ON CONDITIONAL EXPECTATION AND QUASI-RINGS

BY
M. V. JOHNS, JR. AND RONALD PYKE

TECHNICAL REPORT NO. 19

PREPARED UNDER CONTRACT Nonr-225 (21)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

SEPTEMBER 22, 1958
ON CONDITIONAL EXPECTATION AND QUASI-RINGS

BY

M. V. JOHNS, JR. AND RONALD PYKE

TECHNICAL REPORT NO. 19
SEPTEMBER 22, 1958

PREPARED UNDER CONTRACT Nonr-225(21)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR
ANY PURPOSE OF THE UNITED STATES GOVERNMENT

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
ON CONDITIONAL EXPECTATION AND QUASI-RINGS

by

M. V. Johns, Jr. and Ronald Pyke

1. Introduction.

Let \((\Omega, \mathcal{A}, P)\) denote a complete probability space in which \(\Omega\) is an arbitrary point set \((\omega \in \Omega)\), \(\mathcal{A}\) is a \(\sigma\)-algebra of subsets of \(\Omega (A \in \mathcal{A})\) and \(P\) is a probability measure on \(\mathcal{A}\) with respect to which \(P\) is complete. Let \(X, Y, Z\) with or without subscripts, denote real-valued \(\mathcal{A}\)-measurable random variables (r.v.). Let \(\mathcal{H}\) denote the Hilbert space of \(P\)-integrable r.v.s. Define a linear operator \(E\) on \(\mathcal{H}\) by

\[
E \circ X = \int_{\Omega} X \, dP.
\]

\(E\) is the expectation operator and \(E \circ X\) is called the expectation of \(X\).

The \(P\)-integrability criterion is equivalent to specifying \(E \circ X < \infty\). Let \(\mathcal{F}\), with or without subscripts, denote a complete \(\sigma\)-algebra contained in \(\mathcal{A}\), and let \(\mathcal{B}_k\) denote the \(\sigma\)-algebra of Borel sets of \(k\)-dimensional Euclidian space. For r.v.s. \(X_i\), \(i = 1, \ldots, k\) define \(\mathcal{B}(X_1, \ldots, X_k) \subset \mathcal{A}\) as the minimal complete \(\sigma\)-algebra containing all inverse images with respect to the vector \((X_1, \ldots, X_k)\) of sets in \(\mathcal{B}_k\). For \(A \in \mathcal{A}\), let \(I_A \in \mathcal{H}\) denote the indicator function of the set \(A\); that is \(I_A(\omega) = 1\) or \(0\) according as \(\omega \in A\) or \(\omega \notin A\). \(X \in \mathcal{H}\), define the completely-additive set function \(Q_X: \mathcal{A} \to \mathbb{R}_+\) by \(Q_X(A) = E \circ X I_A\).
By the Radon-Nikodym theorem there exists for $X \in \mathcal{H}$ and $\mathcal{F} \in \mathcal{A}$, an \mathcal{F}-measurable solution $Y \in \mathcal{H}$ to the system of equations

$$
(1) \quad E \circ (X - Y) I_A = 0 \quad (A \in \mathcal{F})
$$

or equivalently

$$
Q_X(A) = E \circ Y I_A \quad (A \in \mathcal{F}).
$$

This solution is unique a. s. - P. The equivalence class of all such solutions (or any representative thereof) is denoted by $E\{X | \mathcal{F}\}$ and called the conditional expectation of X given \mathcal{F}. For $X, Y \in \mathcal{H}$ the notation $E\{X | Y\} = E\{X | \sigma(Y)\}$ will also be used. This definition of conditional expectation, which is the standard one, makes it necessary when proving theorems about conditional expectations to show at some stage of the proof that a functional equation of the form (1) is valid for all subsets of a specified σ-algebra. That this can be a tedious task is demonstrated by the existing proofs of some of the applications in Section 4 of the theorems which are proven below.

It is the purpose of this note to define conditional expectations in an apparently less restrictive way, by narrowing the class of subsets A for which (1) must hold. It is shown that this definition is, nevertheless, equivalent to that given in the above paragraph. In Section 3, some general theorems on conditional expectations are proven using this second definition. The proofs
of these theorems are seen to be simpler and shorter than would be possible with conventional techniques. Besides serving to demonstrate the convenience of this second definition, these theorems are important in themselves and several applications of them are given.

