^{-1}_{i-l} \hat{A}^{-1}_{i-l} C. \]

These reduce to

(3.20) \[\sum_{j=1}^{q} \left[\text{tr} \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l} J_j + \text{tr} \hat{A}^{-1}_{i-l} J_g J_j \hat{A}^{-1}_{i-l} \right] \hat{a}_j(i) + \frac{1}{\hat{\sigma}_{i-l}^2} \text{tr} \hat{A}^{-1}_{i-l} J_g \hat{\sigma}_{i-l}^2 \]

\[= 2 \text{tr} \hat{A}^{-1}_{i-l} J_g + \frac{1}{\hat{\sigma}_{i-l}^2} \text{tr} \hat{A}^{-1}_{i-l} C \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l} - \text{tr} \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l} J_0 \]

\[- \text{tr} \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l}, \quad g = 1, \ldots, q, \]

(3.21) \[\sum_{j=1}^{q} \text{tr} \hat{A}^{-1}_{i-l} J_j \hat{a}_j(i) + \frac{T}{2\hat{\sigma}_{i-l}^2} \hat{\sigma}_{i-l}^2 \]

\[= T + \frac{1}{2\hat{\sigma}_{i-l}^2} \text{tr} \hat{A}^{-1}_{i-l} \hat{A}^{-1}_{i-l} C - \text{tr} \hat{A}^{-1}_{i-l} J_0. \]

If \(\sigma^2 = 1 \) and \(\alpha_0 \) is a free parameter (not specified), the likelihood satisfies (3.3) with \(\sigma^2 = 1 \), the first partial derivatives are (3.5) for \(j = 0, 1, \ldots, q \), the elements of the information matrix are \(N \) times (3.12) for \(i, j = 0, 1, \ldots, q \), and the equations for scoring are

(3.22) \[\sum_{j=0}^{q} \left[\text{tr} \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l} J_j + \text{tr} \hat{A}^{-1}_{i-l} J_g J_j \hat{A}^{-1}_{i-l} \right] \left(\hat{a}_j(i) - \hat{a}_j(i-1) \right) \]

\[= - \text{tr} \hat{A}^{-1}_{i-l} J_g + \text{tr} \hat{A}^{-1}_{i-l} C \hat{A}^{-1}_{i-l} J_g \hat{A}^{-1}_{i-l}, \]

\[g = 0, 1, \ldots, q, \]
These reduce to

\[(3.23) \sum_{j=0}^q \left[\text{tr} \hat{A}_1^{-1} J \hat{A}_1^{-1} j \hat{J}_j + \text{tr} \hat{A}_i^{-1} J \hat{A}_i^{-1} j \hat{J}_j' \hat{A}_i'^{-1} \right] \hat{\alpha}_j^{(1)} = \text{tr} \hat{A}_1^{-1} J g + \text{tr} \hat{A}_1^{-1} C \hat{A}_1'^{-1} J g \hat{A}_1'^{-1}, \]

g = 0, 1, \ldots, q.

3.2 Moving Average Process Approximated by a Linear Transformation.

The moving average process \{y_t\} is (1.1) for \(\beta_1 = \ldots = \beta_q = 0\), that is,

\[(3.24) y_t = \sum_{j=0}^q \alpha_j \nu_{t-j}, \]

t = \ldots, -1, 0, 1, \ldots. Then the distribution of \(y_1, \ldots, y_T\) is approximated by the distribution of \(\nu\) defined by (3.1) when \(J_g = L^g\), \(g = 0, 1, \ldots, q\). The components of (3.1) are

\[(3.25) y_t = \sum_{j=0}^{t-1} \alpha_j \nu_{t-j}, \quad t = 1, \ldots, q, \]

\[(3.26) y_t = \sum_{j=0}^q \alpha_j \nu_{t-j}, \quad t = q+1, \ldots, T. \]

The equations (3.26) correspond to a moving average process; the moving averages of the first \(q\) observations, represented by (3.25), are truncated.

The covariance matrix of the moving average process defined by (3.24) is

\[(3.27) \sum_{j=0}^q \sigma_j^2 \alpha_j^2 I + \sum_{i=1}^q \sum_{j=0}^{q-i} \sigma^2 \alpha_j \alpha_{j+i} (L_i + L_i'), \]

This is of the form considered in T. W. Anderson (1969), (1970), (1971b), and (1973), namely
(3.28) \[\sum_{g=0}^{q} \sigma_g G_g, \]

where \(G_0 = I \) and

(3.29) \[G_g = (1 \sigma_g + L_g \sigma_g), \quad g = 1, \ldots, q. \]

The covariance matrix of \(y_1, \ldots, y_T \) defined by (3.25) and (3.26) is for \(q = 2 \), for example,

\[
\begin{pmatrix}
\alpha_0^2 & \alpha_0 \alpha_1 & \alpha_0 \alpha_2 & 0 & \cdots & 0 \\
\alpha_0 \alpha_1 & \alpha_0^2 + \alpha_1^2 & \alpha_0 \alpha_1 + \alpha_1 \alpha_2 & \alpha_0 \alpha_2 & \cdots & 0 \\
\alpha_0 \alpha_2 & \alpha_0 \alpha_1 + \alpha_1 \alpha_2 & \alpha_0^2 + \alpha_1^2 + \alpha_2^2 & \alpha_0 \alpha_1 + \alpha_1 \alpha_2 & \cdots & 0 \\
0 & \alpha_0 \alpha_2 & \alpha_0 \alpha_1 + \alpha_1 \alpha_2 & \alpha_0^2 + \alpha_1^2 + \alpha_2^2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \alpha_0^2 + \alpha_1^2 + \alpha_2^2
\end{pmatrix}
\]

(3.30)

This matrix differs from (3.27) for \(q = 2 \) in the upper left-hand \(2 \times 2 \) submatrix in (3.30). If \(T \) is large relative to \(q \) the difference between the two models will not be important; the model (3.1) with \(J_j = L_j \) can be considered as an approximation to the moving average process.

When \(J_j = L_j \),

(3.31) \[\text{tr} \left(\sum_{l=0}^{q} \alpha_l J_j \right)^{-1} J_j = \text{tr} \left(\sum_{l=0}^{q} \alpha_l L_j \right)^{-1} L_j = 0, \quad j = 1, \ldots, q, \]

(3.32) \[\text{tr} \left(\sum_{l=0}^{q} \alpha_l J_0 \right)^{-1} J_0 = \text{tr} \left(\sum_{l=0}^{q} \alpha_l L_0 \right)^{-1}. \]
The likelihood equations (3.7) and (3.8) for \(\hat{\alpha}_1, \ldots, \hat{\alpha}_q\) and \(\hat{\sigma}^2\) (with \(\hat{\alpha}_0 = 1\)) are

\[
\text{(3.33)} \quad \text{tr} \left(\sum_{l=0}^{q} \hat{\alpha}_l L^l \right)^{-1} L^q \left(\sum_{l=0}^{q} \hat{\alpha}_l L^l \right)^{-1} C \left(\sum_{l=0}^{q} \hat{\alpha}_l L^l \right)^{-1} = 0, \quad g = 1, \ldots, q,
\]

\[
\text{(3.34)} \quad \hat{\sigma}^2 = \frac{1}{T} \text{tr} \left(\sum_{k=0}^{q} \hat{\alpha}_k L^k \right)^{-1} \left(\sum_{k=0}^{q} \hat{\alpha}_k L^k \right)^{-1} C.
\]

The method of scoring leads to

\[
\text{(3.35)} \quad \sum_{j=1}^{q} \text{tr} \hat{A}_{i-1}^{-1} L^j \hat{A}_{i-1}^{-1} \hat{\alpha}_{j}^{(i)} \left(\hat{\alpha}_j^{(i)} - \hat{\alpha}_j^{(i-1)} \right) = \frac{1}{\hat{\sigma}^2_{i-1}} \text{tr} \hat{A}_{i-1}^{-1} C \hat{A}_{i-1}^{-1} L^g \hat{A}_{i-1}^{-1}, \quad g = 1, \ldots, q,
\]

\[
\text{(3.36)} \quad \frac{T}{2\hat{\sigma}^4_{i-1}} \left(\hat{\sigma}^2_{i} - \hat{\sigma}^2_{i-1} \right) = -\frac{T}{2\hat{\sigma}^2_{i-1}} + \frac{1}{\hat{\sigma}^2_{i-1}} \text{tr} \hat{A}_{i-1}^{-1} \hat{A}_{i-1}^{-1} C.
\]

These can be written

\[
\text{(3.37)} \quad \sum_{j=1}^{q} \text{tr} \hat{A}_{i-1}^{-1} L^j \hat{A}_{i-1}^{-1} \hat{\alpha}_j^{(i)} = -\text{tr} \hat{A}_{i-1}^{-1} L^g \hat{A}_{i-1}^{-1}
\]

\[
+ \frac{1}{\hat{\sigma}^2_{i-1}} \text{tr} \hat{A}_{i-1}^{-1} C \hat{A}_{i-1}^{-1} L^g \hat{A}_{i-1}^{-1},
\]

\[g = 1, \ldots, q,
\]

\[
\text{(3.38)} \quad \hat{\sigma}^2_{i} = \frac{1}{T} \text{tr} \hat{A}_{i-1}^{-1} \hat{A}_{i-1}^{-1} C.
\]

The set of linear equations (3.37) are solved for \(\hat{\alpha}_1^{(i)}, \ldots, \hat{\alpha}_q^{(i)}\).

