APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION

BY

JOSEPH G. DEKEN

TECHNICAL REPORT NO. 41
DECEMBER 1979

PREPARED UNDER CONTRACT NO0014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH
THEODORE W. ANDERSON, PROJECT DIRECTOR

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
APPROXIMATING CONDITIONAL MOMENTS OF THE
MULTIVARIATE NORMAL DISTRIBUTION

by

JOSEPH G. DEKEN

Technical Report No. 41
December 1979

PREPARED UNDER CONTRACT N00014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

Theodore W. Anderson, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government. Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE
NORMAL DISTRIBUTION

By
Joseph G. Deken

ABSTRACT

A practical method for computing the conditional expectation of a polynomial in the components of a multivariate normal random variable \mathbf{X}, when \mathbf{X} is restricted to a subset of \mathbb{R}^p, is given. This method makes the application of certain missing data techniques possible in cases where repeated numerical integration is not feasible.

Key words: Multiple integration, numerical integration, multivariate normal distribution, EM estimation.
APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE
NORMAL DISTRIBUTION

By

Joseph G. Deken

1. Introduction.

The conditional moments such as $E(X_j^k)$ of a multivariate normal random
variable $X_j = (X_1, X_2, \ldots, X_p)$, when X_j is restricted to a subset
$A \subset \mathbb{R}^p$, are not readily obtained numerically, since the required
integration in p-dimensions is time-consuming except for very small
p. These conditional moments are of interest, for example in the
derivation of E-M estimates in missing data problems (Dempster, Laird
and Rubin, 1977). We present here an efficient approximation scheme for these
moments, which makes the computation practical for moderately large p.

For convenience of description, we restrict attention to sets
A of the form $I_1 \times I_2 \times \cdots \times I_p$, where all the I_j are intervals,
but the approach is more general, as indicated below. We start by
observing that the approximations to the ratio

$$E_k = \frac{s+t}{s-t} \int x^k e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

obtained by the first terms in a Taylor series around $t = 0$ may be
written as polynomials in μ: 1
\[E_k \approx \sum_{\alpha=0}^{m} c_{k\alpha}(s,t,\sigma^2)\mu^\alpha. \]

The conditional expectation of a polynomial \(P(X) = a_0 + a_1X + a_2X^2 + \ldots + a_nX^n \) in the normal random variable \(X \) is thus approximated by replacing \(P \) by a polynomial \(Q(\mu) \) in the mean of \(X \), where the transformation \(T(s,t,\sigma^2): P \to Q \) is linear. Since the transformation \(V: g \to b \) defined by

\[\sum_{\alpha=0}^{m} c_{\alpha}(g+hX)^\alpha = \sum_{\beta=0}^{m} b_\beta X^\beta \]

is also linear, and the conditional mean of \(X_p \) given \(X_1, \ldots, X_{p-1} \) is of the form \((g+hX)_{p-1} \) where \(g \) is linear in \(X_1, \ldots, X_{p-2} \), any approximation to \(E_X^k \) which is a polynomial in the mean of \(X_p \) will produce a polynomial in \((X_1, \ldots, X_{p-1}) \) when \(X_p \) is conditional on \(X_1, \ldots, X_{p-1} \). The conditional expectation in \(\mathbb{R}^p \) may thus be accomplished in \(2p \) steps, by applying \(T \) and then \(V \) in succession \(p \) times, to obtain

\[E(\cdot | X_1 \ldots X_{p-1}) \approx E(\cdot | X_1 \ldots X_{p-2}) \approx \ldots \approx E(\cdot | X_1) \approx \sum_{\alpha=0}^{N} g_{\alpha}\mu_1^\alpha. \]

Computationally, this process requires \(2p \) matrix multiplications and is thus practical for moderate \(p \).
2. An Example.

