STopping RULES FOR x_n/n AND RELATED PROBLEMS

BY

Y. S. CHOW and A. DVORETZKY

TECHNICAL REPORT NO. 36
JANUARY 6, 1969

PREPARED UNDER THE AUSPICES
OF
NATIONAL SCIENCE FOUNDATION GRANT GP-5705

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
STOPPING RULES FOR x_n/n AND RELATED PROBLEMS

By

Y.S. Chow and A. Dvoretzky

TECHNICAL REPORT NO. 36

JANUARY 6, 1969

PREPARED UNDER THE AUSPICES

OF

NATIONAL SCIENCE FOUNDATION GRANT GP-5705

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
STopping RULES FOR \(x_n/n \) AND RELATED PROBLEMS

by

Y.S. Chow and A. Dvoretsky

0. Summary.

This note deals with some problems concerning the existence of optimal stopping rules for rather simple stochastic sequences. The following results, which are very special cases of the theorems proved here, are typical.

Let \(x_1, x_2, \ldots, x_n, \ldots \) be independent, identically distributed non-negative random variables possessing a finite moment of some order greater than one (but which may be arbitrarily close to 1). Then there exists a stopping rule \(\tau \) which maximizes the expectation of \(\frac{x_\tau}{\tau} \) among all generalized stopping rules \(t \) (this is rather easy); moreover, \(\tau \) is a genuine stopping rule, i.e., it stops with probability 1 (this is more tricky).

We also consider the problem of maximizing the expectation of \(\max(x_1, x_2, \ldots, x_\tau)/\tau \). This looks like a much more complicated problem. Also, clearly, for every stopping rule \(t \) the expectation of \(\max(x_1, \ldots, x_\tau)/\tau \) is at least as great as that of \(x_\tau/\tau \) and it seems plausible that \(\sup_t \mathbb{E} \max(x_1, \ldots, x_\tau)/\tau \) will be larger than \(\mathbb{E} x_\tau/\tau \). Rather surprisingly, it turns out that \(\tau \) is the optimal rule for both problems and that \(\mathbb{E} \max(x_1, \ldots, x_\tau)/\tau = \mathbb{E} x_\tau/\tau \).
1. **Introduction.**

We start by recalling some simple facts about stopping rules and fixing our notations. These facts may be found in the well known references [1] and [2] (for generalized stopping rules see also [3] and [4]).

Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(z_1, z_2, \ldots, z_n, \ldots\) be random variables on this space. Put \(\mathcal{F}_n = \mathcal{G}(z_1, \ldots, z_n)\), the \(\sigma\)-field generated by \((z_1, \ldots, z_n)\) \((n=1,2,\ldots)\) and \(\mathcal{F}_0 = (\Omega, \emptyset)\). A genuine stopping rule for the sequence \((z_n)\) is a random variable \(t\) assuming only non-negative integral values such that

\[
(1.1) \quad \{t=n\} \in \mathcal{F}_n \quad (n=1,2,\ldots).
\]

A **generalized** stopping rule, or simply a stopping rule, for the sequence \((z_n)\) is a generalized random variable \(t\), which may assume the value \(\infty\) as well as non-negative integral values, satisfying (1.1). For all stopping rules \(t\) we have \(\sum_{n \geq 1} P(t=n) = 1 - P(t=\infty)\) and for genuine rules we also have \(P(t=\infty) = 0\), and in the sequel any stopping rule satisfying this condition will be called genuine.

For generalized stopping rules we define \(z_\infty = 0\). (For certain purposes it is preferable to define \(z_\infty\) otherwise, but this definition is the simplest for our purposes.) Then the expectation of \(z_t\) is always given by

\[
(1.2) \quad E z_t = \sum_{n \geq 1} \int_{\{t=n\}} z_n = \int_{\{t<\infty\}} z_t,
\]
provided the last integral exists (here and everywhere we omit writing \(dP\) under the integration sign).

Let \(C_n\) (\(n=1,2,\ldots\)) be the class of stopping rules for which \(P(t \geq n) = 1\) (\(C_1\) is the class of all stopping rules). We define

\[
(1.3) \quad \gamma_n = \text{ess sup}_{t \in C_n} \mathbb{E} (z_t | \mathcal{F}_n) \quad (n=1,2,\ldots)
\]

and

\[
(1.4) \quad v_n = \sup_{t \in C_n} \mathbb{E} z_t \quad (n=1,2,\ldots)
\]

whenever (1.2) is defined for all \(t \in C_n\). A stopping rule \(t\) is called \textbf{optimal} for the sequence \((z_n)\) if \(v_1\) is defined and \(\mathbb{E} z_t = v_1\).