If the parameters are \(\alpha_0, \alpha_1, \ldots, \alpha_q\) (\(\sigma^2 = 1\)), then the likelihood equations are (3.33) for \(g = 0, 1, \ldots, q\). The equations for scoring are
(3.39) \[
\left(\text{tr} \hat{A}_{i-1}^{-2} + \text{tr} \hat{A}_{i-1}^{-1} \hat{A}_{i-1}'^{-1} \right) \left(\hat{\alpha}_0^{(i)} - \hat{\alpha}_0^{(i-1)} \right)
+ \sum_{j=1}^{q} \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{j} \hat{A}_{i-1}'^{-1} \left(\hat{\alpha}_{j}^{(i)} - \hat{\alpha}_{j}^{(i-1)} \right)
= - \text{tr} \hat{A}_{i-1}^{-1} + \text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}'^{-2},
\]

(3.40) \[
\sum_{j=0}^{q} \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{g} L_{j}^{j} \hat{A}_{i-1}'^{-1} \left(\hat{\alpha}_{j}^{(i)} - \hat{\alpha}_{j}^{(i-1)} \right) = \text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}'^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1},
\]

\[g = 1, \ldots, q. \]

These reduce to

(3.41) \[
\left(\text{tr} \hat{A}_{i-1}^{-2} + \text{tr} \hat{A}_{i-1}^{-1} \hat{A}_{i-1}'^{-1} \right) \hat{\alpha}_0^{(i)} + \sum_{j=1}^{q} \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{j} \hat{A}_{i-1}' \hat{\alpha}_{j}^{(i)}
= \text{tr} \hat{A}_{i-1}^{-1} \hat{\alpha}_0^{(i-1)} + \text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}'^{-2},
\]

(3.42) \[
\sum_{j=0}^{q} \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{g} L_{j}^{j} \hat{A}_{i-1}'^{-1} \hat{\alpha}_{j}^{(i)} = \text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}'^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1},
\]

\[g = 1, \ldots, q. \]

These form a set of \(q + 1 \) linear equations in \(q + 1 \) unknowns.

If \(N = 1 \) and \(\gamma_1 = \gamma \), then \(\hat{C} = \gamma \gamma' \) and

(3.43) \[
\text{tr} \hat{A}_{i-1}^{-1} \hat{C} \hat{A}_{i-1}'^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1} = \gamma' \gamma \hat{A}_{i-1}^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1} \hat{A}_{i-1}'^{-1},
\]

\[g = 0, 1, \ldots, q. \]

The equations (3.37) and (3.38) are then

(3.44) \[
\sum_{j=0}^{q} \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1} L_{j}^{j} \hat{\alpha}_{j}^{(i)} = \frac{\hat{A}_{i-1}^{-1} \gamma \hat{A}_{i-1}'^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1} \hat{A}_{i-1}'^{-1} \gamma}{\hat{A}_{i-1}^{-1} \gamma}.
\]

\[- \text{tr} \hat{A}_{i-1}^{-1} L_{j}^{g} \hat{A}_{i-1}'^{-1}, \quad g = 1, \ldots, q. \]
\[(3.45) \quad \hat{\sigma}_i^2 = \frac{1}{T} \left(\hat{A}_{i-1}^{-1} \mathbf{y} \right)' \hat{A}_{i-1}^{-1} \mathbf{y} \]

The calculation of \(\hat{A}_{i-1}^{-1} \mathbf{y} \) can be done by solving

\[(3.46) \quad \sum_{\ell=0}^{q} \alpha_{\ell} \hat{\alpha}(i-1)_{\ell} \mathbf{1}^T \mathbf{z} = \mathbf{y}. \]

The matrix of coefficients has the form (2.38) (with \(\beta_{\ell} \) replaced by \(\hat{\alpha}(i-1)_{\ell}, \ell = 1, \ldots, q \)). The component equations are

\[(3.47) \quad z_t + \sum_{s=1}^{t-1} \alpha_{s} \hat{\alpha}(i-1)_{s} z_{t-s} = y_t, \quad t = 2, \ldots, q, \]

\[(3.48) \quad z_t + \sum_{s=1}^{q} \alpha_{s} \hat{\alpha}(i-1)_{s} z_{t-s} = y_t, \quad t = q+1, \ldots, T. \]

These can be solved successively for \(z_2, \ldots, z_T \). Each component \(z_t \) involves at most \(q \) multiplications and the entire solution less than \(qT \) multiplications.

The first column of \(\hat{A}_{i-1}^{-1} \mathbf{y} \) can be obtained by solving (3.46) with \(\mathbf{y} \) replaced by the first column of \(\mathbf{I} \). Thus \(z_1 = 1 \) and the successive calculations are

\[(3.49) \quad z_t = -\sum_{s=1}^{t-1} \alpha_{s} \hat{\alpha}(i-1)_{s} z_{t-s}, \quad t = 2, \ldots, q, \]

\[(3.50) \quad z_t = -\sum_{s=1}^{q} \alpha_{s} \hat{\alpha}(i-1)_{s} z_{t-s}, \quad t = q+1, \ldots, T. \]

The \((j+1)\)-th column of \(\hat{A}_{i-1}^{-1} \mathbf{y} \) is simply \(\mathbf{1} \hat{\alpha}(i-1) \) times the first column; that is, it is the first column displaced by \(j \) units for
Thus the calculation of \(\hat{\mathbf{A}}_{\mathbf{A}^{-1}} \mathbf{L}^q \) involves less than \(T_q \) multiplications.

Another way of looking at the calculation of \((\sum_{\lambda=0}^{q} \alpha_{\lambda} \mathbf{L}^{\lambda})^{-1} \), where we drop the caret and superscript on \(\hat{\alpha}_{\lambda}^{(i-1)} \) for convenience is to see that

\[
I = \sum_{\lambda=0}^{q} \alpha_{\lambda} \mathbf{L}^{\lambda} \sum_{j=0}^{T-1} \delta_j \mathbf{L}^{j+1}
\]

\[
= \sum_{\lambda=0}^{q} \sum_{j=0}^{T-1} \alpha_{\lambda} \delta_j \mathbf{L}^{\lambda+j+1}
\]

\[
= \sum_{i=0}^{T-1} \sum_{\lambda+j=i} \alpha_{\lambda} \delta_j \mathbf{L}^{i}
\]

because \(\mathbf{L}^{i} = 0 \) for \(i = T, T+1, \ldots \) if \(\delta_0 = 1 \),

\[
\alpha_0 \delta_0 = 1 ,
\]

\[
\sum_{\lambda=0}^{q} \alpha_{\lambda} \delta_{i-\lambda} = 0 , \quad i = 1, \ldots, q-1 ,
\]

\[
\sum_{\lambda=0}^{q} \alpha_{\lambda} \delta_{i-\lambda} = 0 , \quad i = q, q+1, \ldots .
\]

The coefficients \(\delta_0, \delta_1, \ldots \) satisfy the homogeneous linear difference equation (3.56) with boundary conditions (3.54) and (3.55). Therefore

\[
\delta_i = \sum_{\lambda=1}^{q} k_{\lambda} \delta_{i-\lambda} , \quad i = 0, 1, \ldots ,
\]
where \(z_1, \ldots, z_q \) are the roots of the associated polynomial equation

\[
\sum_{\ell=0}^{q} \alpha_\ell z^{i-\ell} = 0 ,
\]

and \(k_1, \ldots, k_q \) are determined so (3.57) satisfies the boundary conditions (3.54) and (3.55). [The form (3.58) is on the basis that the \(q \) roots are different.] Then the inverse is

\[
\left(\sum_{\ell=0}^{q} \alpha_\ell z^\ell \right)^{-1} \sum_{i=0}^{\infty} \delta_i L_i^i = \sum_{i=0}^{T-1} \delta_i L_i^i .
\]

It may be observed that (3.54), (3.55), and (3.56) are identical to (39) and (40) of Section 5.2 of T. W. Anderson (1971a) with \(\beta_j \) replaced by \(\alpha_j \) and \(p \) replaced by \(q \). Thus the coefficients \(\delta_0, \delta_1, \ldots \) correspond to the moving average representation of an autoregressive process with coefficients \(l, a_1, \ldots, a_q \).