The following simple example will serve to establish some ideas and notation. Let

\[I_k(\sigma^2, \mu, s, t) = \int_{s-t}^{s+t} x \cdot e^{-\frac{(\mu-x)^2}{2\sigma^2}} \, dx. \]

We are concerned with the conditional expectation \(I_k/I_0 \) of \(X_k \), where \(X \) is a normal random variable. The sum of the first terms of a Taylor series for this ratio about \(t = 0 \) is of the form

\[\sum_{\alpha=0}^{2q} c_k(\sigma^2, \mu, s) t^{2\alpha}, \tag{1} \]

but also may be represented by identifying the coefficients of \(\mu^\alpha \) in (1) as

\[\sum_{\alpha=0}^{2q} c_k(\sigma^2, s, t)^\alpha. \]

For example, (letting \(v = \sigma^2 \))

\[I_1/I_0 = s + \frac{(\mu-s)t^2}{3v} + \frac{2v(s-\mu) + (s-\mu)^2}{45v^3} t^4 + ... \]

\[= s(1 - \frac{lst^2 + 2t^4 - 3t^4}{45v^3} + (\frac{15t^2v^2 - 2t^4 - 3s^2}{45v^3}) t^4 + ... \]

\[= (\frac{st^4}{15v^3})^2 - (\frac{t^4}{45v^3})^4 + ... \]
3. Multiple Integration.

If \((X_1, X_2)\) are bivariate normal, the conditional distribution of \(X_2\), given \(X_1\), is \(\mathcal{N}(\mu_2 + b_{21}(X_1 - \mu_1), \sigma_{2,1}^2)\). The approximation procedure given above yields (writing \(p\) for the vector of coefficients of \(P\), and with \(C\) the matrix whose \(j,k\)th element is the coefficient of \(\mu^k\) in the approximation of \(I_j/I_0\)):

\[
E(P(x_2)|x_2 \in (s_2-t_2, s_2+t_2), x_1) = \left(\frac{\Pi}{C(s_2, t_2, \sigma_{2,1}^2)}\right)(\mu_2 + b_{21}(x_1 - \mu_1)).
\]

This last is of course a polynomial in \(X_1\), with coefficients

\[
q_\alpha := b_{21}^\alpha \sum \beta_{\geq \alpha} \left(\frac{\Pi}{C(s_2, t_2, \sigma_{2,1}^2)}\right) (\mu_2 - b_{21}\mu_1)^{\beta - \alpha},
\]

so that

\[
E(P(x_2)|x_2 \in (s_2-t_2, s_2+t_2), x_1 \in (s_1-t_1, s_1+t_1)) = \left(\frac{\Pi}{C(s_1, t_1, \sigma_{1}^2)}\right)(\mu_1).
\]

Other cases (higher dimensions, multivariate polynomials) are treated similarly, but it will be best to introduce some notation at this point.

If \(p\) is a vector of coefficients, then

\[
\text{SUBS}(a, b, p) \text{ is a vector of coefficients,}
\]

\[
(\text{SUBS}(a, b, p))_j := b_j \sum_{k \geq j} \binom{k}{j} a^{k-j}.
\]

(i.e. \text{SUBS}(a, b, p) is the vector of coefficients of \(y^j\) when \(a + by\) is substituted for \(x\) in \(p(x)\)).
With the aid of a symbolic computation system such as MIT's MACSYMA, the coefficients of the transformation

\[x^k + \sum_{\alpha} c_{\alpha} x^\alpha, \]

as functions \(c_{\alpha}(v,s,t) \) may be computed for much larger values of \(k \) and \(\alpha \) than would be practical by hand. (A partial table of values \(c_{\alpha} \) is given in appendix A of this paper. Card versions consisting of FORTRAN assignment statements " \(c(I,J) = \ldots \) " may be obtained on request from the author.) As subsequent examples show, the approximation of \(x_p^k \) in the box \(I_1 \times I_2 \times \cdots \times I_p \) involves \(c_{m\alpha} \) for higher values of \(m \) than \(k \), depending on the order of the underlying Taylor series. Fortunately, the approximation based on only a few terms is quite accurate, as evidenced by the following example: Since the integral

\[\frac{s+t}{s-t} \int e^{-\frac{x^2}{2}} \frac{1}{x} dx = e^{-\frac{(s-t)^2}{2}} - e^{-\frac{(s+t)^2}{2}}, \]

the Taylor series

\[\frac{I_1(l,0,s,t)}{I_0(l,0,s,t)} \sim S(1 - \frac{t^2}{3} + \frac{2+s^2}{45} t^4) \]

gives

\[I_0(l,0,s,t) = \Phi(s+t) - \Phi(s-t) \approx e^{\frac{(s-t)^2}{2}} - e^{\frac{(s+t)^2}{2}} \cdot \sqrt{2\pi s} \left(1 - \frac{t^2}{3} + \frac{2+s^2}{45} t^4\right) \]

