NOTES ON FOURIER ANALYSIS AND SPECTRAL WINDOWS

BY
EMANUEL PARZEN

TECHNICAL REPORT NO. 48
MAY 15, 1963

PREPARED UNDER CONTRACT NONR-225(21)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH
NOTES ON FOURIER ANALYSIS AND SPECTRAL WINDOWS

by

Emanuel Parzen

TECHNICAL REPORT NO. 48

May 15, 1963

PREPARED UNDER CONTRACT Nonr-225(21)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

APPLIED MATHEMATICS AND STATISTICS LABORATORIES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Notes On Fourier Analysis and Spectral Windows

by

Emanuel Parzen

Summary: This is an expository paper which seeks to systematically develop some basic ideas about Fourier analysis and spectral windows in order to have a convenient reference for results to be used in other work by the author on statistical spectral analysis.

1This paper was prepared in the Summer of 1962 with the support of the Office of Naval Research under contracts Nonr-3440-00 and Nonr-225-21. Reproduction in whole or in part is permitted for any purpose of the United States Government.
1. Introduction

The purpose of science, it is said, is "to understand the present, to interpret the past, to predict the future." To achieve these aims, it attempts to determine the relations between different physical quantities which it expresses in the forms of theories (or "laws") abstracted from observations.

In many scientific fields, the basic data are obtained in the form of time series (that is, the data consist of a set of observations, each associated with a particular point of time.) Thus if one is studying temperature variations, one might begin by obtaining records of daily mean temperatures at various stations. If one is studying death rates, one might begin by obtaining records of annual mortality rates in various age groups. Consequently, the problem of time series analysis plays a role in all scientific fields.

In analyzing time series representing the behavior of physical phenomena over time, one of the main approaches of researchers has been to look for features which recur systematically after fixed periods of time, so that their occurrence can be accurately foreseen. By the successful application of such an approach, man is able to predict the tides and the times of sunrise and sunset. Consequently, among the problems which historically came to be considered in time series analysis were the problems of detecting hidden periodicities and of measuring seasonal variation.

These classical problems are nowadays being approached as part of the overall problem of statistical spectral analysis. Statistical spectral analysis may be defined as a theory which seeks to provide a method
whereby from observed records, of finite length, of an empirical phenomenon one can interpret the time functions representing the phenomenon as a superposition (finite or infinite linear combination) of harmonics \(\cos \omega t \) and \(\sin \omega t \).

The aim of this paper is to systematically develop some basic ideas about Fourier analysis and spectral windows. The author hopes to show in later publications [see Parzen (1963)] the usefulness of these ideas in obtaining a practical solution to the problems of statistical spectral analysis.

The paper consists of five sections: (1) introduction, (2) the Fourier coefficients of a periodic functions, (3) windows, (4) coefficient windows, (5) evaluation of Fourier coefficients using equi-spaced points.
2. The Fourier coefficients of a periodic function.

One approach to the problem of measuring or representing a function defined on an interval is to try to summarize the function \(f(\cdot) \) by a finite number of coefficients. Various methods of doing this are examined in this section.

Periodic functions. A time function \(f(\cdot) \) is said to be periodic, with period \(\theta \), if, for all \(t \geq 0 \),

\[
f(t) = f(t + k\theta) \quad \text{for all integers } k.
\]

The period of a periodic function is not unique, since if it has period \(\theta \) it also has period \(2\theta, 3\theta, \ldots \).

One often assumes time to be measured in months. A periodic function \(f(\cdot) \) with period one year then has period \(\theta = 12 \); that is, for all \(t \geq 0 \) and integers \(k = 1, 2, \ldots \),

\[
f(t) = f(t + 12) = f(t + 24) = \ldots = f(t + 12k).
\]

Frequency: A function \(f(t) \) is said to be a (real) harmonic with frequency \(\omega \) and amplitude \(A \), where \(\omega \) and \(A \) are positive constants, if it is of the form

\[
f(t) = A \cos \omega t
\]

or of the form
\[f(t) = A \sin \omega t . \]

A harmonic with frequency \(\omega \) has period

\[\theta = \frac{2\pi}{\omega} \]

since for any integer \(k \)

\[\cos[\omega(t + \frac{2\pi}{\omega} k)] = \cos(\omega t + 2\pi k) = \cos \omega t \]

\[\sin[\omega(t + \frac{2\pi}{\omega} k)] = \sin(\omega t + 2\pi k) = \sin \omega t . \]

If a harmonic has period \(\theta \), its frequency \(\omega \) must satisfy

\[\omega = k \frac{2\pi}{\theta} \quad \text{for some integer} \quad k = 1, 2, \ldots \]

since

\[\cos[\omega(t + \theta)] = \cos \omega t \quad \text{implies} \quad \theta = k \frac{2\pi}{\omega} . \]
Physical interpretation of frequency. Typical harmonics are sketched below:

The period θ is given by the distance from peak to peak, or equivalently it is given by the distance from trough to trough. The frequency ω represents the number of complete cycles (or swings) in 2π units of time; it is therefore called the angular or radian frequency, to distinguish it from true frequency v, measured in cycles per unit time. The true frequency v of a harmonic with angular frequency ω is given by

$$v = \frac{\omega}{2\pi}.$$

To illustrate these ideas suppose that time t is measured in months. The harmonics $\cos \omega t$ and $\sin \omega t$ have period $\frac{2\pi}{\omega}$ and represent variations which recur every $\frac{2\pi}{\omega}$ months. Thus the harmonics
\[\cos \frac{2\pi}{6} t \text{ and } \sin \frac{2\pi}{6} t \text{ have period } 6 \text{ and represent values which recur every 6 months. The true frequency of these harmonics is } \frac{1}{6}, \text{ which means that in one unit of time (here, one month) } \frac{1}{6} \text{ of a swing takes place.} \]

Zero frequency. A constant function

\[f(t) = A \]

can be regarded as the value of the harmonic \(A \cos \omega t \) with frequency \(\omega \) equal to zero. Consequently, by a zero frequency harmonic we mean a constant.