Then

\[
\left(\sum_{\ell=0}^{q} \alpha_\ell L_i^\ell \right)^{-1} L_i^k = \sum_{i=0}^{T-1} \delta_i L_i^{i+k} = \sum_{i=0}^{T-1-k} \delta_i L_i^{i+k}
\]

because \(L_i^{i+k} = 0 \) if \(i+k > T \).

The coefficient of \(\alpha_k^{(1)} \) in the \(j \)-th equation of (3.44) has the form

\[
\text{tr} \left(\sum_{\ell=0}^{q} \alpha_\ell L_m^\ell \right)^{-1} L_m^{j-k} \left(\sum_{\ell=0}^{q} \alpha_\ell L_m^\ell \right)^{-1} L_m^{i+k} = \text{tr} \sum_{g=0}^{T-1-j} \sum_{i=0}^{T-1-k} \delta_g \delta_i L_m^{g+j} L_m^{i+k} , \quad j, k = 1, \ldots, q .
\]

A matrix \(L_m^{h} L_m^{\ell} \) has all elements 0 except along the diagonal \(h - \ell \) entries below the main diagonal, which consists of 1's and 0's. In particular, \(L_m^{h} L_m^{\ell} \) has only 0's on the main diagonal if \(h \neq \ell \), and \(L_m^{h} L_m^{h} \) has 1's on the main diagonal except for that first \(h \) entries being 0. Hence
(3.62) \[\text{tr} L^h L^k = 0, \quad h \neq k, \]

(3.63) \[\text{tr} L^h L^k = T - h, \quad h = 0, 1, \ldots, T - 1, \]

(3.64) \[\text{tr} L^h L^k = 0, \quad h = T, T+1, \ldots. \]

Thus (3.61) is

\[
(3.65) \quad \text{tr} \left(\sum_{\ell=0}^{q} \alpha_{\ell} L^\ell \right)^{-I} L^j L^k \left(\sum_{\ell=0}^{q} \alpha_{\ell} L^\ell \right)^{-I} = \frac{T - \max(j,k)}{\sum_{i=0}^{T-\max(j,k)} \delta_i + \delta_{|k-j|}}.
\]

Note that

\[
(3.66) \quad \sigma^2 \sum_{i=0}^{\infty} \delta_{i+|k-j|} \delta_i = \sigma_{AR}(k-j),
\]

where \(\sigma_{AR}(k-j) \) is the \((k-j)\)-th covariance of the autoregressive process corresponding to the coefficients \(l, \alpha_1, \ldots, \alpha_q \) and variance \(\sigma^2 \). Thus (3.65) is approximately \(T \sigma_{AR}(k-j)/\sigma^2 \), especially if the roots of (3.58) are small and thus the series (3.66) converges rapidly. In particular

\[
(3.67) \quad \lim_{T \to \infty} \frac{1}{T} \text{tr} \left(\sum_{\ell=0}^{q} \alpha_{\ell} L^\ell \right)^{-I} L^j L^k \left(\sum_{\ell=0}^{q} \alpha_{\ell} L^\ell \right)^{-I} = \frac{\sigma_{AR}(k-j)}{\sigma^2}.
\]

There are various ways of calculating \(\sigma_{AR}(h) \) given \(\alpha_1, \ldots, \alpha_q \) and \(\sigma^2 \) [See Section 5.2 of T. W. Anderson (1971a), for example.]

The equations (3.44) are approximately

\[
(3.68) \quad \sum_{i=1}^{q} \sigma_{AR}^{(i-1)}(k-j) \hat{\alpha}_{k}^{(i)} = \hat{d}_j, \quad j = 1, \ldots, q,
\]

where
(3.69) \[d_j = \frac{1}{T} \left[\sum_{k=0}^{q} \hat{d}(i-1) L^k \right]^{-1} \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right) \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right)^{-1} \]

\[- \frac{\hat{\sigma}^2_{i-1}}{T} \text{tr} \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right)^{-1} \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right)^{-1} \]

\[J = 1, \ldots, q. \]

The \(q \times q \) matrix whose elements are \(\hat{\alpha}_{AR}(k-j) \) are the covariances of an autoregressive process of order \(q \), whose coefficients are \(1, \hat{\alpha}(i-1), \ldots, \hat{\alpha}(i-1) \).

Then the solution to (3.68) is

\[\hat{\alpha}(i) = \sum_{j=1}^{q} f_{kj} d_j, \]

where \((f_{kj}) = [\hat{\sigma}_{AR}(k-j)]^{-1} \). The elements \(f_{kj} \) are the coefficients of the quadratic form of \(v_1, \ldots, v_q \) having a normal distribution with covariance matrix \([\hat{\sigma}_{AR}(i-1)(k-j)] \). The matrix is

\[
\begin{pmatrix}
1 & \hat{\alpha}(i-1) & \cdots \\
\hat{\alpha}(i-1) & 1 + \hat{\alpha}(i-1)^2 & \cdots \\
\hat{\alpha}(i) & \hat{\alpha}(i) + \hat{\alpha}(i-1)^2 \hat{\alpha}(i-1) & \cdots \\
\vdots & \vdots & \ddots \\
\hat{\alpha}(i) & \hat{\alpha}(i) & \cdots & 1
\end{pmatrix}
\]

(3.71) \[\hat{\sigma}^2_{i-1} \]

The matrix is persymmetric; that is, it is symmetric about the transverse diagonal. If \(q \) is odd the middle term is

\[(3.72) \hat{\sigma}^2_{i-1} \left[1 + \hat{\alpha}(i-1)^2 + \cdots + \hat{\alpha}(i-1)^2 \right], \]

The matrix is essentially derived in Section 6.2 of T. W. Anderson (1971).

It can further be shown that

\[(3.73) \lim_{T \to \infty} \frac{1}{T} \text{tr} \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right)^{-1} L^j L^k \left(\sum_{k=0}^{q} \hat{\alpha}(i-1) L^k \right)^{-1} = \int_{-\pi}^{\pi} \frac{\cos \lambda_j \cos \lambda_k}{f(x)} d\lambda. \]
4. Estimation of Coefficients of Linear Transformations When a Covariance Matrix Has Linear Structure; Autoregressive Processes with Moving Average Residuals.

Let

\[(4.1)\] \[\sum_{k=0}^{p} \beta_k K_k \gamma = u,\]

where \(\gamma \sim N(0, I)\) and

\[(4.2)\] \[\gamma'\gamma = \sum_{g=0}^{q} \sigma_g \gamma \gamma = \sum_{g=0}^{q} \sigma_g \gamma \gamma_g,

\(G_0, G_1, \ldots, G_q\) are \(q+1\) known linearly independent symmetric \(T \times T\) matrices and \(\sigma_0, \sigma_1, \ldots, \sigma_q\) are \(q+1\) parameters such that \(\sum_{g=0}^{q} \sigma_g G_g\) is positive definite. Then \(\gamma\) has mean vector \(\bar{\gamma} \gamma = 0\) and covariance matrix

\[(4.3)\] \[\gamma'\gamma = \left(\sum_{k=0}^{p} \beta_k K_k \right)^{-1} \left(\sum_{g=0}^{q} \sigma_g G_g \right) \left(\sum_{k=0}^{p} \beta_k K_k \right)^{-1},\]

with inverse

\[(4.4)\] \[\gamma^{-1} \gamma = \sum_{k=0}^{p} \beta_k K_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} \sum_{k=0}^{p} \beta_k K_k\]

\[= \sum_{k, \ell=0}^{p} \beta_k \beta_\ell K_k K_\ell \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} K_k K_\ell.