Whenever \(v_1\) is defined we define the \textbf{natural} rule \(\tau\) for the sequence \((z_n)\) by

\[
(1.5) \quad \tau = \inf \{ n : z_n \geq \gamma_n \}
\]

where, by convention, the infimum of an empty set is \(\infty\), i.e.,

\[
\tau = \infty \quad \text{on} \bigcap_{n \geq 1} \{ z_n < \gamma_n \}.
\]

We shall repeatedly use the following lemma. It can be stated for considerably more general sequences of random variables, but the following suffices for our purposes.

\textbf{Lemma 1.} Let \(z_1, z_2, \ldots, z_n, \ldots\) be non-negative random variables, and let

\[
(1.6) \quad \lim_{n \to \infty} v_n = 0.
\]
Then the natural rule τ given by (1.5) is optimal for the sequence $z_1, z_2, \ldots, z_n, \ldots$

Proof. Since the z_n are non-negative Ez_τ is defined for all stopping rules τ. Hence all v_n are defined and the natural rule is also defined.

From (1.3), (1.4) and (1.5) we have

$$v_n = \max(z_n, E\gamma_{n+1} (\mathcal{F}_n)), \quad v_n = E\gamma_n \quad (n=1, 2, \ldots).$$

Therefore,

$$v_1 = \int \int \gamma_1 = \int \int z_1 + \int \int \gamma_2 = \int \int z_1 + \int \int z_2 + \int \int \gamma_3 = \ldots$$

$$= \sum_{i=1}^{n} \int \int z_1 + \int \int \gamma_{n+1}.$$ But the last integral is non-negative and $\leq v_{n+1}$. Hence (1.6) implies $v_1 = Ez_\tau$ as claimed.

Applying this lemma to the sequence z_n, z_{n+1}, \ldots we see that, under the above conditions

$$\tau_n = \inf\{m: m \geq n \text{ and } z_m \geq \gamma_m\},$$

the natural rule in the class C_n is optimal within this class, i.e.,

$$Ez_{\tau_n} = v_n.$$
The natural rules may, of course, be generalized rules. The main difficulty in obtaining our results is precisely in showing that for the situations considered here these rules are genuine stopping rules.

The above expressions simplify somewhat when the random variables are independent. Indeed, if \(z_1, \ldots, z_n, \ldots \) are independent (1.7) simplifies to \(\gamma_n = \max(z_n, v_{n+1}) \) and the natural rule \(\tau \) of (1.5) is defined by

\[
\tau = \inf\{n : x_n \geq v_{n+1}\}
\]

and a similar remark holds for \(\tau_n \) given by (1.8).

In section 3 we shall need also the following facts. Let \(C_n^N \) be the class of stopping rules \(t \) satisfying \(P(n \leq t \leq N) = 1 \) and put

\[
\gamma_n^N = \text{ess sup}_{t \in C_n^N} E_z (z_t | \mathcal{F}_n)
\]

then, when \(E \sup x_n < \infty \) we have

\[
\lim_{N \to \infty} \gamma_n^N = \gamma_n \quad \text{a.s.} \quad (n=1,2,\ldots).
\]

Moreover, \(\gamma_n^N \) can be calculated recursively via

\[
\gamma_N^N = z_N^N, \quad \gamma_{N-1}^N = \max(z_{N-1}, E(\gamma_{N-1}^N | \mathcal{F}_{N-1})), \quad (n=N,N-1,\ldots,2).
\]
2. **Scaled independent random variables.**

In this section we deal with a sequence of independent random variables which are identically distributed, up to a scale factor. The main result of this section is the following.

