Speaker: Hera Y. He
Department of Statistics, Stanford University

Title: Permutation p-value approximation via generalized Stolarsky invariance

Abstract:
When it is necessary to approximate a small permutation p-value p, then simulation is very costly. For linear statistics, a Gaussian approximation \hat{p}_1 reduces to the volume of a spherical cap. Using Stolarsky’s (1973) invariance principle from discrepancy theory, we get a formula for the mean of $(\hat{p}_1 - p)^2$ over all spherical caps. From a theorem of Brauchart and Dick (2013) we get such a formula averaging only over spherical caps of volume exactly \hat{p}_1. We also derive an improved estimator \hat{p}_2 equal to the average true p-value over spherical caps of size \hat{p}_1 containing the original data point x_0 on their boundary. This prevents \hat{p}_2 from going below $1/N$ when there are N unique permutations. We get a formula for the mean of $(\hat{p}_2 - p)^2$ and find numerically that the root mean squared error of \hat{p}_2 is roughly proportional to \hat{p}_2 and much smaller than that of \hat{p}_1.

This is based on joint work with Kinjal Basu, Qingyuan Zhao, and Art B. Owen.