We assume \(\beta_0 = 1\).

If \(\gamma\) is normally distributed, then \(2/N\) times the logarithm of the likelihood is

\[(4.5)\] \[\frac{2}{N} \log L = - T \log 2\pi + 2 \log \left| \sum_{k=0}^{p} \beta_k K_k \right| - \log \left| \sum_{g=0}^{q} \sigma_g G_g \right|

\[\quad - \text{tr} \sum_{k, \ell=0}^{p} \beta_k \beta_\ell K_k K_\ell \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} \beta_k K_\ell C.

The partial derivatives are
(4.6) \[\frac{3}{2} \frac{\partial}{\partial \sigma_f} \frac{2}{N} \log L = - \text{tr} \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \]
\[+ \text{tr} \sum_{k=0}^{p} \beta_k K_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} \sum_{\ell=0}^{p} \beta_{\ell} K_{\ell} C, \]
\[f = 0, 1, \ldots, q, \]

(4.7) \[\frac{3}{2} \frac{\partial}{\partial \beta_{\ell}} \frac{2}{N} \log L = 2 \text{tr} \left(\sum_{k=0}^{p} \beta_k K_k \right)^{-1} K_{\ell} \]
\[- 2 \text{tr} \sum_{k=0}^{p} \beta_k K_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} K_{\ell}, \]
\[\ell = 1, \ldots, p. \]

In case \(K_k = \frac{L}{N} \), \(k = 0, 1, \ldots, p, N = 1 \), and \(y^{(k)} = \frac{L}{N} y \), the derivative equations are

(4.8) \[\text{tr} \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f = \frac{1}{k \neq 0} \beta_k \beta_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} y^{(k)}, \]
\[f = 0, 1, \ldots, q, \]

(4.9) \[\sum_{k=1}^{p} y^{(k)}, \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} y^{(k)} \right)_N = \frac{1}{k \neq 0} \beta_k y^{(k)}, \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} y^{(k)}, \]
\[\ell = 1, \ldots, p. \]

The second partial derivatives of \((2/N) \log L \) are

(4.10) \[\frac{\partial^2}{\partial \sigma_f \partial \sigma_h} \frac{2}{N} \log L = \text{tr} \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_h \]
\[- 2 \text{tr} \sum_{k=0}^{p} \beta_k K_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_h \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} \sum_{\ell=0}^{p} \beta_{\ell} K_{\ell} C, \]
\[f, h = 0, 1, \ldots, q, \]

(4.11) \[\frac{\partial^2}{\partial \sigma_f \partial \beta_{\ell}} \frac{2}{N} \log L = 2 \text{tr} \sum_{k=0}^{p} \beta_k K_k \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} G_f \left(\sum_{g=0}^{q} \sigma_g G_g \right)^{-1} \sum_{\ell=0}^{p} \beta_{\ell} K_{\ell} C, \]
\[f = 0, 1, \ldots, q, \] \(\ell = 1, \ldots, p, \)
\(\frac{\partial^2}{\partial \beta_\ell \partial \beta_{\ell'}} \frac{2}{N} \log L = -2 \text{tr} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} \left(\sum_{k=0}^{p} \beta_\ell' K_k \right)^{-1} K_{\ell'} \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} K_{\ell}, \)

\(-2 \text{tr} \sigma_{g} K_{\ell}, \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} K_{\ell}, \)

\(\ell, \ell' = 1, \ldots, p. \)

The information matrix has elements that are \(N \) times

\(-\frac{\partial}{\partial \sigma_f} \frac{\partial^2}{\partial \beta_\ell \partial \beta_{\ell'}} \frac{1}{N} \log L = \frac{1}{2} \text{tr} \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} G_{f} \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} G_{h}, \)

\(f, h = 0, 1, \ldots, q, \)

\(-\frac{\partial}{\partial \sigma_f} \frac{\partial^2}{\partial \beta_\ell \partial \beta_{\ell'}} \frac{1}{N} \log L = -\text{tr} G_{f} \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} K_{\ell} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} K_{\ell'}, \)

\(f = 0, 1, \ldots, q \quad \ell = 1, \ldots, p, \)

\(-\frac{\partial^2}{\partial \beta_\ell \partial \beta_{\ell'}} \frac{1}{N} \log L = \text{tr} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} K_{\ell} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} K_{\ell}, \)

\(+ \text{tr} \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right) \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} G_{f} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} K_{\ell'}, \left(\sum_{g=0}^{q} \sigma_{g} G_{g} \right)^{-1} K_{\ell}, \)

\(\ell, \ell' = 1, \ldots, p. \)

Let

\(\hat{B}_{\ell-1} = \sum_{k=0}^{p} \hat{\beta}_{\ell} K_{k}. \)

The method of scoring leads to the following iterative procedure:

\(\frac{q}{h=0} \text{tr} \left(\hat{\Sigma}_{\ell-1} \right)^{-1} G_{f} \left(\hat{\Sigma}_{\ell-1} \right)^{-1} G_{h} \left(\sigma_{h}^{(i)} - \hat{\sigma}_{h}^{(i-1)} \right) \)

\(-2 \text{tr} \left(\sum_{k=0}^{p} \beta_\ell K_k \right)^{-1} K_{\ell} \hat{B}_{\ell-1} \left(\hat{\beta}_{\ell}^{(i)} - \hat{\beta}_{\ell}^{(i-1)} \right) \)

\(= -\text{tr} \left(\hat{\Sigma}_{\ell-1} \right)^{-1} G_{f} + \text{tr} \hat{B}_{\ell-1} \left(\hat{\Sigma}_{\ell-1} \right)^{-1} G_{f} \left(\hat{\beta}_{\ell} \right)^{-1} \hat{B}_{\ell-1} C, \)

\(f = 0, 1, \ldots, q, \)
\[(4.18) \]
\[-2 \sum_{h=0}^{q} \text{tr} G_h \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j \hat{\Sigma}_{i-1} \left(\hat{\sigma}_h^{(i)} - \hat{\sigma}_{h}^{(i-1)} \right) \]
\[+ 2 \sum_{k=1}^{p} \left[\text{tr} \hat{B}_{i-1}^{-1} K_j \hat{B}_{i-1}^{-1} K_k + \text{tr} \hat{B}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \hat{B}_{i-1}^{-1} K_k \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j \right] (\hat{\beta}_k^{(i)} - \hat{\beta}_k^{(i-1)}) \]
\[= 2 \text{tr} \hat{B}_{i-1}^{-1} K_j - 2 \text{tr} C \hat{\Sigma}_{i-1}^u \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j, \quad j = 1, \ldots, p. \]

These equations are equivalent to

\[(4.19) \]
\[\sum_{h=0}^{q} \text{tr} \left(\hat{\Sigma}_{i-1}^u \right)^{-1} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} G_h \hat{\sigma}_h^{(i)} - 2 \sum_{k=1}^{p} \text{tr} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_k \hat{B}_{i-1}^{-1} \hat{\beta}_k^{(i)} \]
\[= -2 \text{tr} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} \hat{\beta}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \left(\hat{\Sigma}_{i-1}^u \right)^{-1} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} \hat{\beta}_{i-1}^{-1} C \]
\[+ 2 \text{tr} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_0 \hat{B}_{i-1}^{-1} \hat{\beta}_{i-1}^{-1}, \quad f = 0, 1, \ldots, q, \]

\[(4.20) \]
\[-2 \sum_{h=0}^{q} \text{tr} G_h \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j \hat{\Sigma}_{i-1} \hat{\sigma}_h^{(i)} \]
\[+ 2 \sum_{k=1}^{p} \left[\text{tr} \hat{B}_{i-1}^{-1} K_j \hat{B}_{i-1}^{-1} K_k + \text{tr} \hat{B}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \hat{B}_{i-1}^{-1} K_k \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j \right] \hat{\beta}_k^{(i)} \]
\[= 4 \text{tr} \hat{\beta}_{i-1}^{-1} K_j - 2 \text{tr} C \hat{\Sigma}_{i-1}^u \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j - 2 \text{tr} \hat{B}_{i-1}^{-1} K_j \hat{B}_{i-1}^{-1} K_0 \]
\[- 2 \text{tr} \hat{\beta}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \hat{B}_{i-1}^{-1} K_0 \left(\hat{\Sigma}_{i-1}^u \right)^{-1} K_j, \quad j = 1, \ldots, p. \]