The approximate values obtained for \(\Phi(x) = .5 + \Phi(x) - \Phi(0) \) by this method agree with tabulated values for four decimal places for \(0 < x < 1.1. \)
\(\text{INT}(s, t, v, p) \) is a map from the scalars \(s, t, v \) and the vector \(p \) to the vector \(p \circ (s, t, v) \), i.e. matrix postmultiplication, where we take

\[
I_k / I_0 \sim \sum_{\alpha=0}^{m} c_\alpha J^\alpha \text{ as defining } C.
\]

We will also consider \(\text{INT} \) as a function, so that if \(\text{INT} = (a_0, a_1, \ldots, a_m) \), then \((\text{INT})(x) = a_0 + a_1 x + \cdots + a_m x^m \).

With the above notation, we can define multiple integrals in a fairly compact fashion. The multivariate normal distribution may be parameterized by a vector of means \((\mu_1, \mu_2, \ldots, \mu_p) \), the conditional variances \((V_1, \ldots, V_p) \) defined by \(V_1 = \text{Var}(X_1) \), \(V_j = \text{Var}(X_j | X_1, \ldots, X_{j-1}), j > 1 \), and the regression coefficients \(b_{21}, b_{22}, b_{21}, \ldots, b_{2p}, p-1, \ldots, b_{21} \) defined by

\[
\text{E}(X_j | X_1, \ldots, X_{j-1}) = \sum_{i=1}^{j-1} b_{ji} X_i.
\]

One-dimensional integration is done directly:

\[
(p, s, t, \mu, v) \sim (\text{INT}(s, t, v, p))(\mu).
\]

Further integrals \((I2, I3, \ldots) \) in higher dimensions are defined recursively, e.g. in two dimensions:

\[
I2(s_1, t_1, s_2, t_2, \mu_1, \mu_2, v_1, v_2, b_{21}, p) :=
\]

\[
(\text{INT}(s_1, t_1, v_1, \text{SUBS}) \mu_2 - b_{21} \mu_1, b_{21}, \text{INT}(s_2, t_2, v_2, p))) ,
\]

and from this we obtain the two-dimensional integral as

\[
(I2(s_1, t_1, s_2, t_2, \mu_1, \mu_2, v_1, v_2, b_{21}, p))(\mu) .
\]
In general, $IK = \text{INT(...\text{SUBS}(...I(K-1))))}$. We have restricted attention here to sets of the form $I_1 \times I_2 \times \cdots I_p$ where the I_j are intervals.

For more general sets A, a similar scheme would work provided the section of $X_i \in A$ given $X_1 \cdots X_{i-1}$ is an interval with endpoints which are polynomials in X_1, \cdots, X_{i-1}.
4. A Numeric Implementation.

The following example shows how the three-dimensional conditional expectation approximation may be defined, using only vector and matrix arithmetic with numeric arguments. The polynomial to be approximated is presumed to be of degree at most two, and perhaps bivariate in X_2 and X_3. (This case is general enough for all the means, squares, and products $EX_1, EX_2, \ldots, EX_1^2, EX_2^2, \ldots, EX_1X_2, \ldots, EX_2X_3$.) In fact, we describe here the approximate values of $E(X_3^2), E(X_2^2), E(X_2X_3)$, since other expectations reduce, by interchange of variables, to these three. The approximation used will include powers of t up to t^4 inclusive, i.e.

$$EX_d \approx \sum_{\alpha=0}^{3} c_{d\alpha}(s,t,v)\mu^{\alpha}.$$

The functions $(c_{d\alpha})_{\alpha=0}^{6}$ may be found in appendix A).