The main tool to be used is the concept of a quasi-ring to be introduced and studied in the following section.

2. **Conditional expectation given a quasi-ring:**

Von Neumann [1] defines a half-ring as a family of subsets closed under finite intersections and satisfying a certain finite chain condition. This same concept is termed a semi-ring by Halmos [2]. The related concept of quasi-ring, which is now defined, entails a weaker chain condition. This chain condition, (ii) of Definition 1 below, seems to be much more adaptable then that of von Neumann to problems in conditional expectation, as is demonstrated in Section 3.

Definition 1. A collection, \(\mathcal{F} \), of subsets of \(\Omega \) is said to be a quasi-ring if and only if

1. \(A, B \in \mathcal{F} \) implies \(A \cap B \in \mathcal{F} \)
2. \(A, B \in \mathcal{F} \) and \(A \subseteq B \) implies that there exists \(\overline{\bigcup_{j=1}^{n} C_j} \subseteq \mathcal{F} \)
 satisfying \(C_i \cap C_k = \emptyset \) for \(i \neq k \) and \(B - A = C_1 \cup C_2 \cup \ldots \cup C_n \)
3. there exists \(\bigcup_{j=1}^{\infty} A_j \subseteq \mathcal{F} \) such that \(\Omega = \bigcup_{j=1}^{\infty} A_j \).

In von Neumann's definition of a half-ring, condition (ii) is strengthened by requiring further that \(A \cup C_1 \cup \ldots \cup C_j \in \mathcal{F} \) for all \(j = 1, 2, \ldots, n \).
Examples of quasi-rings are: any countable class of disjoint sets which include the null set \emptyset; in particular, the collection of atoms in an atomic, or discrete, probability space; any algebra or σ-algebra; the class of all left-open, right-closed rectangles in \mathbb{R}^n with Lebesgue measure less than or equal to 1. This last example is a quasi-ring which is not a half-ring. Bell makes use of the half-ring analogous to this quasi-ring in his recent paper [3]. A closure property of quasi-rings that will be used in the following sections is given by

Lemma 1. If \mathcal{F}_1 and \mathcal{F}_2 are quasi-rings on a common space Ω then

$$\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \equiv \{ A \cap B : A \in \mathcal{F}_1, B \in \mathcal{F}_2 \}$$

is also a quasi-ring. (In common terminology \mathcal{F} is the family of constituents of \mathcal{F}_1 and \mathcal{F}_2.)

Proof. Clearly \mathcal{F} satisfies (1) of Definition 1. Moreover, let $A_i \in \mathcal{F}_1$ and $B_i \in \mathcal{F}_2$ ($i=1,2$). If $A_1 \cap B_1 \subset A_2 \cap B_2$, then

$$\mathcal{S} = (A_2 \cap B_2) - (A_1 \cap B_1) = (A_2 - A_1) \cap (B_2 \cap B_1) \cup (B_2 - B_1) \cap A_2$$

the two terms of the union being disjoint. By hypothesis there exist sequences $\{C_j\}_{j=1}^n$, $\{D_k\}_{k=1}^m$ satisfying

$$A_2 - A_1 = \bigcup_{j=1}^n C_j, B_2 - B_1 = \bigcup_{k=1}^m D_k$$
and hence by (3), S has the representation

$$S = \bigcup_{j=1}^{n} (C_j \cap (B_2 \cap B_1)) \cup \bigcup_{k=1}^{m} (D_k \cap A_2)$$

all terms being disjoint. That \mathcal{J} satisfies condition (iii) is seen by considering the collection of all pairwise intersections between elements of the respective sequences for \mathcal{J}_1 and \mathcal{J}_2 which satisfy (iii). q.e.d.

An extension theorem for measures defined on a quasi-ring will now be given. The proof of the theorem is analogous to those of the more classical extension theorems and so will be omitted (e.g. cf[1]).

For an arbitrary class \mathcal{C} of subsets of Ω let $\sigma(\mathcal{C})$ denote the minimal σ-algebra containing \mathcal{C}.