Expansion of a periodic function into harmonics. It is a very remarkable fact that a function \(f(t) \) with period \(\theta \) can be arbitrarily closely approximated by a linear combination

\[f_N(t) = \sum_{n=0}^{N} \left[A_n \cos\left(\frac{2\pi}{\theta} t\right) + B_n \sin\left(\frac{2\pi}{\theta} t\right) \right] \]

of the harmonics with frequencies \(\frac{2\pi}{\theta}, k = 0, 1, 2, \ldots \). A function of the form of (1) is called a harmonic polynomial of degree \(N \) and period \(\theta \).

There are many senses in which one can define closeness of approximation. Consequently, in order to form the harmonic polynomial which approximates a periodic function one must first define the mode of approximation.
Least squares approximation over an interval. Let \(f(t) \) be a periodic function with period \(\theta \). In studying this function we can confine our attention to the interval \(0 \leq t \leq \theta \), since whatever happens in this interval is repeated outside of it.

One sense in which a harmonic polynomial \(f_N(t) \) of degree \(N \) and period \(\theta \) can be said to be a good approximation to \(f(t) \) is if the integrated square difference

\[
(2) \quad \int_0^\theta [f(t) - f_N(t)]^2 \, dt
\]

is as small as possible; more precisely, the harmonic polynomial \(f_N(t) \) defined by (1) is called the least squares approximation to \(f(t) \) by a harmonic polynomial of degree \(N \) if

\[
(3) \quad \int_0^\theta [f(t) - f_N(t)]^2 \, dt = \min_{a_0, a_1, b_1, \ldots, a_N, b_N} S(a_0, a_1, b_1, \ldots, a_N, b_N)
\]

where

\[
S(a_0, a_1, b_1, \ldots, a_N, b_N)
\]

\[
(4) \quad = \int_0^\theta [f(t) - \sum_{n=0}^N (a_n \cos(\frac{2\pi}{\theta} t) + b_n \sin(\frac{2\pi}{\theta} t))]^2 \, dt.
\]

To determine \(A_0, A_1, B_1, \ldots, A_N, B_N \), one finds the roots of the derivatives \(\frac{\partial S}{\partial a_m} \) and \(\frac{\partial S}{\partial b_m} \) for \(m = 0, 1, \ldots, N \). Proceeding in this way one arrives at the following conclusion.
Normal equations for the coefficients of the least squares approximating harmonic polynomial. The coefficients $A_0, B_0, A_1, B_1, \ldots, A_N, B_N$ are the solution of the system of linear equations [for $m = 0, 1, \ldots, N$]

$$
\sum_{n=0}^{N} \left(A_n \int_0^\theta \cos \frac{\omega_n t \cos \omega_m t}{m} \, dt + B_n \int_0^\theta \sin \frac{\omega_n t \cos \omega_m t}{m} \, dt \right)
= \int_0^\theta f(t) \cos \frac{\omega_m t}{m} \, dt,
$$

(5)

$$
\sum_{n=0}^{N} \left(A_n \int_0^\theta \cos \frac{\omega_n t \sin \omega_m t}{m} \, dt + B_n \int_0^\theta \sin \frac{\omega_n t \sin \omega_m t}{m} \, dt \right)
= \int_0^\theta f(t) \sin \frac{\omega_m t}{m} \, dt,
$$

(6)

where

$$
\omega_n = n \frac{2\pi}{\theta}.
$$

The solution of these equations is rendered trivial by the following easily verified facts:

$$
\begin{align*}
&\int_0^\theta \cos \frac{\omega_n t \cos \omega_m t}{m} \, dt = 0 \quad \text{if } n \neq m, \\
&\int_0^\theta \sin \frac{\omega_n t \sin \omega_m t}{m} \, dt = 0 \quad \text{if } n \neq m, \\
&\int_0^\theta \sin \frac{\omega_n t \cos \omega_m t}{m} \, dt = 0.
\end{align*}
$$

(7)
\begin{align*}
\int_0^\theta \cos^2 \omega_n t \, dt &= \frac{\theta}{2} \quad \text{if } n > 0. \\
&= \theta \quad \text{if } n = 0.
\end{align*}

\begin{align*}
\int_0^\theta \sin^2 \omega_n t \, dt &= \frac{\theta}{2} \quad \text{if } n > 0. \\
&= 0 \quad \text{if } n = 0.
\end{align*}

Consequently, the least squares approximating harmonic polynomial of degree \(N \) to the function \(f(t) \) over the interval \(0 \) to \(\theta \) is given by (1) with

\begin{align*}
A_0 &= \frac{1}{\theta} \int_0^\theta f(t) \, dt, \quad B_0 = 0.
\end{align*}

\begin{align*}
A_n &= \frac{2}{\theta} \int_0^\theta f(t) \cos(n \frac{2\pi}{\theta} t) \, dt, \quad n > 0.
\end{align*}

\begin{align*}
B_n &= \frac{2}{\theta} \int_0^\theta f(t) \sin(n \frac{2\pi}{\theta} t) \, dt, \quad n > 0.
\end{align*}

It is striking that the expressions in (9) for the coefficients do not depend on \(N \). It may be verified that

\begin{align*}
\int_0^\theta [f(t) - \sum_{n=0}^N (A_n \cos \omega_n t + B_n \sin \omega_n t)]^2 \, dt \\
= \int_0^\theta f^2(t) \, dt - \sum_{n=0}^N (A_n^2 + B_n^2).
\end{align*}
For any finite \(N \), this integrated squared difference is in general positive. However, it tends to 0 as \(N \) tends to \(\infty \); consequently, one may write \(f(t) \) as an infinite series of harmonics,

\[
(11) \quad f(t) = \sum_{n=0}^{\infty} \left[A_n \cos \omega_n t + B_n \sin \omega_n t \right], \quad 0 \leq t \leq \theta,
\]

where \(\{\omega_n\} \) are given by (6) and \(\{A_n\} \) and \(\{B_n\} \) are given by (9).