To approximate $E(X_3^2)$, the integration on X_3 is first carried out, yielding

$$\sum_{\alpha=0}^{3} c_{1\alpha}(s_3,t_3,v_3)(\mu_3-\mu_1b_{31}-\mu_2b_{32}+X_1b_{31}+X_2b_{32})^{\alpha}$$

$$= \sum_{\alpha=0}^{3} c_{1\alpha}(s_3,t_3,v_3) \sum_{\beta=0}^{3} \sum_{\gamma=0}^{3} \alpha-\beta \gamma (b_{31}X_1)^{\beta}(b_{32}X_2)^{\gamma}(\mu_3-\mu_1b_{31}-\mu_2b_{32})^{\alpha-(\beta+\gamma)}$$

$$\sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} (\sum_{\gamma=0}^{3} \gamma) c_{1\gamma}(s_3,t_3,v_3)(\mu_3-\mu_1b_{31}-\mu_2b_{32})^{\gamma-(\alpha+\beta)}b_{31}^{\alpha}b_{32}^{\beta}X_1^{\alpha}X_2^{\beta}.$$

The above expression is of the form $\sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} r_{\alpha\beta} X_1^{\alpha}X_2^{\beta}$, where
\[r_{\alpha \beta} = b_{31}^{\alpha} b_{32}^{\beta} \sum_{\gamma=0}^{3} (\alpha \beta \gamma) c_{\gamma}(s_3, t_3, v_3) \cdot (\mu_2 - \mu_1 b_{31} - \mu_2 b_{32})^{\gamma-(\alpha+\beta)}. \]

Integration on \(X_2 \) then yields:

\[\sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} r_{\alpha \beta} X_1^\alpha \left(\sum_{\gamma=0}^{3} c_{\beta \gamma}(s_2, t_2, v_2) \cdot (\mu_2 - \mu_1 b_{21} + \mu_2 b_{21})^{\gamma} \right) \]

\[= \sum_{\alpha=0}^{6} s_{\alpha} X_1^\alpha, \text{ where } s_{\alpha} = \sum_{\delta=0}^{3-\alpha} \sum_{\beta=0}^{3-\delta} r_{\delta \beta} \sum_{\gamma=0}^{3-\delta} (\alpha-\delta)^{\beta-\delta} \cdot c_{\beta \gamma}(s_2, t_2, v_2) \cdot (\mu_2 - \mu_1 b_{21})^{\gamma-(\alpha-\delta)}, \]

and the final form is

\[\sum_{\alpha=0}^{6} s_{\alpha} \sum_{\beta=0}^{3} c_{\alpha \beta}(s_1, t_1, v_1) \mu_1^\beta. \]

The approximation of \(X_3^2 \) is carried out in the same fashion:

\[E X_3^2 = \sum_{\alpha=0}^{6} s'_{\alpha} \sum_{\beta=0}^{3} c_{\alpha \beta}(s_1, t_1, v_1) \mu_1^\beta, \]

\[s'_{\alpha} = \sum_{\delta=0}^{3-\alpha} \sum_{\gamma=0}^{3-\delta} r'_{\delta \gamma} \sum_{\beta=0}^{3-\delta} (\alpha-\delta)^{\beta-\delta} \cdot c_{\beta \gamma}(s_2, t_2, v_2) \cdot (\mu_2 - \mu_1 b_{21})^{\gamma-(\alpha-\delta)}, \]

\[r'_{\alpha \beta} = b_{31}^{\alpha} b_{32}^{\beta} \sum_{\gamma=0}^{3} (\alpha \beta \gamma) c_{\gamma}(s_3, t_3, v_3) \cdot (\mu_2 - \mu_1 b_{31} - \mu_2 b_{32})^{\gamma-(\alpha+\beta)}. \]