Theorem 1. Let μ be a σ-finite completely additive set function defined on a quasi-ring \mathcal{J}. There exists a unique completely additive set function μ^* defined on $\sigma(\mathcal{J})$ such that for all $A \in \mathcal{J}$, $\mu^*(A) = \mu(A)$.

In the event that there exists a finite family satisfying (iii) of Definition 1, the minimal algebra containing \mathcal{J} is the collection of all finite unions of members of \mathcal{J}. After extending μ to this minimal algebra, Theorem 1 reduces in this case to a well-known extension theorem (cf. Doob [4], p. 605).

Definition 2. Let $X \in \mathcal{H}, Y \in \mathcal{H}$ and $\mathcal{J} \subseteq \mathcal{H}$ where \mathcal{J} is a quasi-ring. The class of all $\sigma(\mathcal{J})$-measurable $Y \in \mathcal{H}$ satisfying the system of equations

$$E_{\mathcal{J}} (X - Y)I_A = 0 \quad (A \in \mathcal{J})$$
will be denoted by \(E(X \mid \mathcal{F}) \), and called the conditional expectation of \(X \) given \(\mathcal{F} \).

As a corollary to Theorem 1, one immediately obtains

Theorem 2. For \(X \in \mathcal{H} \) and \(\mathcal{F} \subset \mathcal{A} \)

\[
E \{ X \mid \mathcal{F} \} = E \{ X \mid \sigma(\mathcal{F}) \}
\]

3. **Some general theorems on conditional expectation.**

The following definition will be used:

Definition 3. Quasi-rings \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) are said to be conditionally independent given a quasi-ring \(\mathcal{F} \) (to be abbreviated as \(\text{c.i.} \mid \mathcal{F} \)) if and only if for all \(A \in \mathcal{I}_1, B \in \mathcal{I}_2 \)

\[
E \{ I_{AB} \mid \mathcal{F} \} = E \{ I_A \mid \mathcal{F} \} \cdot E \{ I_B \mid \mathcal{F} \}
\] as.s.

\(X \) and \(Y \) are said to be \(\text{c.i.} \mid \mathcal{F} \) if and only if \(\text{c.i.} \) (cf. Loeve [5], p. 351).

The obvious notational changes are made in defining conditional independence given a r.v. If \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) are \(\text{c.i.} \mid \{ \emptyset, \Omega \} \), they are, of course, independent in the usual stochastic sense. The above definition of conditional independence is closely related to that in Loeve [5], as is shown by the next lemma. For well known properties of conditional expectations used in the following proofs, the reader is referred to [5].
Lemma 2. For \mathcal{F}_1 and \mathcal{F}_2 to be c.i. σ it is necessary and sufficient that $\sigma(\mathcal{F}_1)$ and $\sigma(\mathcal{F}_2)$ be c.i. $\left|\right.\sigma(\mathcal{F})$.

Proof. The necessity of the condition is immediate. The proof of sufficiency is by transfinite induction. Let \mathcal{L}_1 denote the class of all countable unions of elements of \mathcal{L}_1. (For all ordinals α less than or equal to the first uncountable ordinal, α_0 say,) define, recursively, \mathcal{F}_α as the set of countable unions of differences of elements of $\mathcal{F}_\alpha \equiv \bigcup_{\beta < \alpha} \mathcal{L}_\beta$. It is well known that $\sigma(\mathcal{F}_1) = \mathcal{F}_{\alpha_0}$. By hypothesis the equality (5) holds for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. Since \mathcal{F}_1 is closed under finite intersections, any countable union of elements in \mathcal{F}_1, and hence by definition, any element of \mathcal{L}_1 may be represented as a disjoint union of elements in \mathcal{F}_1. Therefore, since conditional expectations have (a.s.) the linear and limit properties of integrals it follows that (5) holds for all $A \in \mathcal{L}_1$. Clearly \mathcal{L}_1 is also closed under finite intersections. For induction purposes, assume that for any ordinal $\alpha < \alpha_0$, \mathcal{F}_α satisfies (5) and is closed under finite intersections.

It is clear that (5) holds for differences of elements in \mathcal{F}_α. For if $C, D \in \mathcal{F}_\alpha$, $C - D = C - (C \cap D)$, and since by assumption $C \cap D \in \mathcal{F}_\alpha$, (5) follows by writing $I_{C-D} = I_C - I_{C \cap D}$. Moreover countable unions of elements of \mathcal{F}_α may be shown to satisfy (5) in the same way as was used above for \mathcal{L}_1.