Theorem 1. Let \(x_1, x_2, \ldots, x_n, \ldots \) be non-negative, independent identically distributed random variables satisfying

\[
(2.1) \quad E x_n^\beta < \infty
\]

for some \(\beta \geq 1 \). Let \(a_1, a_2, \ldots, a_n, \ldots \) be a sequence of positive constants satisfying

\[
(2.2) \quad \sum_{n=1}^{\infty} a_n^\beta < \infty.
\]

Put

\[
(2.3) \lambda = \lim_{n \to \infty} \frac{a_{2n} + a_{2n+1}}{a_n}
\]

and

\[
(2.4) \quad r_n = \left(\sum_{i=0}^{\infty} a_{n+1}^\beta \right)^{1/\beta}, \quad \rho = \lim_{n \to \infty} \frac{r_{2n}}{r_n}.
\]

Then, if

\[
(2.5) \quad \lambda > \rho
\]

the natural rule \(\tau \) given by (1.12) is optimal for \(z_n = a_n x_n \) and it is a genuine stopping rule.
Proof. The optimality of τ follows immediately from (2.1), (2.2), Lemma 1 and the estimate

$$v_n \leq E \sup_{m \geq n} a_m x_m \leq (E \sup_{m \geq n} a_m^\beta x_m^\beta)^{1/\beta} \leq r_n (E x_n^\beta)^{1/\beta}. \tag{2.6}$$

It thus remains to prove only that τ is a genuine stopping rule, i.e., that

$$P(\tau < \infty) = 1. \tag{2.7}$$

To this end we first note that (2.4) and (2.6) imply

$$\lim_{n \to \infty} \frac{v_{2n}}{v_n} \leq \rho. \tag{2.8}$$

In order to complete the proof we shall show that the negation of (2.7) implies

$$\lim_{n \to \infty} \frac{v_{2n}}{v_n} > \lambda. \tag{2.9}$$

Since (2.8) and (2.9) together are incompatible with (2.5) this contradiction would prove (2.7).

We proceed to show that the negation of (2.7) indeed implies (2.9). By the above and Lemma 1

$$v_n = \sum_{i=0}^{\infty} a_{n+i} \int_{\tau_n = n+1} x_{n+1}, \quad (n=1,2,\ldots) \tag{2.10}$$

Put

$$P_n = P\{a_n x_n < v_{n+1}\}. \tag{2.11}$$
Since the x_n are independent we have from (1.8), $P(\tau_n=n+1) = P_n P_{n+1} \cdots P_{n+i-1}$ and, again by independence, (2.10) becomes

$$v_n = \sum_{i=0}^{n} P_n P_{n+1} \cdots P_{n+i-1} a_{n+i} \int_{\{a_{n+i} x_{n+i} \geq v_{n+i+1}\}} x_{n+i}.$$

We now define a new stopping rule τ' by

$$\tau' = \inf\{m: m \geq 2n \text{ and } a_{[m/2]} x_m \geq v_{[m/2]+1}\}$$

where $[m/2]$ denotes the integral part of $m/2$. Then $\tau' \in C_{2n}$ and, therefore,

$$v_{2n} \geq \mathbb{E}_{\tau'} x_{\tau'} = \sum_{m=2n}^{\infty} a_{m} \int_{\{\tau'=m\}} x_{m}.$$

But, by (2.13), we have for $m = 2n+2i$ ($i=0,1,2,\ldots$), $[\tau'=2n+2i] = \{a_{n} x_{2n} < v_{n+1}, a_{n} x_{2n+1} < v_{n+1}, \ldots, a_{n+i} x_{2n+2i-2} < v_{n+i}, a_{n+i} x_{2n+2i-1} < v_{n+i}, a_{2n+2i} x_{2n+2i} \geq v_{n+i+1}\}$ and thus, by (2.11), independence and equi-

distribution of the x_n, we have

$$\int_{\{\tau'=2n+2i\}} x_{2n+2i} = p^n_p P_{n} P_{n+1} \cdots P_{n+i-1} \int_{\{a_{n+i} x_{2n+2i} \geq v_{n+i+1}\}} x_{2n+2i}.$$

Similarly

$$\int_{\{\tau'=2n+2i+1\}} x_{2n+2i+1} = p^n_p P_{n} P_{n+1} \cdots P_{n+i-1} P_{n+i} \int_{\{a_{n+i} x_{2n+2i+1} \geq v_{n+i+1}\}} x_{2n+2i+1}.$$
By equidistribution each of the integrals on the right side of the last
two equations is equal to
\[\int_{\{x_{n+1} \geq v_{n+1}\}} x_{n+1}. \]

Substituting in (2.14) we obtain

\[E a_{\tau} x_{\tau} = \sum_{i=0}^{\infty} \left(\frac{P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1}}{P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1} + P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1} + P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1}} \right) \int_{\{x_{n+1} \geq v_{n+1}\}} x_{n+1}. \]