The right hand side of (11) is called the Fourier series expansion of \(f(t) \). It should be noted that, unless \(f(t) \) is a sufficiently well behaved function, this infinite series does not necessarily converge at each value of \(t \). In order to emphasize this fact, instead of writing an equality sign in (11) one sometimes writes

\[
(12) \quad f(t) \sim \sum_{n=0}^{\infty} \left[A_n \cos \omega_n t + B_n \sin \omega_n t \right]
\]

to mean that the expressions in (10) converge to zero as \(N \) tends to \(\infty \). However in this paper we do not employ the notation given in (12).

Fourier coefficients: Given any periodic function \(f(\cdot) \) one can form sequences \(\{A_n\} \) and \(\{B_n\} \) defined by (9). The quantities \(A_n \) and \(B_n \) are called the Fourier coefficients of the function \(f(t) \). From (10) it follows that they provide a means of summarizing the continuum of numbers which constitute a function defined over an interval by means of countably infinitely many numbers. Some of the important properties of Fourier coefficients are the following (proofs are left to the reader.)
1) If a function \(f(t) \) has period \(\theta \), its Fourier coefficients can be written in terms of an integral over any complete period \(t_0 \) to \(t_0 + \theta \):

\[
A_0 = \frac{1}{\theta} \int_{t_0}^{t_0+\theta} f(t) \, dt ,
\]

while for \(n \geq 1 \),

\[
A_n = \frac{2}{\theta} \int_{t_0}^{t_0+\theta} f(t) \cos(n \frac{2\pi}{\theta} t) \, dt ,
\]

\[
B_n = \frac{2}{\theta} \int_{t_0}^{t_0+\theta} f(t) \sin(n \frac{2\pi}{\theta} t) \, dt .
\]

(13)

2) If a periodic function \(f(t) \) is even, in the sense that for all \(t \)

\[
f(-t) = f(t) ,
\]

then the sine coefficients \(B_n \) vanish,

\[
B_n = 0 \quad \text{for all } n ,
\]

and

\[
A_n = \frac{2}{\theta} \int_0^{\theta/2} f(t) \, dt , \quad n = 0 ,
\]

(14)

\[
= \frac{1}{\theta} \int_0^{\theta/2} f(t) \cos(n \frac{2\pi}{\theta} t) \, dt , \quad n \geq 1 .
\]
3) If a periodic function \(f(t) \) is odd, in the sense that for all \(t \)

\[f(-t) = -f(t) , \]

then the cosine coefficients vanish,

\[A_n = 0 \quad \text{for all } n , \]

and for \(n \geq 1 \)

\[
(15) \quad B_n = \frac{1}{\theta} \int_{0}^{\theta/2} f(t) \sin(n \frac{2\pi}{\theta} t) \, dt .
\]

4) If the periodic function \(f(t) \) is absolutely integrable

\[\int_{0}^{\theta} |f(t)| \, dt < \infty , \]

then

\[
(16) \quad \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = 0 .
\]

If \(f(t) \) is \(k \)-times differentiable, and its \(k \)-th derivative \(f^{(k)}(t) \) is absolutely integrable, then

\[
(17) \quad \lim_{n \to \infty} n^k A_n = \lim_{n \to \infty} n^k B_n = 0 .
\]
Complex Form of the Fourier Coefficients: The envelope R_n and phase φ_n of the Fourier coefficients A_n and B_n is defined by (for $n \geq 0$)

$$R_n = \sqrt{A_n^2 + B_n^2}, \quad \varphi_n = \tan^{-1} \frac{B_n}{A_n}.$$

It is easily verified that

$$A_n \cos(n \frac{2\pi}{\theta} t) + B_n \sin(n \frac{2\pi}{\theta} t)$$

$$= R_n \cos(n \frac{2\pi}{\theta} t - \varphi_n).$$

In terms of the envelope and phase coefficients the Fourier series expansion of a periodic function $f(t)$ may be written

$$f(t) = \sum_{n=0}^{\infty} R_n \cos(n \frac{2\pi}{\theta} t - \varphi_n).$$

In order to understand the intuitive meaning of the envelope and phase, we introduce the complex form of the Fourier coefficients.

For ease of manipulation it is frequently desirable to write the Fourier series as an expansion in complex harmonics (where $i = \sqrt{-1}$):

$$\exp[\ln \frac{2\pi}{\theta} t] = \cos(n \frac{2\pi}{\theta} t) + i \sin(n \frac{2\pi}{\theta} t).$$

Thus let C_n be the coefficient in the expansion
(22) \[f(t) = \sum_{n=-\infty}^{\infty} C_n \exp[i\left(\frac{2\pi}{\theta} t\right)]. \]

The quantities \(C_n \) are called the complex Fourier coefficients of \(f(t) \).