Therefore (5) is satisfied for all elements of $\mathcal{L}_{\alpha+1}$ and hence of $\mathcal{F}_{\alpha+1}$. From the identity $(A-B) \cap (C-D) = (A \cap C) - (B \cup D)$, it follows that $\mathcal{L}_{\alpha+1}$ and hence $\mathcal{F}_{\alpha+1}$ is closed under finite intersection. It therefore follows by transfinite induction that (5) holds for all $A \in \sigma(\mathcal{F}_1)$ and $B \in \mathcal{F}_2$. The lemma follows by a repetition of the above argument for \mathcal{F}_2.
It is remarked that if there exists a conditional probability distribution relative to \(\sigma(S) \) in the sense of Doob [4], the conditional expectations of (5) may be considered as integrals with respect to the distribution. Thus in this case Lemma 2 may be viewed as a simple extension of measures from quasi-rings to their minimal \(\sigma \)-algebras, and as such becomes a corollary to Theorem 1.

Lemma 3. For \(X, Y \in \mathcal{H} \), let \(X \) and \(Y \) be c.i. \(\mathcal{F} \). Then if \(XY \in \mathcal{H} \)

\[
E\{XY | \mathcal{F}\} = E\{X | \mathcal{F}\} \cdot E\{Y | \mathcal{F}\} \quad \text{a.s.}
\]

Proof. This result follows from (5) upon approximating \(X \) and \(Y \) by simple functions in the usual way. The assumption that \(XY \in \mathcal{H} \) is certainly not a necessary one but has been postulated in keeping with Definition 2.

The main theorem of this paper is

Theorem 3. Let \(X \in \mathcal{H} \) and \(\mathcal{F}_i \subset \mathcal{A} \) \((i=1,2) \) be given. If \(\mathcal{F}_i(X) \) and \(\mathcal{F}_2 \) are c.i. \(\mathcal{F}_1 \) then

\[
E\{X | \mathcal{F}_1 \wedge \mathcal{F}_2\} = E\{X | \mathcal{F}_1\} \quad \text{a.s.}
\]

Proof. Define \(\mathcal{I} = \mathcal{F}_1 \wedge \mathcal{F}_2 \). \(\mathcal{I} \) is a quasi-ring by Lemma 1. From Theorem 2, (4) and the fact that \(E(X | \mathcal{F}_1) \) is \(\sigma(\mathcal{I}) \)-measurable, it follows that to prove (6) it suffices to show that

\[
E \circ X_\mathcal{I} = E \circ E\{X | \mathcal{F}_1\} \mathbb{I}_\mathcal{B}
\]
for all $S \in \mathcal{I}$. Let $S = A \cap B$ for $A \in \mathcal{I}_1$, $B \in \mathcal{I}_2$. Then

$$E^c X_{A \cap B} = E^c E \{ X_{B} \mid \mathcal{I}_1 \} I_A$$

$$= E^c E \{ X \mid \mathcal{I}_1 \} E \{ I_B \mid \mathcal{I}_1 \} I_A$$

since X and I_B are c.i. $\mid \mathcal{I}_1$. Therefore

$$E^c X I_{A \cap B} = E^c E \{ I_B E \{ X \mid \mathcal{I}_1 \} \mid \mathcal{I}_1 \} I_A$$

$$= E^c E \{ X \mid \mathcal{I}_1 \} I_{A \cap B}$$

by (1). q.e.d.

Corollary 3.1. Let $X \in \mathcal{H}$ and let X and Z be c.i. $\mid Y$. Then

$$E \{ X \mid Y, Z \} = E \{ X \mid Y \} \quad \text{a.s.}$$

it is of interest to state this result under the stronger but more common assumption of independence, viz.

Corollary 3.2. For $X \in \mathcal{H}$, let the random vector (X,Y) be independent of Z. Then (7) holds.
Proof. This is a consequence of the fact that \((X,Y)\) being independent of \(Z\), implies that \(X\) and \(Z\) are c.i. \(|Y\). To see this, consider

\[
E \{I_A \cap B \mid Y\} = E \{E \{I_A \cap B \mid Y, X\} \mid Y\} = E \{E \{I_A \mid Y\} \cdot E \{I_B \mid Y, X\}\mid Y\}
\]

\[
= E \{E \{I_A \mid Y\}\} \cdot E \{E \{I_B \mid Y\}\} = E \{E \{I_A \mid Y\}\} \cdot E \{E \{I_B \mid Y\}\}
\]

where \(A \in \mathcal{G}(X)\), \(B \in \mathcal{G}(Z)\).