If \(K_j = L_j^i \), then \(\text{tr} \hat{B}_{i-1}^{-1} K_j = \text{tr} \hat{B}_{i-1}^{-1} L_j^i = 0 \). Then \((4.20) \) is

\[(4.21) \]
\[-2 \sum_{h=0}^{q} \text{tr} G_h \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L_j^i \hat{\sigma}_h^{(i)} \]
\[+ 2 \sum_{k=1}^{p} \left[\text{tr} \hat{B}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \hat{B}_{i-1}^{-1} L_j^i \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L_j^i \hat{\beta}_k^{(i)} \right] \]
\[= -2 \text{tr} C \hat{\Sigma}_{i-1}^u \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L_j^i - 2 \text{tr} \hat{B}_{i-1}^{-1} \hat{\Sigma}_{i-1}^u \hat{B}_{i-1}^{-1} \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L_j^i, \quad j = 1, \ldots, p, \]
The matrix of coefficients of $\hat{a}_0(i) \hat{a}_1(i) \ldots \hat{a}_q(i) \hat{b}_1(i) \ldots \hat{b}_p(i)$ is

$$
\begin{pmatrix}
\text{tr} \left(\hat{\Sigma}_{i-1}^u \right)^{-1} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} \hat{a}_h & -2 \text{tr} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L^j \hat{b}_{i-1} \\
-2 \text{tr} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L^j \hat{b}_{i-1} & 2 \text{tr} \hat{a}_u \hat{b}_{i-1} L^j \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L^j \\
\end{pmatrix}
$$

(4.22)

If $\hat{C} = \hat{y}_i \hat{y}_i'$, the right-hand side of (4.21) is

$$
-2 \left(\hat{b}_{i-1} \hat{y}_i \right) \left(\hat{\Sigma}_{i-1}^u \right)^{-1} L^j \hat{y}_i ,
$$

(4.23)

and the quadratic form on the right-hand side of (4.19) is

$$
\left(\hat{b}_{i-1} \hat{y}_i \right) \left(\hat{\Sigma}_{i-1}^u \right)^{-1} G_f \left(\hat{\Sigma}_{i-1}^u \right)^{-1} \hat{b}_{i-1} \hat{y}_i .
$$

(4.24)

When $\hat{\Sigma}_u$ is to represent the covariance matrix of a moving average process, $G_f = \hat{I}$,

$$
G_g = \hat{L}^g + \hat{L}'^g , \quad g = 1, \ldots, q ,
$$

(4.25)

and

$$
\sigma_g = \sigma \sum_{j=1}^{q-g} a_j \alpha_j + g , \quad g = 1, \ldots, q .
$$

(4.26)

Since $\hat{L}^g L^h$ is \hat{L}^{g-h}, $h \leq g$, except for at most h 1's being replaced by 0's, $\hat{\Sigma}_{i-1}^u$ and $\hat{b}_{i-1} L^j$ almost commute and the lower right-hand corner of (4.22) is approximately

$$
2 \text{tr} \hat{b}_{i-1} L^j \hat{b}_{i-1} L^j \hat{b}_{i-1} .
$$

(4.27)
5. Estimation of Coefficients of Linear Transformation; Autoregressive Processes with Moving Average Residuals

Here we combine Sections 2 and 3. Let

\[(5.1) \quad \sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \mathbf{y} = \sum_{k=0}^{Q} \alpha_{k} J_{k} \mathbf{y},\]

where \(K_{0}, K_{1}, \ldots, K_{P} \) are \(p + 1 \) known linearly independent \(T \times T \) matrices, \(J_{0}, J_{1}, \ldots, J_{Q} \) are \(q + 1 \) known linearly independent matrices, \(\beta_{0} = \alpha_{0} = 1, \beta_{1}, \ldots, \beta_{P}, \alpha_{1}, \ldots, \alpha_{Q} \) are \(p + q \) parameters, and \(\mathbf{y} \) is a \(T \)-component random vector with mean vector \(\mathbf{0} \) and covariance matrix \(\mathcal{C}(\mathbf{y}) = \sigma^{2} I \). Then

\[(5.2) \quad \mathbf{y} = \left(\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right)^{-1} \sum_{k=0}^{Q} \alpha_{k} J_{k} \mathbf{y},\]

has mean vector \(\mathbf{0} \) and covariance matrix

\[(5.3) \quad \mathcal{C}(\mathbf{y}) = \sigma^{2} \left(\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right)^{-1} \sum_{k=0}^{Q} \alpha_{k} J_{k} \left(\sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right)^{-1} = \sigma^{2} \mathbf{B}^{-1} \mathbf{A} \mathbf{A}' \mathbf{B}^{-1},\]

where \(\mathbf{A} = \sum_{k=0}^{Q} \alpha_{k} J_{k} \) and \(\mathbf{B} = \sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \).

If \(y_{1}, \ldots, y_{N} \) are \(N \) observations on \(\mathbf{y} \) with a normal distribution, \(2/N \) times the logarithm of the likelihood function \(L \) is

\[(5.4) \quad \frac{2}{N} \log L = -T \log 2\pi - T \log \sigma^{2} + 2 \log \left| \sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \right| - 2 \log \left| \sum_{k=0}^{Q} \alpha_{k} J_{k} \right| - \text{tr} \left[\frac{1}{\sigma^{2}} \sum_{\ell=0}^{P} \beta_{\ell} K_{\ell} \left(\sum_{k=0}^{Q} \alpha_{k} J_{k} \right)^{-1} \left(\sum_{k=0}^{Q} \alpha_{k} J_{k} \right)^{-1} \right].\]

The partial derivatives are
\[
(5.5) \quad \frac{3}{\partial \alpha_g} \frac{2}{N} \log L = - 2 \text{tr} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} J_{g,g} \\
+ \frac{2}{\sigma^2} \text{tr} \sum_{\ell, \ell'} \beta_{\ell, \ell'} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} K_{\ell, \ell} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} J_{\ell, \ell} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} J'_{\ell, \ell} \\
= - 2 \text{tr} A^{-1} J_{g,g} + \frac{2}{\sigma^2} \text{tr} A^{-1} B C B' A'^{-1} J'_{A,A'}^{-1} , \quad g = 1, \ldots , q ,
\]

\[
(5.6) \quad \frac{3}{\partial \beta_h} \frac{2}{N} \log L = 2 \text{tr} \left(\sum_{\ell=0}^{p} \beta_{\ell} K_{\ell} \right)^{-1} K_{h,h} \\
- \frac{2}{\sigma^2} \text{tr} \sum_{\ell=0}^{p} \beta_{\ell} K_{\ell} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} K_{h,h} C \\
= 2 \text{tr} B^{-1} K_{h,h} - \frac{2}{\sigma^2} \text{tr} B' A'^{-1} A^{-1} K_{h,h} C , \quad h = 1, \ldots , p ,
\]

\[
(5.7) \quad \frac{3}{\partial \sigma^2} \frac{2}{N} \log L = - \frac{T}{\sigma^2} + \frac{1}{\sigma^4} \text{tr} \sum_{\ell, \ell'} \beta_{\ell, \ell'} \beta_{\ell', \ell} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} \left(\sum_{k=0}^{q} \alpha_k \mathcal{J}_{k,k} \right)^{-1} K_{\ell, \ell'} C \\
= - \frac{T}{\sigma^2} + \frac{1}{\sigma^4} \text{tr} A^{-1} B C B' A'^{-1} ,
\]

The maximum likelihood estimates are defined by setting the derivatives equal to 0.