To determine the relation between the various Fourier coefficients, we write (20) in the form

\[f(t) = R_0 + \sum_{n=1}^{\infty} \frac{1}{2} \left[R_n \exp[i(n\frac{2\pi}{\theta} t - \phi_n)] + \exp[i(-n\frac{2\pi}{\theta} t + \phi_n)] \right] \]

(23)

\[= R_0 + \sum_{n=1}^{\infty} \frac{1}{2} R_n \exp(-i\phi_n) \exp(in\frac{2\pi}{\theta} t) \]

\[+ \sum_{n=-\infty}^{-1} \frac{1}{2} R_{-n} \exp(i\phi_{-n}) \exp(in\frac{2\pi}{\theta} t). \]

Comparing (22) and (23) we see that

\[C_0 = R_0 = A_0 = \frac{1}{\theta} \int_0^\theta f(t) \, dt, \]

for \(n \geq 1 \)

\[C_n = \frac{1}{\theta} R_n \exp(-i\phi_n) \]

\[= \frac{1}{\theta} \left[R_n \cos \phi_n - iR_n \sin \phi_n \right] \]

\[= \frac{1}{\theta} \left[A_n - iB_n \right] \]

\[= \frac{1}{\theta} \int_0^\theta f(t) \left[\cos(n\frac{2\pi}{\theta} t) - i \sin(n\frac{2\pi}{\theta} t) \right] \, dt \]

\[= \frac{1}{\theta} \int_0^\theta f(t) \exp[-i(n\frac{2\pi}{\theta} t)] \, dt, \]

15
and for $n \leq -1$,

$$C_n = \frac{1}{2} R_{-n} \exp(i\varphi_{-n})$$

$$= \frac{1}{2} (A_{-n} + iB_{-n})$$

$$= \frac{1}{\theta} \int_0^\theta f(t) \left\{ \cos(-n \frac{2\pi}{\theta} t) \right\} dt + \frac{1}{\theta} \int_0^\theta f(t) \left\{ i \sin\left(-n \frac{2\pi}{\theta} t \right) \right\} dt$$

$$= \frac{1}{\theta} \int_0^\theta f(t) \exp[-i(n \frac{2\pi}{\theta} t)] dt.$$

One sees that the complex Fourier coefficients C_n are given by a single formula (valid for $n = 0, \pm 1, \pm 2, \ldots$):

$$C_n = \frac{1}{\theta} \int_0^\theta f(t) \exp[-i(n \frac{2\pi}{\theta} t)] dt.$$ (24)

In general C_n is a complex number, which may be written in polar form:

$$C_n = R_n e^{i\varphi_n}.$$ (25)

defining

$$R_{-n} = R_n, \quad \varphi_{-n} = -\varphi_n.$$

From (25) one sees that the envelope R_n and the phase φ_n are the polar coordinates of the complex Fourier coefficient C_n.

16
Equation (24) is one instance of the fact that the complex Fourier series (23) is easier to manipulate than is the real Fourier series (11). Another instance of this fact is given by the following derivation of the important convolution theorem.

Convolution theorem. Let \(f_1(t) \) and \(f_2(t) \) be square-integrable functions with period \(\theta \), and respective complex Fourier series

\[
f_j(t) = \sum_{n=-\infty}^{\infty} (c_j)_n \exp[\text{in}\frac{2\pi}{\theta} t], \quad j = 1, 2.
\]

The function \(f_3(\cdot) \) defined by

\[
f_3(t) = \int_0^{\theta} f_1(s) f_2(t - s) \, ds
\]

is called the convolution of \(f_1(\cdot) \) and \(f_2(\cdot) \) and is often written

\[
f_3 = f_1 * f_2.
\]

Now

\[
f_1(s) f_2(t - s) = \sum_{n=-\infty}^{\infty} f_1(s) (c_2)_n \exp[\text{in}\frac{2\pi}{\theta} (t - s)].
\]

Integrating both sides of (27) over the interval \(0 \leq s \leq \theta \), it follows that

\[
f_3(t) = \sum_{n=-\infty}^{\infty} \exp[\text{in}\frac{2\pi}{\theta} t] (c_1)_n (c_2)_n.
\]
Equation (28) is a fundamental formula, expressing the convolution of two functions in terms of their Fourier coefficients. From (28) it follows that

\[(c_3)_n = \frac{1}{\theta} \int_0^\theta f_3(t) \exp[-i(n \frac{2\pi}{\theta} t)] \, dt = (c_1)_n (c_2)_n.\]

In words, the complex Fourier coefficient \((c_3)_n\) of the convolution \(f_3(\cdot)\) is the product of the complex Fourier coefficients \((c_1)_n\) and \((c_2)_n\).
3. Windows

The notion of a Fourier series derives its usefulness from the idea that it enables one to approximately represent an arbitrary function \(f(t) \) as a harmonic polynomial of some finite degree \(N \). The question naturally arises: how large need \(N \) be chosen in order that the harmonic polynomial \(f_N(t) \) defined by (2.1) can be considered to be a good approximation to \(f(t) \)? Indeed, the question needs to be examined whether

\[
(1) \quad \lim_{N \to \infty} f_N(t) = f(t)
\]

at each \(t \) in the interval \(0 \leq t \leq \theta \). In this section we develop the tools to answer such questions.

We first obtain a representation for \(f_N(t) \) in terms of \(f(t) \). For \(n \geq 1 \),

\[
A_n \cos \frac{\omega_n t}{n} + B_n \sin \frac{\omega_n t}{n}
\]

\[
= \frac{2}{\theta} \int_0^\theta f(x) \left(\cos \frac{\omega_n x}{n} \cos \frac{\omega_n t}{n} + \sin \frac{\omega_n x}{n} \sin \frac{\omega_n t}{n} \right) dx
\]

\[
= \frac{2}{\theta} \int_0^\theta f(x) \cos \frac{\omega_n (x - t)}{n} dx.
\]

Consequently,

\[
f_N(t) = \frac{1}{\theta} \int_0^\theta \left(1 + 2 \cos \frac{\omega_1 (x - t)}{n} + \ldots + 2 \cos \frac{\omega_N (x - t)}{n} \right) f(x) dx
\]

(2)\[\]

\[
= \int_0^\theta \frac{1}{\theta} D_N(2\pi \frac{x - t}{\theta}) f(x) dx
\]

19
defining

\[D_N(z) = 1 + 2 \cos z + 2 \cos 2z + \ldots + 2 \cos Nz. \]

The function \(D_N(z) \) is called Dirichlet's kernel. A graph of \(D_N(z) \) is given in Figure 3A.