From this, (2.12) and the inequality (2.14) we obtain

\[\frac{v_{2n}}{v_{n}} \geq \inf_{i \geq 0} \left(\frac{P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1}}{P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1} + P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1} + P_{n+i}^{2} \cdots P_{n+1}^{2} a_{2n+2i+1}} \right). \]

But \(\prod_{n=1}^{\infty} P_{n} = P_{\tau=\infty} \) and the negation of (2.7) implies that this product is convergent, hence the first factor on the right side of (2.15) tends to 1 as \(n \to \infty \) and we have

\[\lim_{n \to \infty} \frac{v_{2n}}{v_{n}} \geq \lim_{n \to \infty} \inf_{i \geq 0} \frac{a_{2n+2i} + a_{2n+2i+1}}{a_{n+i}}. \]

But, by (2.3), this is precisely (2.9) and the proof of theorem 1 is thus completed.

Theorem 1 has many specializations, we confine ourselves to giving one.

Corollary 1. Let \(x_{1}, x_{2}, \ldots, x_{n}, \ldots \) be independent, identically distributed non-negative random variables, let \(\alpha > 0 \) and \(E x_{n}^{\alpha} < \infty \)
for some $\beta > \max(1, 1/\alpha)$ then the natural stopping rule is a genuine optimal stopping rule for the sequence x_n/n^α.

Indeed, (2.2) is satisfied and we have $\lambda = 2^{1-\alpha}$ while $\rho = 2^{1/\beta-\alpha}$ and thus (2.5) holds and the theorem applies.

3. A problem involving the maximum of random variables.

Our aim in this section is to prove the following theorem about stopping rules for $z_n = a_n \max(x_1, \ldots, x_n)$, \bar{v}_n, γ_n etc. will denote for (z_n) what v_n, γ_n etc. denotes for (z_n).

Theorem 2. Let x_1, x_2, \ldots, x_n, ... and a_1, a_2, \ldots, a_n, ... satisfy the conditions of Theorem 1. Let, moreover, (a_n) be a monotone decreasing logarithmically concave sequence, i.e., let

$$(3.1) \quad a_n > a_{n+1}, \quad a_n/a_{n+1} < a_{n+1}/a_{n+2} \quad (n=1, 2, \ldots).$$

Then the natural rule $\bar{\tau}$ for $z_n = a_n \max(x_1, \ldots, x_n)$ coincides with the natural rule τ for $z_n = a_n x_n$. It is thus a genuine stopping rule and we have

$$(3.2) \quad \bar{v}_1 = E a_\tau \max(x_1, \ldots, x_\tau) = E a_\tau x_\tau = v_1.$$

Proof. We first show that $\bar{\tau}$ is optimal. We have

$$(3.3) \quad \bar{v}_n = \sup_{t \in C_n} E a_t \max(x_1, \ldots, x_t) \leq \sup_{t \in C_n} (E a_t^\beta \max(x_1^\beta, \ldots, x_t^\beta))^{1/\beta}$$

$$\leq \left(E(a_n^\beta(x_1^\beta + \cdots + x_n^\beta) + \sum_{i=1}^n a_{n+i}^\beta x_{n+i}^\beta) \right)^{1/\beta}.$$
\[< (n a_n^\beta + \sum_{i=1}^{\infty} a_{n-i}^\beta)^{1/\beta} \cdot (E x_n^\beta)^{1/\beta} \]

Since \(a_n^\beta \) is monotone it follows from the convergence of the series (2.2) that \(n a_n^\beta \to 0 \) and therefore

\[\lim_{n \to \infty} \overline{\nu}_n = 0. \]

In virtue of the Lemma this proves the optimality of \(\overline{\tau} \).

In our problem \(\overline{\gamma}_n \) and \(\gamma_n^N \) are a.s. functions of \(\max(x_1, \ldots, x_n) \).