It should be noted that corollaries 3.1 and 3.2 remain valid if the random variables \(Y\) and \(Z\) are replaced by random functions since the proofs depend only on the properties of the corresponding \(\sigma\)-algebras.

Before stating a generalization of Theorem 3, we prove the following lemma.

Lemma 4. If \(\mathcal{F}_2\) and \(\mathcal{F}_3\) are c.i. \(\mid \mathcal{F}_1\), then \(\mathcal{F}_1 \cap \mathcal{F}_2\) and \(\mathcal{F}_1 \cap \mathcal{F}_3\) are c.i. \(\mid \mathcal{F}_1\)

Proof. Let \(A_1 \in \mathcal{F}_1\) \((i=1,2,3)\) and \(B_1 \in \mathcal{F}_1\). Then

\[
E \{I_{A_1 \cap A_2} I_{B_1 \cap A_3} \mid \mathcal{F}_1\} = I_{A_1} I_{B_1} E \{I_{A_2} I_{A_3} \mid \mathcal{F}_1\}
= I_{A_1} E \{I_{A_2} \mid \mathcal{F}_1\} I_{B_1} E \{I_{A_3} \mid \mathcal{F}_1\}
= E \{I_{A_1 \cap A_2} \mid \mathcal{F}_1\} E \{I_{B_1 \cap A_3} \mid \mathcal{F}_1\}
\]

by hypothesis and the lemma follows.
Theorem 4. Let $Y \in \mathcal{H}$ and $\mathcal{F}_i \subseteq \mathcal{A}$ ($i=1,2,3$) be given. If $\mathcal{F}_i \subseteq (\mathcal{F}_1 \cup \mathcal{F}_2)$ and if \mathcal{F}_2 and \mathcal{F}_3 are c.i. \mathcal{F}_1 then

$$E \left\{ Y \mid \mathcal{F}_1 \ast \mathcal{F}_3 \right\} = E \left\{ Y \mid \mathcal{F}_1 \right\} \quad \text{a.s.}$$

Proof. By Lemma 4 it follows that $\mathcal{F}_1 \ast \mathcal{F}_2$ and \mathcal{F}_3 are c.i. \mathcal{F}_1. Therefore, (8) becomes a consequence of Theorem 3 since $\mathcal{F}_1 \ast \mathcal{F}_2$ and \mathcal{F}_3 being c.i. \mathcal{F}_1 implies that $\mathcal{F}(Y)$ and \mathcal{F}_3 are c.i. \mathcal{F}_1.

Of particular importance is the following special case of the above theorem.

Corollary 4.1. Let $g : \mathbb{R} \to \mathbb{R}$, a \mathcal{H}-measurable function, and r.v.'s X,Y,Z be such that X and Z are independent and $(g(X,Y) \in \mathcal{H})$ Then

$$E \left\{ g(X,Y) \mid X,Z \right\} = E \left\{ g(X,Y) \mid Y \right\} \quad \text{a.s.}$$

As before, this result remains valid if the random variables X,Y and Z are replaced by random functions.

It should be remarked that many of the foregoing results may be obtained by elementary means for cases where the random variables involved possess joint probability density functions with respect to some dominating measure. In many applications however, the existence of such density functions cannot be postulated.
4. Applications.

As a first application of the results of Section 3 the following theorem shows the equivalence of certain characterizations of conditional independence.

Theorem 5. For r.v.'s X, Y, Z, the following statements are equivalent.

(a) Z and X are c.i. $| Y$

(b) $Z-Y$ and $X-Y$ are c.i. $| Y$

(c) $P\{Z \leq z \mid Y, X\} = P\{Z \leq z \mid Y\}$ for all $z \in \mathbb{R}_1$.