One may verify that

\[D_N(z) = \frac{\sin(N + \frac{1}{2})z}{\sin \frac{1}{2} z}. \]

To prove (4) we write

\[
\sin\left(\frac{1}{2} z\right) D_N(z) = \sin \frac{1}{2} z + 2 \sin \frac{1}{2} z \cos z + \ldots \\
+ 2 \sin \frac{1}{2} z \cos Nz \\
= \sin \frac{1}{2} z + \sin \frac{3}{2} z - \sin \frac{1}{2} z + \ldots \\
+ \sin(N + \frac{1}{2})z - \sin(N - \frac{1}{2})z \\
= \sin(N + \frac{1}{2})z .
\]

The function \(D_N(z) \) is an even periodic function with period \(2\pi \).

Consequently it suffices to graph it for \(|z| \leq \pi \). It achieves its maximum in this interval at \(z = 0 \), where it has the value

20
\[D_N(0) = 2N + 1. \]

It has zeros at the points \(z \) satisfying \(\sin(N + \frac{1}{2})z = 0 \) so that
\((N + \frac{1}{2})z = \pm \pi, \pm 2\pi, \ldots \); thus the zeroes of \(D_N(z) \) are at
\[z = \pm \frac{2\pi}{2N + 1}, \pm \frac{4\pi}{2N + 1}, \ldots. \]

Equation (2) shows that the harmonic polynomial \(f_N(t) \) is actually an integral averaging over the values of \(f(t) \) weighted by the kernel
\[\frac{1}{\theta} D_N(2\pi \frac{x - t}{\theta}). \]
Using an analogy from communication theory, \(f_N(t) \) may be regarded as the impression obtained of the function \(f(t) \) when it is viewed through a window (or channel) of variable transmission properties given by the weighting function \(\frac{1}{\theta} D_N(2\pi \frac{x - t}{\theta}) \). We are thus led to the following formal definition of the notion of a window.

If \(f(t) \) and \(g(t) \) are periodic functions with period \(\theta \) such that
\[g(t) = \int_0^\theta G(t - x) f(x) \, dx, \]
we say that \(G(t) \) is the window through which \(g(t) \) views \(f(t) \).

The truncated Fourier series \(f_N(t) \) of a function \(f(t) \) views the function through a window \(\frac{1}{\theta} D_N(2\pi \frac{t}{\theta}) \) which is essentially the Dirichlet kernel. By examining the Dirichlet kernel, we can see some of the properties windows should have.

A window \(G(t) \) should be an even function, so that it gives equal treatment to values of \(f(\cdot) \) on both sides of a given point \(t \):
\[G(-t) = G(t). \]
A window \(G(t) \) should integrate to 1,

\[
\int_0^\theta G(t) \, dt = 1,
\]

so that if \(f(t) \) is identically a constant \(c \), then its transmitted value \(g(t) \) will be a constant and further the same constant \(c \).

A window \(G(t) \) should achieve its maximum at \(t = 0 \),

\[
|G(t)| \leq G(0) \quad \text{for all } t,
\]

and should be "concentrated" as much as possible about \(t = 0 \) in order that the value \(g(t) \) of the transmitted function \(g(\cdot) \) at a particular point \(t \) should reflect (as much as possible) the behavior of \(f(\cdot) \) in the neighborhood of \(t \).

The Dirichlet kernel cannot be considered to be satisfactorily concentrated about \(t = 0 \). One reason for saying this is the relative (absolute) size of the second largest peak (actually a negative peak, or trough) to the size of the largest peak. The largest peak of \(D_N(z) \), which occurs at \(z = 0 \), is \(2N + 1 \) while the second largest peak (trough), which occurs approximately (for large \(N \)) at \(z = \mp \pi/(2N + 1) \), is approximately \(-(2N + 1)(2/3\pi)\). The ratio of size of second largest peak to size of largest peak is thus approximately given by (for large \(N \))

\[
\frac{2}{3\pi} = 0.21.
\]
A second reason why the Dirichlet kernel must be considered an unsatisfactory window comes from the convergence theory of Fourier series. It is not true for an arbitrary continuous function \(f(\cdot) \) that the truncated Fourier series \(f_N(t) \) converges to \(f(t) \) as \(N \) tends to \(\infty \); for this to hold, some supplementary condition (such as that the function \(f(\cdot) \) be of bounded variation) must be imposed. This fact is somewhat disturbing since it is known (Weierstrass' theorem) that to each continuous function \(f(t) \) there exists a sequence of harmonic polynomials \(f_N(t) \) satisfying (1).

In order for this existence theorem to be of practical importance, methods must be developed for constructing such approximating harmonic polynomials, preferably using Fourier coefficients. One of the first such methods was discovered by Fejér. He proved that if one considers the arithmetic mean \(\overline{f_N}(t) \) of the first \(N \) Fourier sums of a function \(f(t) \),

\[
\overline{f_N}(t) = \frac{1}{N + 1} \left(f_0(t) + f_1(t) + \ldots + f_N(t) \right),
\]

then \(\overline{f_N}(t) \) is a harmonic polynomial of degree \(N \), and the sequence \(\overline{f_N}(t) \) converges uniformly to \(f(t) \) if \(f(t) \) is a continuous periodic function.

One can give an explicit expression for \(\overline{f_N}(t) \) in terms of the Fourier coefficients of \(f(t) \):

\[
\overline{f_N}(t) = \sum_{n=0}^{N} \left(1 - \frac{1}{N + 1} \right) \left(A_n \cos \omega_n t + B_n \sin \omega_n t \right).
\]
As an integral over \(f(t) \) one may write

\[
\overline{f}_N(t) = \int_0^\theta \frac{1}{\theta} F_N \left(2\pi \frac{x-t}{\theta} \right) f(x) \, dx,
\]

defining

\[
F_N(z) = \frac{1}{N+1} \left(\frac{\sin(N+1)\frac{1}{2}z}{\sin \frac{1}{2}z} \right)^2.
\]

We call \(F_N(z) \) the Fejér kernel. It is graphed in Figure 3A. In words, we may express (11) as follows: the \(N \)-th Fejér approximation \(\overline{f}_N(t) \) corresponds to viewing \(f(t) \) through the window \(\frac{1}{\theta} F_N \left(2\pi \frac{x-t}{\theta} \right) \).

