Speaker: Nicholas Cook, Stanford Mathematics

Title: Inhomogeneous circular laws for random matrices with non-identically distributed entries

Abstract:

An iid matrix X_n is an $n \times n$ random matrix with centered entries of unit variance. The celebrated circular law states that in the large n limit, the eigenvalues of X_n/\sqrt{n} distribute themselves uniformly over the unit disk in the complex plane. In this talk we discuss generalizations of the circular law to random matrices with a variance profile. That is, we consider a random matrix Y_n obtained by rescaling the entries of X_n by (deterministic) standard deviations $\sigma_{ij} \in [0,1]$, which may vary with i,j. Under mild assumptions on the variance profile we determine the asymptotic spectral distribution for Y_n. Key components of the proof are bounds on the smallest singular value for diagonal perturbations of Y_n, and quantitative analysis of solutions to a system of Schwinger–Dyson equations.

This is based on joint work with Walid Hachem, Jamal Najim, and David Renfrew.