Let us put

\[\overline{\gamma}_n(u) = \mathbb{E}(\overline{\gamma}_n | \max(x_1, \ldots, x_n) = u), \quad \overline{\gamma}_n^N(u) = \mathbb{E}(\overline{\gamma}_n^N | \max(x_1, \ldots, x_n) = u). \]

By (1.12)

\[\overline{\gamma}_n^N(u) = a_n^\beta u \geq \overline{\gamma}_n^{N+1}(u) = a_{N+1}^\beta u. \]

We next show that generally

\[\frac{1}{a_n} \overline{\gamma}_n^N(u) \leq \frac{1}{a_{n+1}} \overline{\gamma}_n^{N+1}(u) \quad (n=1,2,\ldots,N). \]

Indeed,

\[\frac{1}{a_n} \overline{\gamma}_n^N(u) = \sup_{t \in C_n} E \frac{a_t}{a_n} \max(u, x_{n+1}, \ldots, x_t) \]

while

\[\frac{1}{a_{n+1}} \overline{\gamma}_n^{N+1}(u) = \sup_{t \in C_{n+1}} E \frac{a_t}{a_{n+1}} \max(u, x_{n+2}, \ldots, x_t). \]
By independence we may confine ourselves to rules in which (t=1)
\epsilon_0(x_{n+1}, \ldots, x_1) in (3.5) and (t=i+1) \epsilon_0(x_{n+2}, \ldots, x_{n+i+1}) in
(3.6) for i=n, \ldots, N (for i = 0 the corresponding \epsilon_0 are, by
convention, \epsilon_0, \emptyset). There is a canonical one-to-one shift corre-
dence between these stopping rules of \frac{C_n^N}{n} and \frac{C_{n+1}^{N+1}}{n+1} where to \epsilon_0 \in \frac{C_n^N}{n}
corresponds to \epsilon_0' = t+1 \epsilon_0 \in \frac{C_{n+1}^{N+1}}{n+1}. Since, by (3.4), \frac{a_t}{a_n} \leq \frac{a_{t+1}}{a_{n+1}}
for every value of t \geq n it follows on comparing the right sides of
(3.5) and (3.6) that (3.4) holds.

From (3.1) it follows that E sup \overline{z}_n \leq \infty, therefore, keeping n
fixed and letting N \rightarrow \infty we obtain from (1.11)

\frac{1}{a_n} \overline{\gamma}_n(u) \leq \frac{1}{a_{n+1}} \overline{\gamma}_{n+1}(u) \quad (n=1,2, \ldots).

Consider now the natural rule \overline{\tau} for \overline{z}_n. If \overline{\tau} = n+1 then
\frac{a_{n+1}}{a_n} \max(x_1, \ldots, x_{n+1}) \geq \overline{\gamma}_{n+1}(\max(x_1, \ldots, x_{n+1})) \quad while \quad \frac{a_n}{a_{n+1}} \max(x_1, \ldots, x_n) < \overline{\gamma}_n(\max(x_1, \ldots, x_n)).
Since \overline{\gamma}_n(u) is a non-decreasing function of u it
follows from (3.6) that \max(x_1, \ldots, x_{n+1}) > \max(x_1, \ldots, x_n) or that
x_{n+1} = \max(x_1, \ldots, x_{n+1}). Since obviously also x_1 = \max x_1 we see
that \max(x_1, \ldots, x_\overline{\tau}) = x_\overline{\tau} and therefore \overline{v}_\overline{\tau} = E \frac{z}{\overline{\tau}} = E \frac{z}{\tau} \leq v_\overline{\tau}.
On the other hand \overline{v}_\overline{\tau} \geq v_\overline{\tau} as remarked earlier, thus the two are equal.
Similarly \overline{v}_n = v_n for all n and since \overline{\tau} = \inf[n: a_n x_n \geq \overline{v}_{n+1}] it
follows that \overline{\tau} = \tau.

We again bring only one example of the application of this theorem.

Corollary 2. Under the conditions of Corollary 1 the natural rules
for \frac{x_n}{n^{\alpha}} and \max(x_1, \ldots, x_n)/n^{\alpha} coincide. This common rule \tau is
genuine, optimal for both problems and

\[E \frac{x_1}{\tau^\alpha} = E \frac{\max(x_1, \ldots, x_\tau)}{\tau^\alpha}. \]

4. Remark.

Our method can give somewhat more general results than stated. We may, for example, relax the condition about the equidistribution of \(x_1, \ldots, x_\tau, \ldots\) However, there remains a very simple fundamental question which we cannot solve. For all we know there may 'always' exist a genuine optimal rule. For instance if \(E x_n = \infty \) then clearly \(t = 1 \) is such a rule. It would be extremely interesting to solve this problem even for the case \(a_n = 1/n \).
References