Proof. (Note first the standard definition $P[A | \mathcal{F}] \equiv E[I_A | \mathcal{F}]$ which has been presupposed in (c)). Lemma 4 shows that (a) \rightarrow (b). Since $\mathcal{G}(Z) \subset \mathcal{G}(Y, Z-Y)$ and $\mathcal{G}(Y, X) = \mathcal{G}(Y, X-Y)$ it follows from Corollary 4.1 that (b) \rightarrow (c). (c) implies that $E[I_A | Y, X] = E[I_A | Y]$ for all A of the form $\{z_1 < Z \leq z_2\}$ with $z_1, z_2 \in \mathbb{R}_1$. The collection of all such inverse images forms a quasi-ring, $\sigma(I)$ say such that $\sigma(I) = \mathcal{G}(Z)$. It follows then that for $A \in \mathcal{I}$ and $B \in \mathcal{G}(X)$

$$E[I_A I_B | Y] = E[I_B E[I_A | Y, X] | Y] = E[I_A | Y] \cdot E[I_B | Y]$$

and (a) follows by Lemma 2. q.e.d.

The equivalence of (a) and (c) has been proved in a different form by Doob ([4] pp. 83-85) for the more general case in which Z and X are allowed to be finite-dimensional random vectors. It should be pointed out that the restriction to one-dimensional r.v.'s was solely for presentation purposes throughout this paper, and that all of the above results carry
through when the conditioning r.v.'s are replaced by arbitrary families of
r.v.'s. This is true simply because all results involving r.v.'s' have been
stated in terms of their induced \(\sigma \)-algebras. Roughly speaking, in this
more general context, the implication \((c) \rightarrow (a)\) of Theorem 5 states that
for a Markov process the past and future are c.i. given the present.

A second application is in proving the statement that a stochastic
process \(\{X_t : t \in T\} \) with independent increments is a Markov Process.
Indeed this statement is a simple corollary of Theorem 4. For \(t_1 < t_2 < \ldots < t_n \)
consider

\[
P\{X_{t_n} \leq x \mid X_{t_1}, X_{t_2}, \ldots, X_{t_{n-1}}\} = P\{(X_{t_n} - X_{t_{n-1}}) + X_{t_{n-1}} \leq x \mid X_{t_{n-1}} \}
\]

\[
(X_t, \ldots, X_{t_{n-2}})
\]

\[
= P\{X_{t_n} \leq x \mid X_{t_{n-1}}\}
\]

The last equality is a consequence of the remark following Corollary 4.1, since
\(X_{t_n} - X_{t_{n-1}}\) and \((X_{t_1}, \ldots, X_{t_{n-2}})\) are independent. A proof of this fact,
using only the standard theorems of conditional expectation, is lengthy and

To introduce a final application, recall that a conditional expectation
given a random variable has a representation as a function on the range space
of the conditioning random variable, i.e., on \(\mathbb{R}_1 \). Thus the notation
\(E\{X \mid Y = y\} \) indicates the value of the function corresponding to \(E\{X \mid Y\} \)
evaluated at the point \(y \). The methods of this paper may be used to establish the following result: Let \(g: \mathbb{R}_2 \rightarrow \mathbb{R}_1 \) be a \(\mathcal{F}_2 \)-measurable function and let \(X \) and \(Y \) be r.v.'s such that \(g(X,Y) \in \mathcal{G} \). Then

\[
(9) \quad E \{ g(X, Y) \mid Y = y \} = E \{ g(X,Y) \mid Y = y \} , \quad \text{a.s.,}
\]

where the qualification (a.s.) means that the relation holds for all \(y \) in some Borel set \(B \) such that \(P \{ Y \in B \} = 1 \). To demonstrate (9) it is sufficient to show that the relation holds for the indicator function of an arbitrary set in \(\mathcal{B}_2 \) since it will then hold in the limit as \(g \) is approximated by simple functions in the usual way. For this purpose let \(\mathcal{J}_1, \mathcal{J}_2 \subset \mathcal{B}_2 \) be the quasi-rings consisting of all cylinder sets having bases which are Borel sets of the first and second coordinates respectively of \(\mathbb{R}_2 \). Now consider an arbitrary set \(B \in \mathcal{J}_1 \otimes \mathcal{J}_2 \), i.e., \(B = A_1 \cap A_2 \) for some \(A_1 \in \mathcal{J}_1 \) and \(A_2 \in \mathcal{J}_2 \). Then the indicator function of \(B \) is given by \(I_B(\cdot,\cdot) = I_{A_1}(\cdot) I_{A_2}(\cdot) \), where \(I_{A_1}(\cdot) \) and \(I_{A_2}(\cdot) \) are indicator functions defined on the first and second coordinates, respectively, of \(\mathbb{R}_2 \). Then