To prove (11), one uses (2), and the trigonometric identity

\[
\sum_{n=0}^{N} \frac{\sin(n+\frac{1}{2})z}{\sin \frac{1}{2}z} = \left(\frac{\sin(N+1)\frac{1}{2}z}{\sin \frac{1}{2}z} \right)^2.
\]

The Fejér kernel seems to provide a more efficient window than the Dirichlet kernel since it is more "concentrated" about \(t = 0 \). The largest peak of \(F_N(z) \) is \(N + 1 \) while the second largest peak [at approximately \(z = 3\pi/(N+1) \) for large \(N \)] is approximately \((N+1) \left(\frac{2}{3\pi} \right)^2 \). The ratio of second largest peak to the largest peak is thus (for large \(N \))

\[
\left(\frac{2}{3\pi} \right)^2 = 0.04,
\]

compared to 0.21 in the case of the Dirichlet kernel.

It should be pointed out that the ratio of size of second largest peak to size of largest peak is only one of the ways that have been suggested to compare (in a very rough way) the degree of "concentration"
of two windows; however it would seem to be valid only in the case that
their second largest peaks occur at the same point. Unfortunately there
does not seem to be any universally valid criterion for comparing the
"concentration" of two windows; in the sequel, a number of such criteria
will be mentioned.

The introduction of the Fejér means \(\overline{f}_N(t) \) makes us aware that the
truncated Fourier series is not the only way in which the first \(N \)
Fourier coefficients of a function may be used to form a harmonic
approximation. Various other possibilities that have been suggested are
as follows.

The Modified Truncated Fourier Series. Because of the window to
which it leads, various authors have considered instead of the truncated
Fourier series \(f_N(t) \) the modified expression

\[
(14) \quad \bar{f}_N(t) = f_N(t) - \frac{1}{2} \left(A_n \cos \omega_n t + B_n \sin \omega_n t \right).
\]

It is easily verified that

\[
(15) \quad \bar{f}_N^*(t) = \int_0^\theta \frac{1}{\theta} D_N^*(2\pi \frac{x - t}{\theta}) f(x) \, dx
\]

where \(D_N^*(z) \) is the modified Dirichlet kernel defined by

\[
D_N^*(z) = D_N(z) - \cos Nz
\]

\[
= 1 + 2 \cos z + 2 \cos 2z + \ldots + 2 \cos(N-1)z + \cos Nz
\]

\[
= \frac{\sin \frac{1}{2} z}{\tan \frac{1}{2} z}
\]

(see Figure 3A for a graph of \(D_N^*(z) \).)
Tukey means. Another way to form a harmonic approximation to \(f(t) \)
is to form the mean

\[
\pi_N(t) = \frac{1}{2} \pi_N(t) + \frac{1}{4} \pi_N(t + \frac{\theta}{2N}) + \frac{1}{4} \pi_N(t - \frac{\theta}{2N})
\]

which the author calls the Tukey mean (of the truncated Fourier series)
because of its relation to certain procedures recommended by John W. Tukey
(see Blachman and Tukey (1958), p. 14) for the spectral analysis of time
series. To find the window corresponding to Tukey means, we write

\[
\pi_N(t) = \int_0^\theta \frac{1}{\theta} \left[\frac{1}{2} \sum_{n=1}^{N} \int_0^{2\pi} \left(x - t \right) + \frac{1}{4} \sum_{n=1}^{N} \int_0^{2\pi} \left(x - t \right) + \frac{\pi}{N} \right] f(x) \, dx
\]

\[
= \int_0^\theta \frac{1}{\theta} \left[\sum_{n=1}^{N} \int_0^{2\pi} \left(x - t \right) f(x) \, dx + \frac{\pi}{N} \right] \, dx
\]

defining

\[
\mathcal{T}_N(z) = \frac{1}{2} \sum_{n=1}^{N} \int_0^{2\pi} \left(z + \frac{\pi}{N} \right) + \frac{1}{4} \sum_{n=1}^{N} \int_0^{2\pi} \left(z + \frac{\pi}{N} \right) + \frac{1}{4} \sum_{n=1}^{N} \int_0^{2\pi} \left(z - \frac{\pi}{N} \right) \, dx
\]

We call \(\mathcal{T}_N(z) \) the Tukey kernel (it is graphed in Figure 3A). Intuitively,
one feels that the Tukey kernel is more "concentrated" than either the
Dirichlet kernel or the Fejér kernel, and therefore provides a better
harmonic approximation.

It is possible to explain how one might be led to discover the Tukey
kernel. The unsatisfactory feature of the modified Dirichlet kernel (like
the Dirichlet kernel) is that the absolute size of its second largest peak (actually, trough), which occurs at $z = 3\pi/2N$, relative to its largest peak at $z = 0$, is approximately 1/5. To reduce the size of the secondary peak, one combines $D_N^*(z)$ with a shifted version of itself, namely $D_N^*(z + \frac{\pi}{N})$, which has enough positivity at $z = 3\pi/2N$ to reduce the negative trough which $D_N^*(z)$ possesses there. It is thus possible to arrive at a class of possible kernels,

$$
T_N^{(\alpha)}(z) = \alpha D_N^*(z) + \frac{1}{2} (1 - \alpha) \left\{ D_N^*(z + \frac{\pi}{N}) + D_N^*(z - \frac{\pi}{N}) \right\}
$$

where α is chosen in $0 < \alpha < 1$. R. W. Hamming and J. W. Tukey, at the Bell Telephone Laboratories, experimented with various choices of α, and at one time recommended $\alpha = 0.54$.