The second partial derivatives of \((2/N) \log L\) are

\[
(5.8) \quad \frac{3^2}{\partial \alpha_g \partial \alpha_f} \frac{2}{N} \log L = 2 \text{tr} A^{-1} J_{g,g} A'^{-1} J_{f,f} - \frac{2}{\sigma^2} \text{tr} A^{-1} J_{f,f} A'^{-1} B C B' A'^{-1} J'_{A,A'}^{-1} J_{g,g} A'^{-1} \\
- \frac{2}{\sigma^2} \text{tr} A^{-1} B C B' A'^{-1} J'_{A,A'}^{-1} J_{g,g} A'^{-1} \\
- \frac{2}{\sigma^2} \text{tr} A^{-1} B C B' A'^{-1} J'_{A,A'}^{-1} J'_{A,A'}^{-1} , \quad g, f = 1, \ldots , q ,
\]
\[
\frac{\partial^2}{\partial \alpha_g \partial \beta_h} \frac{2}{N} \log L = \frac{2}{\sigma^2} \text{tr} A^{-1} K_h C B' A'^{-1} J' A'^{-1} \\
+ \frac{2}{\sigma^2} \text{tr} A^{-1} J' A'^{-1} K_h C B' A'^{-1}, \\
g = 1, \ldots, q, h = 1, \ldots, p,
\]
\[
\frac{\partial^2}{\partial \beta_h \partial \beta_j} \frac{2}{N} \log L = -2 \text{tr} B^{-1} K_d B'^{-1} K_h - \frac{2}{\sigma^2} \text{tr} K_d A'^{-1} A^{-1} K_h C, \\
h, j = 1, \ldots, p,
\]
\[
\frac{\partial^2}{\partial \alpha_g \partial \sigma^2} \frac{2}{N} \log L = -\frac{2}{\sigma^4} \text{tr} A^{-1} B C B' A'^{-1} J' A'^{-1}, g = 1, \ldots, q,
\]
\[
\frac{\partial^2}{\partial \beta_h \partial \sigma^2} \frac{2}{N} \log L = \frac{2}{\sigma^4} \text{tr} A^{-1} K_h C B' A'^{-1}, h = 1, \ldots, p,
\]
\[
\frac{\partial^2}{\partial (\sigma^2)^2} \frac{2}{N} \log L = \frac{T}{\sigma^4} - \frac{2}{\sigma^6} \text{tr} A^{-1} B C B' A'^{-1}.
\]

The elements of the information matrix are \(N \) times
\[
\frac{\partial^2}{\partial \alpha_g \partial \alpha_f} \frac{1}{N} \log L = \text{tr} A^{-1} J' A'^{-1} J_f + \text{tr} A^{-1} J' A'^{-1}, \\
g, f = 1, \ldots, q,
\]
\[
\frac{\partial^2}{\partial \alpha_g \partial \beta_h} \frac{1}{N} \log L = -\text{tr} J' A'^{-1} A^{-1} K_h B' A - \text{tr} J' A'^{-1} K_h B^{-1}, \\
g = 1, \ldots, q, h = 1, \ldots, p,
\]
\[
\frac{\partial^2}{\partial \beta_h \partial \beta_j} \frac{1}{N} \log L = \text{tr} B^{-1} K_d B'^{-1} K_h + \text{tr} K_d A'^{-1} A^{-1} K_h B' A', h, j = 1, \ldots, p,
\]
\[\frac{\partial^2}{\partial \sigma g \partial \sigma^2} \frac{1}{N} \log L = \frac{1}{\sigma^2} \text{tr} J\sigma^2 \sim g^{-1}, \quad g = 1, \ldots, q,\]

\[\frac{\partial^2}{\partial \beta_h \partial \sigma^2} \frac{1}{N} \log L = -\frac{1}{\sigma^2} \text{tr} K_h B^{-1}, \quad h = 1, \ldots, p,\]

\[\frac{\partial^2}{\partial \sigma^2 \partial \sigma^2} \frac{1}{N} \log L = \frac{T^4}{2\sigma^4}.\]

The method of scoring can be developed from these results.

If \(J \sim g = K \sim g = L \sim g\), then the elements of the information matrix are \(N\) times

\[\frac{\partial^2}{\partial \sigma g \partial \sigma f} \frac{1}{N} \log L = \text{tr} A^{-1} L \sim g L' f A^{-1}, \quad g, f = 1, \ldots, q,\]

\[\frac{\partial^2}{\partial \sigma g \partial \beta_h} \frac{1}{N} \log L = -\text{tr} A^{-1} L \sim h B^{-1} A L \sim g A^{-1},\]

\[g = 1, \ldots, q, h = 1, \ldots, p,\]

\[\frac{\partial^2}{\partial \beta_h \partial \beta_j} \frac{1}{N} \log L = \text{tr} A^{-1} L \sim h B^{-1} A A' B^{-1} L' J A^{-1},\]

\[h, j = 1, \ldots, p,\]

\[\frac{\partial^2}{\partial \sigma g \partial \sigma^2} \frac{1}{N} \log L = 0, \quad g = 1, \ldots, q,\]

\[\frac{\partial^2}{\partial \beta_h \partial \sigma^2} \frac{1}{N} \log L = 0, \quad h = 1, \ldots, p.\]

Note that \(L \sim g, g = 0, 1, \ldots, A, B, A^{-1}, B^{-1}\) are polynomials in \(L\) and hence commute. Thus (5.21) and (5.22) are
(5.25) \(- \frac{\partial^2}{\partial \alpha_g \partial \beta_h} \frac{1}{N} \log L = - \text{tr} \, \hat{L}^h \hat{B}^{-1} \hat{L}' \hat{g} \hat{A}'^{-1}, \)
\[g = 1, \ldots, q, \quad h = 1, \ldots, p, \]

(5.26) \(- \frac{\partial^2}{\partial \beta_h \partial \beta_j} \frac{1}{N} \log L = \text{tr} \, \hat{B}^{-1} \hat{L}^h \hat{L}' \hat{B}^{-1}, \quad h, j = 1, \ldots, p. \)

When \(\hat{g} = k_g = I_g \), then the method of scoring involves the solution of

(5.27) \(\frac{\partial}{\partial LSTM} \text{tr} \, \hat{A}_i^{-1} \hat{L}_i \hat{g} A'_i^{-1} \hat{\alpha}_i \)
\[f=1 \]
\[- \sum_{h=1}^p \text{tr} \, \hat{B}_i \hat{B}_i \hat{g} \hat{A}_i^{-1} \hat{L}_i \hat{L}' \hat{h} \hat{B}_i \hat{B}_i \hat{g} \hat{A}_i^{-1} \hat{\beta}_i \]
\[= \frac{1}{\hat{\sigma}^2} \text{tr} \, \hat{A}_i^{-1} \hat{B}_i \hat{B}_i \hat{A}_i^{-1} \hat{L}_i \hat{g} \hat{A}_i^{-1} \hat{L}_i \hat{g} \hat{A}_i^{-1} \hat{\alpha}_i \]
\[+ \text{tr} \, \hat{A}_i^{-1} \hat{B}_i \hat{B}_i \hat{A}_i^{-1} \hat{L}_i \hat{g} \hat{A}_i^{-1} \hat{\beta}_i \]
\[g = 1, \ldots, q, \]

(5.28) \(\frac{\partial}{\partial LSTM} \text{tr} \, \hat{L}_i \hat{B}_i^{-1} \hat{L}_i \hat{f} \hat{A}'_i^{-1} \hat{\alpha}_i \)
\[f=1 \]
\[+ \sum_{h=1}^p \text{tr} \, \hat{B}_i \hat{B}_i \hat{L}_i \hat{L}' \hat{h} \hat{B}_i \hat{B}_i \hat{\alpha}_i \]
\[= - \frac{1}{\hat{\sigma}^2} \text{tr} \, \hat{A}_i^{-1} \hat{L}_i \hat{L}_i \hat{L}_i \hat{g} \hat{A}_i^{-1} \hat{\alpha}_i \]
\[+ \text{tr} \, \hat{A}_i^{-1} \hat{L}_i \hat{L}_i \hat{g} \hat{A}_i^{-1} \hat{\beta}_i \]
\[J = 1, \ldots, p, \]

(5.29) \(\hat{\sigma}^2 = \frac{1}{N} \text{tr} \, \hat{A}_i^{-1} \hat{B}_i \hat{B}_i \hat{A}_i^{-1} \hat{A}_i^{-1} \).