(Note that the only change is the substitution of \(c_{\gamma}(s_3, t_3, v_3) \) for \(c_{1\gamma}(s_3, t_3, v_3) \)).
To approximate $X_i X_j$, the first approximate integration is exactly as in approximating X_j, but the resulting sum is

$$X_i \left(\sum_{\alpha = 0}^{3} \sum_{\beta = 0}^{3} r_{\alpha \beta} x_1^{\alpha} x_2^{\beta} \right),$$

i.e. we have $r_{\alpha \beta}^{\gamma} = r_{\alpha}^{(\beta-1)} \beta = 1, \ldots, 4-\alpha$. A second integration gives

$$\sum_{\alpha = 0}^{3} \sum_{\beta = 1}^{4-\alpha} r_{\alpha \beta}^{\gamma} x_1^{\alpha} \left(\sum_{\gamma = 0}^{3} c_{\gamma \beta} (s_2, t_2, v_2) (\mu_2 - b_{21} \mu_1 + b_{21} X_1)^{\gamma} \right),$$

so the final result is

$$\sum_{\alpha = 0}^{6} s_{\alpha}^{\alpha} \sum_{\beta = 0}^{3} c_{\alpha \beta} (s_1, t_1, v_1) \mu_1^{\beta},$$

where

$$s_{\alpha}^{\alpha} = \sum_{\gamma = (\alpha-3)}^{3} \sum_{\beta = 1}^{4-\alpha} r_{\gamma \beta} \sum_{\gamma = 0}^{3} (\gamma - \beta)^{3-\beta} (\gamma - \alpha - 3) b_{21}^{\alpha - 3} c_{\gamma \beta} (s_2, t_2, v_1) (\mu_2 - \mu_1 b_{21})^{\gamma - (\alpha - 3)}. $$

Higher Order Approximation, Higher Dimensions.

In general, if $\text{EX} = \sum_{\alpha = 0}^{N} c_{1\alpha}^{\alpha}$ is taken as the basic approximation, the three-dimensional integral will be of the form

$$\sum_{\alpha = 0}^{2N} \sum_{\beta = 0}^{N} c_{\alpha \beta}^{(2)} (s_1, t_1, v_1) \mu_1^{\beta},$$

where

$$s_{\alpha}^{(2)} = \sum_{\alpha} \sum_{\beta} s_{\alpha \beta}^{(2)}, \quad s_{\alpha \beta}^{(2)} = \sum_{\gamma} \sum_{\delta} s_{\alpha \beta \gamma}, \ldots , s_{12 \ldots p-1}^{(p-1)}$$
Thus, increasing accuracy is computationally expensive, and increasing dimension more so, but nonetheless the process should compare favorably with numerical integration, as borne out by some preliminary comparisons, where Romberg integration was about 10x slower.
Appendix A: Values of c_{jk}

\[
\begin{cases}
\text{Interval } (s-t, s+t) \\
X \sim \mathcal{N}(\mu, \sigma^2) \\
w = \frac{1}{\sigma^2} = \frac{1}{\nu}
\end{cases}
\]

\[j = 1\]

\[k=0\]

\[-s(t^2 w(t^2 w(2t^2 (s^2 w (s^2 w + 4) + 1) - 21s^2) - 42) + 315 - 945) \]

\[945\]

\[k=1\]

\[t^2 w(w(2t^2 (s^2 w (5s^2 w + 12) + 1) - 63s^2) - 42 + 315) \]

\[945\]

\[k=2\]

\[-st^4 w^3 (4t^2 w (5s^2 w + 6) - 63) \]

\[945\]

\[k=3\]

\[t^4 w^3 (4t^2 w (5s^2 w + 2) - 21) \]

\[945\]

\[k=4\]

\[-2st^6 w^5 \]

\[189\]

\[k=5\]

\[2t^6 w^5 \]

\[945\]

12
\[j = 2 \]

\[\begin{align*}
 & k = 0 \\
 & - \left(t^2 (2w(t^2(w(t^2(2s^2w(s^2w+5)+2)-1)-21s^2(s^2w+3))-21)+315s^2) - 945s^2 \right) / 945
\end{align*} \]

\[\begin{align*}
 & k = 1 \\
 & \frac{2st^2w(t^2w(2t^2(s^2w+3)(5s^2w+1)-63s^2)-84)+315}{945}
\end{align*} \]

\[\begin{align*}
 & k = 2 \\
 & - \frac{2t^4w^2(w(2t^2(2s^2w(5s^2w+9)+1)-63s^2)-21)}{945}
\end{align*} \]

\[\begin{align*}
 & k = 3 \\
 & \frac{2st^3w^3(4t^2w(5s^2w^4)-21)}{945}
\end{align*} \]