Lanczos means. The mean

$$
f_N^{(C)}(t) = \frac{1}{\theta} \int_{t - \frac{\theta}{2N}}^{t + \frac{\theta}{2N}} f_N(t') \, dt'
$$

has essentially been recommended by C. Lanczos (see Lanczos (1956), p. 227). It may be verified that

$$
f_N^{(C)}(t) = \frac{1}{\theta} \int_{0}^{\theta} L_N(\frac{2\pi}{\theta} [x - t]) f(x) \, dx,
$$

defining the Lanczos kernel

$$
L_N(z) = \frac{2N}{\pi} \int_{-\pi/N}^{\pi/N} D_N(z + u) \, du.
$$
Like the Tukey kernel, the Lanczos kernel achieves greater concentration about $z = 0$ by averaging over the Dirichlet kernel so as to reduce the secondary peaks.
4. Coefficient Windows

One way of describing how well a harmonic polynomial approximates a function \(f(t) \) is by specifying the window through which the polynomial views \(f(t) \). From the point of view of constructing approximating harmonic polynomials, it is preferable to use formulas for the polynomials in terms of the Fourier coefficients of the function \(f(t) \). We are thus led to the notion of a coefficient window.

The harmonic approximation to a periodic function \(f(t) \) with period \(\Theta \) with coefficient window \(\{ k_N(n), n = 0, 1, \ldots, N \} \) is defined to be the harmonic polynomial

\[
(1) \quad f_N; k_N(t) = \sum_{n=0}^{N} k_N(n) \{ A_n \cos \omega_n t + B_n \sin \omega_n t \}
\]

where \(\omega_n = n(2\pi/\Theta) \) and \(A_n \) and \(B_n \) are the Fourier coefficients of \(f(t) \).

In Table 4A we tabulate the coefficient windows corresponding to the various harmonic approximations considered in Section 3.

The Fourier transform

\[
(2) \quad k_N(z) = k_N(0) + 2 \sum_{j=1}^{N} \cos jz \ k_N(j)
\]

is defined to be the amplitude window of the harmonic approximation. Using (1) one may verify that

\[
(3) \quad f_N; k_N(t) = \int_{0}^{\Theta} \frac{1}{\Theta} k_N(\frac{2\pi}{\Theta} [x - t]) f(x) \, dx .
\]
From (3) one sees that the true window through which the harmonic approximation \(f_N, k_N(t) \) views \(f(x) \) is [up to a change of scale depending on the period \(\theta \) of \(f(t) \)] the amplitude window \(K_N(z) \). Note that \(K_N(z) \) has period \(2\pi \).

At \(n = 0 \), the coefficient window always has the value 1,

\[(4) \quad k_N(0) = 1,\]

since we desire that

\[
\frac{1}{2\pi} \int_{0}^{2\pi} K_N(z) \, dz = 1.
\]

We also define the coefficient window for negative values of \(n \) in such a way that it is an even function:

\[(5) \quad k_N(-n) = k_N(n), \quad n = 0, \pm 1, \ldots, \pm N.\]

Instead of (2) we may then write

\[(6) \quad K_N(z) = \sum_{j=-N}^{N} \cos jz \, k_N(j).\]

Inverting (6) we have

\[(7) \quad k_N(n) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos nz \, K_N(z) \, dz.\]

One advantage of introducing the coefficient windows and amplitude windows is that the period \(\theta \) of the periodic function \(f(\cdot) \) under
consideration no longer explicitly enters. However, a more important advantage is that we can give a general treatment of the properties of harmonic approximations. In order to do this it is convenient to introduce still another stage of abstraction.

If \(k(u) \) is a function, defined for \(-\infty < u < \infty \), such that

1) \(k(0) = 1 \)

2) \(k(-u) = k(u) \)

3) \(k(u) = 0 \) for \(|u| > 1 \)

we call \(k(u) \) a coefficient window generator. Its Fourier transform

\[
K(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iu} k(u) \, du , \quad -\infty < z < \infty ,
\]

is called an amplitude window generator. Note that

\[
k(u) = \int_{-\infty}^{\infty} e^{izu} K(z) \, dz ;
\]

since \(K(z) \) is not necessarily absolutely integrable over \(-\infty < z < \infty \), the integral in (9) is in general defined as a limit in mean square.

Now, let \(M \) be a positive number (in practice, \(M \) will be a member of a sequence \(M_N \) of numbers which tend to \(\infty \) as \(N \) tends to \(\infty \)). One may define a coefficient window \(k_N(u) \) by

\[
k_N(n) = k\left(\frac{n}{M}\right).
\]

Note that the window defined by (10) satisfies (4) and (5).
The coefficient windows in Table 4A can be generated by a formula of the form of (10) from a coefficient window generator (see Table 4B).

The relationship that exists between M and N is determined by the requirement that

\[(11) \quad k\left(\frac{n}{M}\right) = 0 \quad \text{for} \quad n = N + 1, N + 2, \ldots ;\]

this assumption holds in all the cases considered in Table 4B.