If \(N = 1, \theta_1 = \theta, \) and \(\zeta = \theta \theta' \), the right-hand sides of (5.27), (5.28),
and (5.29) are, respectively,
(5.30) \(\frac{1}{\sigma^2} \begin{bmatrix} \hat{A}_{i-1}^{-1} & \hat{B}_{i-1}^{-1} \end{bmatrix} \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} y \end{bmatrix}' \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} \end{bmatrix} + \text{tr} \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} \end{bmatrix} \begin{bmatrix} \hat{B}_{i-1}^{-1} - \hat{A}_{i-1}^{-1} \end{bmatrix}, \)

\(g = 1, \ldots, q, \)

(5.31) \(-\frac{1}{\sigma^2} \begin{bmatrix} \hat{A}_{i-1}^{-1} & \hat{B}_{i-1}^{-1} \end{bmatrix} \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} y \end{bmatrix}' \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} \end{bmatrix} + \text{tr} \begin{bmatrix} \hat{A}_{i-1}^{-1} - \hat{B}_{i-1}^{-1} \end{bmatrix} \begin{bmatrix} \hat{B}_{i-1}^{-1} \end{bmatrix}, \)

\(j = 1, \ldots, p, \)

(5.32) \(\frac{1}{T} \begin{bmatrix} \hat{A}_{i-1}^{-1} & \hat{B}_{i-1}^{-1} \end{bmatrix} \begin{bmatrix} \hat{A}_{i-1}^{-1} \hat{B}_{i-1}^{-1} y \end{bmatrix}'. \)
6. Asymptotic Theory

The exact distributions of the maximum likelihood estimates developed in this paper cannot be obtained in closed form in general. However, asymptotic distributions can be found. If \(N \to \infty \) we have the case of repeated observations on the random vector \(y \); in the case of time series, however, \(N \) may be \(1 \) and \(T \to \infty \). In either case when consistent estimates of the parameters are used as initial estimates, the estimates obtained in the first step of the iteration procedure are consistent, asymptotically normal, and asymptotically efficient (when normalized by \(\sqrt{N} \) or \(\sqrt{T} \), as the case may be).

In the model of Section 2.1 no iteration is involved and the asymptotic properties are the usual ones as the number of observations \(N \) increases. The model of Section 2.2 is the autoregressive model with the first \(p \) observations treated as fixed \((y_{-p+1} = \ldots = y_0 = 0) \); the asymptotic theory as \(T \to \infty \) is well known. [See T. W. Anderson (1971), Section 5.5, for example.]

For each of the models in the other sections [as well as the model \(\tilde{\Sigma} = \sum_{g=0}^{q} \sigma G^g \tilde{\xi} \) treated in T. W. Anderson (1971b), (1973)] an iterative procedure was proposed. If the initial estimates are consistent, the matrix of coefficients of the linear equations is a consistent estimate of the information matrix of one observation. The asymptotic distribution of the right-hand sides is normal with covariance matrix equal to this matrix. It then follows that the estimates have the stated properties. We shall carry out the details of the proof only for the model of Section 3.2, which shows the pattern.

Let \(\bar{y} = (y_1, \ldots, y_T) \) be defined by

\[
(6.1) \quad \bar{y} = \sum_{k=0}^{g} \alpha_k \bar{z}^k = A \bar{z}.
\]
We shall let $T \to \infty$. We assume that the roots of (3.58) are less than 1 in absolute value. Then (3.44) and (3.45) for $i = 1$ are

\[
(6.2) \quad \sum_{j=1}^{q} \text{tr} \hat{\Lambda}_0^{-1} L^j \hat{\Lambda}_0^{-1} \hat{\alpha}_j^{(1)} = \frac{1}{\sigma_0^2} y' \hat{\Lambda}_0^{-1} \hat{\Lambda}_0^{-1} y - \text{tr} \hat{\Lambda}_0^{-1} L^g \hat{\Lambda}_0^{-1},
\]

\[
g = 1, \ldots, q,
\]

\[
(6.3) \quad \hat{\sigma}_1^2 = \frac{1}{T} y' \hat{\Lambda}_0^{-1} \hat{\Lambda}_0^{-1} y.
\]

We shall show that

\[
(6.4) \quad \lim_{T \to \infty} \frac{1}{T} \text{tr} \hat{\Lambda}_0^{-1} L^j \hat{\Lambda}_0^{-1} \hat{\alpha}_0^{(1)} = \lim_{T \to \infty} \frac{1}{T} \text{tr} \hat{\Lambda}_0^{-1} L^g \hat{\Lambda}_0^{-1} \hat{\alpha}_0^{(1)}.
\]

The right-hand side is given by (3.67). The left-hand side is

\[
(6.5) \quad T^{-1} \max_{i=0} \left[1 - \frac{i + \max(g,i)}{T} \right] \hat{\alpha}_i^0 \hat{\sigma}_i^0,
\]

where $\hat{\alpha}_0^0 = 1, \hat{\alpha}_i^0, i = 1, \ldots, q$, constitute the solutions to (3.55) and (3.56) with $\hat{\alpha}_L^0$ replaced by $\hat{\alpha}_L^0, L = 1, \ldots, q$. With arbitrarily high probability $\hat{\alpha}_0^0, \ldots, \hat{\alpha}_q^0$ are such that the roots of the polynomial equation with these coefficients are less than 1 in absolute value, in fact, are less than $\rho < 1$ for some ρ [greater than the largest root of (3.58)]. Then (6.5) converges in probability to

\[
(6.6) \quad \sum_{i=0}^{\infty} \sigma_i^0 |i-g|^i \delta_i^0 = \frac{\sigma_{{\text{AR}}}(g-j)}{\sigma_0^2}.
\]

We can write (6.2) as
(6.7) \[\frac{1}{T} \sum_{j=1}^{q} \frac{1}{\sqrt{T}} \text{tr} \hat{A}_0^{-1} \tilde{L}\hat{A}_0^{-1} \tilde{L}^j \hat{A}_0^{-1} \sqrt{T} \left(\hat{\alpha}_j - \alpha_j \right) \]

\[= \frac{1}{\sqrt{T}} \sum_{j=1}^{q} \frac{1}{\sqrt{T}} \text{tr} \hat{A}_0^{-1} \tilde{L}\hat{A}_0^{-1} \tilde{L}^j \hat{A}_0^{-1} \sqrt{T} \left(\hat{\alpha}_j - \alpha_j \right) \]

\[g = 1, \ldots, q. \]

We want to show that the right-hand sides have a limiting normal distribution with means 0 and covariance matrix (6.4).

Consider

(6.8) \[\frac{1}{\sqrt{T}} \sum_{i=0}^{\infty} \delta_i \frac{1}{\sqrt{T}} \sum_{j=0}^{\infty} \delta_j \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nu_t \nu_{t+j} \nu_{t+i} \nu_{t+i+j} \]

For any \(n \) the set \((1/\sqrt{T}) \sum_{t=1}^{T} \nu_t \nu_{t+1} \nu_{t+n} \) have a limiting normal distribution [Theorem 7.7.6 of T. W. Anderson (1971a), for example] with means 0 and covariances

(6.9) \[\frac{1}{T} \sum_{t,s=1}^{T} \nu_t \nu_{t+j} \nu_s \nu_{s+h} = \frac{1}{T} \sum_{t=1}^{T} \nu_t^2 \nu_{t+j} \nu_{t+h} \]

\[= \sigma^4, \quad J = h = 1, \ldots, \]

\[= 0, \quad J \neq h. \]

Then the set

(6.10) \[\sum_{i=0}^{n-1} \delta_i \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nu_t \nu_{t+i+g}, \quad g = 1, \ldots, q, \]

has a limiting normal distribution with means 0 and covariances
\[(6.11) \quad \frac{1}{\sigma^4} \sum_{i,j=0}^{n-q} \delta_i \delta_j \frac{1}{T} \mathcal{E} \sum_{t,s=1}^{T} v_t v_{t+i} v_s v_{s+j} \]

\[= \sum_{i=0}^{n-q-|g-h|} \delta_i \delta_i+|g-h|, \]

which has the limit as \(n \to \infty \) of (6.6). That the limiting distribution of (6.8) is the limit as \(n \to \infty \) of the limiting distribution of (6.10) is justifed by Corollary 7.7.1 of T. W. Anderson (1971a), for example. Note that

\[(6.12) \quad \mathcal{E} \left[\frac{T-g-1}{2} \sum_{i=n-q+1}^{T-i} \frac{1}{\sqrt{T-2}} \sum_{t=1}^{T-(i+g)} v_t v_{t+i+g} \right] \leq \sum_{i=n-q+1}^{T-g-1} \delta_i^2 \leq \sum_{i=n-q+1}^{\infty} \delta_i^2. \]