\[
E \{ I_B(X,Y) \mid Y = y \} = E \{ I_{A_1}(X) I_{A_2}(Y) \mid Y = y \}
= I_{A_2}(y) E \{ I_{A_2}(X) \mid Y = y \} , \quad \text{a.s.,}
= E \{ I_B(X,Y) \mid Y = y \} , \quad \text{a.s.}
\]

Thus (9) is verified for \(g = I_B \), \(B \in \mathcal{J}_1 \otimes \mathcal{J}_2 \). That (9) holds for indicator functions of arbitrary sets \(B \in \mathcal{B}_2 \) follows by transfinite induction in the manner of Lemma 2.
REFERENCES

<table>
<thead>
<tr>
<th>Address</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>5</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td></td>
</tr>
<tr>
<td>Dept. of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: H. Weingarten</td>
<td></td>
</tr>
<tr>
<td>Code 223</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Powder Factory</td>
<td>1</td>
</tr>
<tr>
<td>Indianhead, Mi.</td>
<td></td>
</tr>
<tr>
<td>Attn: F. Freshman R. and D.</td>
<td></td>
</tr>
<tr>
<td>Director, Naval Research Lab.</td>
<td>6</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: Technical Information Officer</td>
<td></td>
</tr>
<tr>
<td>Dept. Of Mathematical Statistics</td>
<td></td>
</tr>
<tr>
<td>University of North Carolina</td>
<td></td>
</tr>
<tr>
<td>Chapel Hill, N. C.</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Dept. of the Navy</td>
<td></td>
</tr>
<tr>
<td>17th and Constitution Aves.</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 433</td>
<td></td>
</tr>
<tr>
<td>Office of the Asst. Naval Attache for Research</td>
<td></td>
</tr>
<tr>
<td>Naval Attache</td>
<td></td>
</tr>
<tr>
<td>American Embassy</td>
<td></td>
</tr>
<tr>
<td>Navy No. 100</td>
<td></td>
</tr>
<tr>
<td>Fleet Post Office</td>
<td></td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Office of Technical Services</td>
<td></td>
</tr>
<tr>
<td>Dept. of Commerce</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Avionics Facility</td>
<td></td>
</tr>
<tr>
<td>Indianapolis 18, Indiana</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Scientific Section</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Dept. of the Navy</td>
<td></td>
</tr>
<tr>
<td>1000 Geary St.</td>
<td></td>
</tr>
<tr>
<td>San Francisco 9, California</td>
<td>2</td>
</tr>
<tr>
<td>Statistical Engineering Lab.</td>
<td></td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Dept. of Statistics</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Berkeley 4, California</td>
<td></td>
</tr>
<tr>
<td>Statistical Laboratory</td>
<td></td>
</tr>
<tr>
<td>University of Washington</td>
<td></td>
</tr>
<tr>
<td>Seattle 5, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Professor O. P. Aggarwal</td>
<td></td>
</tr>
<tr>
<td>Statistical Lab.</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
</tr>
<tr>
<td>Lafayette, Indiana</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Stephen G. Allen</td>
<td></td>
</tr>
<tr>
<td>Stanford Research Institute</td>
<td></td>
</tr>
<tr>
<td>Menlo Park, California</td>
<td></td>
</tr>
<tr>
<td>Professor Fred C. Andrews</td>
<td></td>
</tr>
<tr>
<td>Mathematics Dept.</td>
<td></td>
</tr>
<tr>
<td>University of Oregon</td>
<td></td>
</tr>
<tr>
<td>Eugene, Oregon</td>
<td></td>
</tr>
<tr>
<td>Professor T. W. Anderson</td>
<td></td>
</tr>
<tr>
<td>Center for Advanced Studies in Behavioral Sciences</td>
<td></td>
</tr>
<tr>
<td>Stanford, California</td>
<td>1</td>
</tr>
<tr>
<td>Professor David Blackwell</td>
<td></td>
</tr>
<tr>
<td>Dept. of Statistics</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Berkeley 4, California</td>
<td>1</td>
</tr>
</tbody>
</table>
Dr. Julius R. Blum
Dept. of Mathematics
Indiana University
Bloomington, Indiana

Dr. Paul Blunk
Box 532
Fair Oaks, California

Dr. Charles Boll
General Electric Co.
735 State Street
Santa Barbara, California

Professor W. G. Cochran
1 Dunster Street
Cambridge, Mass.