\[\begin{align*}
 & k = 4 \\
 & - \frac{4t^6w^4(5s^2w^6+1)}{945}
\end{align*} \]

\[\begin{align*}
 & k = 5 \\
 & \frac{4st^5w^5}{945}
\end{align*} \]
\[j = 3 \]

\[k = 0 \]
\[- s(t^2(w(t^2(s^2w(2s^2w(s^2w+6)+3)-14)-21s^2(s^2w+4)))
\quad + 105)+315s^2)-315)-315s^2)/315 \]

\[k = 1 \]
\[t^2w(t^2(w(t^2(s^2w(10s^2w(s^2w+4)+1)-12)-63s^2(s^2w+2))+63)
\quad + 315s^2)/315 \]

\[k = 2 \]
\[- st_w^2(w(t^2(2s^2w+5))(10s^2w-1)-63s^2))/42 \]
\quad \frac{315}{315} \]

\[k = 3 \]
\[t_w^4 w(t^2(4s^2w(5s^2w+6)-5)-21s^2) \]
\quad \frac{315}{315} \]

\[k = 4 \]
\[- 2st_w^6\frac{4}{w}(5s^2w+2) \]
\quad \frac{315}{315} \]

\[k = 5 \]
\[2s_t_w^2 \frac{6}{5} \]
\quad \frac{315}{315} \]
\[j = 4 \]

\[k = 0 \]

\[-(38s^6t^5w + 56s^5t^4w + 44s^4t^3w^2 - 84s^6t^4w^2 - 192s^2t^6w^2 \]

\[-420s^4t^3w^2 + 36t^6w + 1008s^2t^4w + 1260s^2t^2w - 189t^4 - 1890s^2t^2 \]

\[-945s^4t^2 \]/945

\[k = 1 \]

\[4st^2w(t^2 + (s^2w(2s^2w(5s^2w + 24) - 13) - 54) \]

\[-21s^2(3s^2w + 8) + 189 + 315s^2 \]/915

\[k = 2 \]

\[-\frac{4t^4w^2(t^2(s^2w(20s^2w(s^2w + 13) - 21) - 9) - 63s^2(s^2w + 1))}{945} \]

\[k = 3 \]

\[\frac{4st^4w^3(t^2(4s^2w(5s^2w + 8) - 9) - 21s^2)}{945} \]

\[k = 4 \]

\[-\frac{8s^2t^6w(5s^2w + 3)}{945} \]

\[k = 5 \]

\[\frac{8s^3t^6w^5}{945} \]
\[j = 5 \]

\[\text{k=0} \]
\[-s(2s^6t^5 + 16s^6t^6 - 6s^5t^6 + 6s^4t^6 - 21st^7 - 112s^2t^6)\]
\[-126s^4t^2 + 63st^6 + 62s^2t^4 - 315st^6 - 189t^4 - 630s^2t^2 - 189s^4)/189 \]

\[\text{k=1} \]
\[t^2w(10s^6t^5 + 56s^6t^6 - 6s^5t^6 + 6s^4t^6 - 63st^7 - 144st^6 - 12st^7 + 27t^4 + 315s^2t^2)/189 \]

\[\text{k=2} \]
\[-st^2w(2t^2(s^2w(2s^2w(5s^2w + 18) - 23) - 18) - 21s^2(3s^2w + 4))/189 \]

\[\text{k=3} \]
\[st^4w(2t^2(s^2w(2s^2w + 2) - 9) - 21s^2)/189 \]

\[\text{k=4} \]
\[-2s^3t^4w(5s^2w + 4)/189 \]

\[\text{k=5} \]
\[2s^4t^5w/189 \]
\[j = 6 \]

\[k = 0 \]
- \[(4s^{10}t^6w^{5} + 36s^{6}t^2w^{3} - 36s^{6}t^w - 42s^{4}t^{4}w - 430s^{4}t^6w) / 315 \]
- \[294s^{4}t^{4}w^{2} + 450s^{2}t^{2}w + 1470s^{4}t^{4}w + 630s^{2}t^{2}w - 45t^{6}w - 945s^{4}t^{4}w \]
- \[1575s^{4}t^{2} - 315s^{6} \] / 315

