Professor: Persi Diaconis
Departments of Mathematics and Statistics, Stanford University

Title: Random (set) partitions: An expository account

Abstract:
In physics, statistics, and elsewhere, breaking \(n \) “things” into clusters is a basic operation. One starting place is the set partitions of \([n]\) (so if \(n = 3 \) there are five partitions: \(1/2/3, 12/3, 13/2, 1/23, 123 \)). This suggests the probabilistic/ enumerative question: What does a “typical” set partition “look like”? For example, number of blocks, number of singletons (or blocks of size \(i \)), maximal block size, and so on. I will review classical work of Fristedt and talk about new work with Bobbie Chen, Daniel Kane, and Rob Rhodes. This gives moments and limiting distributions for statistics like the number of crossings or the sum over blocks of max-min in the block. They arise in “supercharacter theory.”