Professor Lee Cronbach
Bureau of Education Research
1007 S. Wright
Champaign, Illinois

Dr. Joseph Daly
Bureau of the Census
Washington 25, D. C.

Dr. Francis Dresch
Stanford Research Institute
1915 University Ave.
Palo Alto, California

Professor Meyer Dwass
Dept. of Mathematics
Northwestern University
Evanston, Ill.

Prof. D. A. S. Fraser
Dept. of Mathematics
University of Toronto
Toronto 5, Canada

Mr. Murray A. Geisler
Logistics Section
The RAND Corporation
1700 Main Street
Santa Monica, California

Mr. Geoffrey Gregory
4 Osborne Grove
Gatley, Cheadle
Cheshire, England

Professor E. J. Gumbel
Industrial Engr. Dept.
409 Engineering Bldg.
Columbia University
New York 27, N. Y.

Dr. Theodore E. Harris
The RAND Corporation
1700 Main Street
Santa Monica, California

Professor Leonid Hurwicz
School of Business Administration
University of Minnesota
Minneapolis 14, Minn.

Professor Stanley Isaacson
4715 Pleasant Street
Des Moines, Iowa

Professor Leo Katz
Statistics Dept.
Michigan State University
East Lansing, Michigan

Professor Tosio Kitagawa
Mathematical Institute
Faculty of Science
Kyusyu University
Fukuoka, Japan

Dr. Dennis V. Lindley
Statistical Lab.
University of Cambridge
Cambridge, England

Dr. Eugene Lukacs
Dept. of Mathematics
Catholic University
Washington 17, D. C.

Mr. Monroe Norden
Research Division
Engineering Statistics Group
College of Engineering
New York University
401 W. 205 Street
New York 54, N. Y.

Professor Stanley Reiter
Dept. of Economics
Purdue University
Lafayette, Indiana
Prof. George Resnikoff
Dept. of Industrial Engineering
Illinois Institute of Technology
Chicago 16, Illinois

Dr. A. R. Roy
Statistical Wing
Indian Council of Agricultural Research
Linlithgow Avenue
New Delhi, India

Professor Herman Rubin
Dept. of Mathematics
University of Oregon
Eugene, Oregon

Dr. Jagdish Rustagi
Dept. of Mathematics
College of Engineering and Science
Carnegie Institute of Technology
Pittsburgh 13, Pa.

Professor Seymour Sherman
Moore Sch. of Electrical Engineering
University of Pennsylvania
Philadelphia 4, Pa.

Dr. Milton Sobel
Bell Telephone Labs.
555 Union Blvd.
Allentown, Pa.

Professor Herbert Solomon
Teachers' College
Columbia University
New York 27, N. Y.

Professor Donald Truax
Mathematics Dept.
University of Kansas
Lawrence, Kansas

Mr. Cesareo Villegas
Institute de Matematica y Estadistica
Av. J. Herrera y Reissig 565
Montevideo, Uruguay

Professor W. Allen Wallis
Committee on Statistics
University of Chicago
Chicago 37, Illinois

Professor Irving Weiss
Bell Telephone Labs.
1600 Osgood Street
North Andover, Mass.

Dr. Oscar Wesler
Dept. of Mathematics
University of Michigan
Ann Arbor, Michigan

Dr. John D. Wilkes
Office of Naval Research
Code 200
Washington 25, D. C.

Professor S. S. Wilks
Room 110, Fine Hall
Box 708
Princeton, New Jersey

Professor J. Wolfowitz
Mathematics Dept.
Cornell University
Ithaca, N. Y.

Professor M. A. Woodbury
Dept. of Mathematics
New York University
New York 53, N. Y.

Additional copies for project leader and assistants and reserve for future requirements 50