Now consider the difference of (6.8) and (6.7), which is

\[(6.13) \quad \frac{1}{\sqrt{T}} \left[\frac{1}{\sigma^2} v' A^{-1} L^g v - \frac{1}{\sigma_0^2} v' A' A_0^{-1} L^g A_0^{-1} A v + \text{tr} \ A_0^{-1} L^g A' A_0^{-1} \right] \]

We write

\[(6.14) \quad A_0^{-1} = A^{-1} - \hat{A}_0^{-1} (\hat{A}_0 - A) A^{-1}. \]

Then (6.13) is
\[
(6.15) \quad \frac{1}{\sqrt{T}} \left\{ \frac{1}{\sigma^2} y' A^{-1} L^G y - \frac{1}{\sigma^2_0} y' A^{-1}_0 L^G_0 y - \operatorname{tr} \left(A^{-1}_0 - A^{-1} \right) L^G_0 y' \left(A^{-1}_0 - A^{-1} \right)^* L^G_0 y \right\}
\]

\[
+ \frac{1}{\sigma_0^2} y' A^{-1}_0 \left(A_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} L^G_0 y + \frac{1}{\sigma_0^2} y' A^{-1} \left(A_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} L^G_0 y - \operatorname{tr} A^{-1} L^G \left(\hat{A}_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1}
\]

\[
- \frac{1}{\sigma_0^2} y' \left(A_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1} y - \frac{1}{\sigma_0^2} y' \left(A_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1} y
\]

\[
- \frac{1}{\sigma_0^2} y' \left(A_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} y + \frac{1}{\sigma_0^2} y' \left(A_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1} \left(\hat{A}_0 - A \right)^{-1} y
\]

\[
+ \operatorname{tr} \left(\hat{A}_0 - A \right)^{-1} L^G \left(\hat{A}_0 - A \right)^{-1}
\}
\]

The first term on the right-hand side of (6.15) has probability limit 0 because (6.8) has a limiting normal distribution and \(\lim_{T \to \infty} \sigma_0^2 = \sigma^2 > 0 \). Each of the third and fourth terms are

\[
(6.16) \quad \frac{1}{\sqrt{T}} \frac{1}{\sigma_0^2} y' A^{-1}_0 L^G \left(\hat{A}_0 - A \right)^{-1} y = \frac{1}{\sqrt{T}} \sum_{k=1}^{q} \left(\alpha_k - \bar{\alpha}_k \right) \sum_{i,j=0}^{\infty} \delta^0_{i,j} \frac{1}{\sqrt{T}} y' L^{g+1+j+k} y
\]

Let

\[
(6.17) \quad W_{hT} = \sum_{j=0}^{\infty} \delta_{j} \frac{1}{\sqrt{T}} y' L^{h+j} y
\]

Then

\[
(6.18) \quad \frac{\delta W_{hT}}{\delta_{hT}} < \sigma^2 \sum_{j=0}^{\infty} \delta^2_{j}
\]

We can write
\[
(6.19) \quad \sum_{i,j=0}^{\infty} \delta_i^0 \delta_j \frac{1}{\sqrt{T}} y' y^{G^{h+i+j}} y = \sum_{i=0}^{\infty} \delta_i^0 W_i y^{G+k+i}, T.
\]

With arbitrarily high probability \(|\delta_i^0| < \rho_1^i \) for some \(\rho_0 \) such that \(0 < \rho_0 < \rho_1 < 1 \). Then the square of (6.19) is less than
\[
(6.20) \quad \sum_{i=0}^{\infty} \left(\frac{\delta_i^0}{\rho_1^i} \right)^2 \sum_{i=0}^{2 \rho_1^2} W_i y^{G+k+i}, T.
\]

Since the expected value of the second sum is less than \(\sigma^2 \sum_{j=0}^{\infty} \frac{\delta_j^2}{1-\rho_1^2} \), (6.20) is bounded in probability. Since \(p \lim_{T \to \infty} \hat{\alpha}_k^{(0)} = \alpha_k \), (6.16) has probability limit 0. The second term and fifth term give
\[
(6.21) \quad \frac{1}{\sigma_0^2} \frac{1}{\sqrt{T}} y' (\hat{A}_0 - A)^{-1} A^{-1} \hat{A}_0^0 - \frac{1}{\sqrt{T}} \text{tr} (\hat{A}_0 - A)^{-1} A^{-1} \hat{A}_0^0 - \frac{1}{\sqrt{T}} \text{tr} (\hat{A}_0 - A)^{-1} A^{-1} \hat{A}_0^0
\]

\[
= \frac{1}{\sigma_0^2} \sum_{k=1}^{q} (\hat{\alpha}_k^{(0)} - \alpha_k) \left[\sum_{i,j=0}^{\infty} \delta_i^0 \delta_j \frac{1}{\sqrt{T}} \left(y' y^{L^{k+i} L^{g+j}} y - \sigma^2 \text{tr} L^{k+i} L^{g+j} y \right) \right]
\]

\[
\quad + \frac{1}{\sqrt{T}} \sum_{i,j=0}^{\infty} \delta_i^0 \delta_j \left(\sigma^2 - \sigma_0^2 \right) \text{tr} L^{k+i} L^{g+j} y.
\]

The sum of \(\delta_j \) times the first parenthesis is treated like (6.17); note that the parenthesis has mean 0 and (6.18) as a bound on the expected value of its square. The same argument carries through. If \(\sqrt{T} (\hat{\alpha}_k^{(0)} - \alpha_k) \) is bounded in probability [or \(\sqrt{T} (\hat{\alpha}_k^{(0)} - \alpha_k) \) is], then the second term converges to 0 in probability. The other terms in (6.15) are treated similarly.

It follows from these results that the solutions to (6.7), namely \(\sqrt{T} (\hat{\alpha}_1^{(1)} - \alpha_1), \ldots, \sqrt{T} (\hat{\alpha}_q^{(1)} - \alpha_q) \) have a limiting normal distribution with means 0 and a covariance matrix that is the inverse of the information matrix.

The sample covariances \(\mathbf{c}_n \) defined for (2.48) are consistent estimates of \(\sigma(h), h = 0, 1, \ldots, p+q \). From these can be obtained consistent estimates of \(\beta_1, \ldots, \beta_p, \sigma_1(0), \ldots, \sigma_1(q) \) and of \(\beta_1, \ldots, \beta_p, \alpha_1, \ldots, \alpha_1, \) and \(\sigma_2 \) as described in Section 5.8.1.
REFERENCES

Title: Maximum Likelihood Estimation of Parameters of an Autoregressive Process with Moving Average Residuals and Other Covariance Matrices with Linear Structure

Author(s): T. W. Anderson

Performing Organization Name and Address: Department of Statistics, Stanford University, Stanford, California 94305

Report Date: December 1973

Number of Pages: 48

Distribution Statement: Reproduction in whole or in part is permitted for any purpose of the United States Government. Distribution is unlimited.

Security Class. (of this report): Unclassified

Keywords: Maximum likelihood estimation, autoregressive process with moving average residuals, covariance matrices with linear structure, estimation of linear transformations, multivariate normal distribution.

Abstract: (see other side)
ABSTRACT

The autoregressive process with moving average residuals is a stationary process \(\{y_t\} \) satisfying \(\sum_{s=0}^{P} \beta_s y_{t-s} = \sum_{j=0}^{Q} \alpha_j v_{t-j} \), where the sequence \(\{v_t\} \) consists of independently identically distributed (unobservable) random variables. The distribution of \(y_1, \ldots, y_T \) can be approximated by the distribution of the vector \(\mathbf{y} \) satisfying

\[
\sum_{s=0}^{P} \beta_s \mathbf{K} \mathbf{y} = \sum_{j=0}^{Q} \alpha_j \mathbf{J} \mathbf{v},
\]

where \(\mathbf{y} \) has covariance matrix \(\sigma^2 \mathbf{I} \mathbf{K} = \mathbf{J} \mathbf{S} = \mathbf{L}^2 \), and \(\mathbf{L} \) is the \(T \times T \) matrix with 1's immediately below the main diagonal and 0's elsewhere. Maximum likelihood estimates are obtained when \(\mathbf{y} \) has a normal distribution. The method of scoring is used to find estimates defined by linear equations which are consistent, asymptotically normal, and asymptotically efficient (as \(T \to \infty \)). Several special cases are treated. It is shown how to calculate the estimates.