\[k = 1 \]
\[2st^2w(108s^4t^4w + 64s^4t^w - 68s^4t^2w - 65s^6t^w - 300s^4t^4w) / 315 \]
- \[252s^4t^2w + 135s^4t^4w + 630s^2t^2w + 315s^4w \] / 315

\[k = 2 \]
- \[2s^2t^4w^2(2t^2(2s^2w(s^2w + 5)(5s^2w - 45) - 21s^2(3s^2w + 5))) / 315 \]

\[k = 3 \]
\[\frac{2s^3t^4w^3(2t^2(2s^2w(5s^2w + 12) - 15) - 21s^2)}{315} \]

\[k = 4 \]
- \[4s^4t^6w^4(s^2w + 1) / 63 \]

\[k = 5 \]
\[\frac{4s^4t^6w^5}{315} \]

17
\[j = 7 \]

\[k=0 \]
\[- s(2s_{t w}^{10} + 6s_{t w}^{5} + 20s_{t w}^{8} + 6s_{t w}^{6} - 5s_{t w}^{6} - 31s_{t w}^{6} - 21s_{t w}^{8} - 36s_{t w}^{4} - 2s_{t w}^{6}) \]
\[- 168s_{t w}^{4} + 585s_{t w}^{2} + 1071s_{t w}^{4} + 315s_{t w}^{6} - 135s_{t w}^{6} \]
\[- 945s_{t w}^{4} + 945s_{t w}^{2} - 135s_{t w}^{6})/135 \]

\[k=1 \]
\[s_{t w}^{2} (10s_{t w}^{8} + 72s_{t w}^{6} - 109s_{t w}^{4} + 63s_{t w}^{2} - 540s_{t w}^{4} - 2s_{t w}^{6}) \]
\[- 294s_{t w}^{4} + 405s_{t w}^{2} + 945s_{t w}^{2} + 315s_{t w}^{4})/315 \]

\[k=2 \]
\[- \frac{s_{t w}^{3} (s_{t w}^{2} (4s_{t w}^{2} (5s_{t w}^{2} + 24) - 123) - 180) - 63s_{t w}^{2} (s_{t w}^{2} + 2))}{135} \]

\[k=3 \]
\[\frac{s_{t w}^{4} (s_{t w}^{2} (4s_{t w}^{2} (5s_{t w}^{2} + 14) - 115) - 21s_{t w}^{2})}{135} \]

\[k=3 \]
\[- \frac{2s_{t w}^{5} (5s_{t w}^{2} + 6)}{135} \]

\[k=5 \]
\[\frac{2s_{t w}^{6} + 2}{135} \]
\[j = 8 \]

\[k = 0 \]

\[- s^2 (168 \cdot 6.5 + 176 \cdot 6.3 - 168 \cdot 6.4) \]
\[- + 4592 \cdot 6.2 - 1512 \cdot 6.1 - 10080 \cdot 6.6 + 11760 \cdot 4 \cdot 4 \]
\[+ 2520 \cdot 2 \cdot 2 - 3780 \cdot 2 - 13230 \cdot 2 - 8820 \cdot 4 \cdot 2 - 945 \cdot 6 \] / 945

\[k = 1 \]

\[8s^3 t w (168 \cdot 6.1 + 80 \cdot 6.4 - 159 \cdot 6.2 - 68 \cdot 2.2 - 88 \cdot 2.2 - 336 \cdot 2 \cdot 2 + 945 \cdot 4 + 1323 \cdot 2 \cdot 2 + 315 \cdot 4) \] / 945

\[k = 2 \]

\[8s^4 t w^2 (t^2 (s^2 w (4s^2 w (5s^2 w + 27) - 175) - 315) - 21s^2 (5s^2 w + 7)) \] / 945

\[k = 3 \]

\[8s^5 t w^3 (t^2 (4s^2 w (5s^2 w + 16) - 63) - 21s^2) \] / 945

\[k = 4 \]

\[- 168 \cdot 6.4 \cdot 5 \] / 945

\[k = 5 \]

\[168 \cdot 7.6 \cdot 5 \] / 945

19
\[j = 9 \]

\[k = 0 \]
\[- s^3(2s^{10}t^6w^{5} + 24s^8t^4w^6 - 66s^6t^2w^8 - 21s^4t^0w^{12} - 315s^2t^0w^{16})/105 \]
\[- 210s^6t^4w^2 + 2394s^2t^0w^{10} + 1932s^4t^2w^8 + 315s^2t^2w^8 - 1260t^2 \]
\[- 2646s^2t^4 - 1260s^4t^2 - 105s^6 \]/105

\[k = 1 \]
\[s^4t^2w(10s^8t^4w^4 + 88s^6t^2w^6 - 218s^4t^0w^{10} - 63s^2t^2w^8 - 1344s^0t^4w^2 - 387s^2t^0w^6 + 1890t^4 + 1764s^2t^2 + 315s^2t^6)/105 \]

\[k = 2 \]
\[- s^5t^4w(4t^2(s^2w(5s^2w(s^2w+6)-59)-126)-21s^2(3s^2w+8))/105 \]

\[k = 3 \]
\[s^6t^2w(4t^2(s^2w(5s^2w+18)-21)-21s^2)/105 \]

\[k = 4 \]
\[- 2s^7t^6w(5s^2w+8)/105 \]

\[k = 5 \]
\[2s^8t^2w^5/105 \]
\[j = 10 \]

\[\begin{align*}
\text{k=0} \\
&- \frac{4}{s} (4 s^{10} 6.5 + 52 s^{8} 6.4 - 176 s^{6} 6.3 - 42 s^{4} 6.2 - 2394 s^{2} 6.1) \\
&- 462 s^{4} 2.1 + 6316 s^{2} 2.2 + 914 s^{4} 1.1 + 630 s^{6} 1.0 - 5670 s^{8} 0.6 \\
&- 7938 s^{10} 0.2 - 2835 s^{12} 0.1 - 189 s^{14} 0.0) / 189 \\
\text{k=1} \\
&2 s^{5} 2 w (8 s^{8} 4.4 + 10 s^{6} 4.3 - 96 s^{4} 4.2 - 286 s^{2} 4.1 - 63 s^{0} 4.0) \\
&- 1944 s^{4} 2 w - 420 s^{2} 2 w - 3402 s^{4} 1.1 + 2268 s^{2} 1.0 + 315 s^{0} 0.9) / 189 \\
\text{k=2} \\
&2 s^{6} 1 w (2 s^{2} (w^{2} (2 s^{2} w (5 s^{2} w + 33) - 153) - 378) - 63 s^{2} (w^{2} + 3)) / 189 \\
\text{k=3} \\
&\frac{2 s^{7} 1 w (4 s^{2} (w^{2} (5 s^{2} w (s^{2} + 4) - 27) - 21 s^{2} w))}{189} \\
\text{k=4} \\
&- \frac{4 s^{8} 6.4 (5 s^{2} w + 2)}{189} \\
\text{k=5} \\
&\frac{4 s^{9} 6.5}{189} \\
\end{align*} \]
Acknowledgement

The author would like to thank the Mathlab Group at the Laboratory for Computer Science at M.I.T. for the use of the MACSYMA symbolic computation system.
TECHNICAL REPORTS

OFFICE OF NAVAL RESEARCH CONTRACT N00014-67-A-0112-0030 (NR-042-034)

Office of Naval Research Contract N00014-75-C-0442 (NR-042-034)

TECHNICAL REPORTS (continued)

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION</td>
<td>Technical Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOSEPH G. DEKEN</td>
<td>N00014-75-C-0442</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Statistics</td>
</tr>
<tr>
<td>Stanford University</td>
</tr>
<tr>
<td>Stanford, California 94305</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NR-042-034)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Statistics & Probability Program Code 436</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Multiple integration, numerical integration, multivariate normal distribution, EM estimation.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A practical method for computing the conditional expectation of a polynomial in the components of a multivariate normal random variable \(X \), when \(X \) is restricted to a subset of \(\mathbb{R}^p \), is given. This method makes the application of certain missing data techniques possible in cases where repeated numerical integration is not feasible.