We now obtain a formula for the amplitude window corresponding to the coefficient window defined by (10). Using (11), the harmonic polynomial (1) may then be written

\[
f_{N;K}(t) = \sum_{n=0}^{N} k\left(\frac{n}{M}\right) \left\{ A_n \cos \omega_n t + B_n \sin \omega_n t \right\}
\]

(12)

\[= \sum_{n=0}^{\infty} k\left(\frac{n}{M}\right) \left\{ A_n \cos \omega_n t + B_n \sin \omega_n t \right\} .\]

We next use (9) to obtain

\[
f_{N;K}(t) = \sum_{n=0}^{\infty} \left\{ \int_{-\infty}^{\infty} \cos \left(\frac{nz}{M}\right) K(z) \, dz \right\} \left\{ A_n \cos \omega_n t + B_n \sin \omega_n t \right\}
\]

(13)

\[= \int_{-\infty}^{\infty} dz \, K(z) \sum_{n=0}^{\infty} \left\{ A_n \cos \left(\frac{2\pi t}{\theta} + n \frac{2\pi z}{M}\left(\frac{2\pi z}{M}\right)
\right) + B_n \sin \left(\frac{2\pi t}{\theta} + n \frac{2\pi z}{M}\right) \left(\frac{2\pi z}{M}\right) .\]

Since
\[2 \cos A \cos B = \cos(A + B) + \cos(A - B) \]
\[2 \sin A \sin B = \sin(A + B) + \sin(A - B) \]

it follows that the last sum in (13) is equal to

\[
\frac{1}{2} \sum_{n=0}^{\infty} \left\{ A_n \left[\cos \omega_n \left(t + \frac{\theta}{2\pi M} \right) + \cos \omega_n \left(t - \frac{\theta}{2\pi M} \right) \right] \\
+ B_n \left[\sin \omega_n \left(t + \frac{\theta}{2\pi M} \right) + \sin \omega_n \left(t - \frac{\theta}{2\pi M} \right) \right] \right\} \\
= \frac{1}{2} \left\{ f(t + \frac{\theta}{2\pi M}) + f(t - \frac{\theta}{2\pi M}) \right\} .
\]

Consequently, recalling that \(f(t) \) is a periodic function defined for all \(t \) in \(-\infty < t < \infty \),

\[
f_{N; k_N}(t) = \frac{1}{2} \int_{-\infty}^{\infty} dz \ K(z) \left\{ f\left(t + \frac{\theta}{2\pi M} \right) + f\left(t - \frac{\theta}{2\pi M} \right) \right\} \\
= \int_{-\infty}^{\infty} dz \ K(z) \ f\left(t + \frac{\theta}{2\pi M} \right) ;
\]

(14)

where to prove the last equation note that \(K(z) \) is an even function so that

\[
\int_{-\infty}^{\infty} dz \ K(z) \ f\left(t - \frac{\theta}{2\pi M} \right) = \int_{-\infty}^{\infty} dz' K(z') f\left(t + \frac{\theta}{2\pi M} \right) .
\]

In (14) we make the change of variable \(y = t + (\theta/2\pi M) \), and obtain

the following conclusion; for the coefficient window defined by (10),

33
\[f_{n,k}(t) = \int_{-\infty}^{\infty} \frac{2\pi M}{\theta} K\left(\frac{2\pi M}{\theta}(t - y)\right) f(y) \, dy. \]

In words, this conclusion may be expressed as follows: the harmonic approximation \(f_{n,k}(t) \) corresponds to viewing \(f(t) \) through a window on the infinite real line with transmission function

\[\frac{2\pi M}{\theta} K\left(\frac{2\pi M}{\theta} t\right) \]

which is (up to a scale factor) the amplitude window generator \(K(z) \) corresponding to the coefficient window generator \(k(u) \). By writing the window relating \(f_{n,k}(t) \) and \(f(t) \) as a function on the infinite real line we have reduced the study of its properties to the study of the properties of the amplitude window generator \(K(z) \).

It is of interest to obtain in terms of \(K(z) \) an expression for the window relating \(f_{n,k}(t) \) and \(f(t) \) as a function on the basic interval \(-\theta/2 \leq t \leq \theta/2\). From (14) one may write

\[f_{n,k}(t) = \sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(2k+1)^{\theta}}{2} \frac{2\pi M}{\theta} K\left(\frac{2\pi M}{\theta}(t - y)\right) f(y) \, dy. \]

In each integral in (16) make the change of variable \(z = y - j\theta \). Since

\[f(z + j\theta) = f(z) \]

we obtain

\[f_{n,k}(t) = \int_{-\theta/2}^{\theta/2} dz \, f(z) \sum_{j=-\infty}^{\infty} \frac{2\pi M}{\theta} K\left(\frac{2\pi M}{\theta}(t - z - j\theta)\right). \]

34
Thus the window relating $f_N^*(t)$ and $f(t)$ on the interval $-\theta/2 \leq t \leq \theta/2$ is

\begin{equation}
\frac{2\pi M}{\theta} \sum_{j=-\infty}^{\infty} K\left(M \frac{2\pi}{\theta} t - M2\pi j\right).
\end{equation}

This fundamental result may be summed up as follows:

The amplitude window

\begin{equation}
K_M(z) = \sum_{n=-\infty}^{\infty} \cos nz \; k\left(\frac{n}{M}\right), \quad 0 \leq z \leq 2\pi
\end{equation}

corresponding to the coefficient window $k\left(\frac{n}{M}\right)$ is given by

\begin{equation}
K_M(z) = 2\pi M \sum_{j=-\infty}^{\infty} K(M(z - 2\pi j))
\end{equation}

where $K(z)$ is the amplitude window generator obtained from the coefficient window generator $k(u)$ by (8).

To illustrate the meaning of the fundamental relation given by (20), let us consider the example of Fejér means. If $f(t)$ is a function with period θ and with Fourier coefficients A_n and B_n, and if

\begin{equation}
f_N^F(t) = \sum_{n=0}^{N} \left(1 - \frac{|n|}{N}\right) \left(A_n \cos \omega_n t + B_n \sin \omega_n t\right),
\end{equation}

then by Table 4A

\begin{equation}f_N^P(t) = \int_0^\theta \frac{1}{\theta} K_N\left(2\pi \frac{x - t}{\theta}\right) f(x) \; dx
\end{equation}

35
where

(23) \[K_N(z) = \frac{1}{N} \left(\frac{\sin \frac{1}{2} Nz}{\sin \frac{1}{2} z} \right)^2 . \]

However, the harmonic polynomial in (21) can be written

(24) \[\mathfrak{f}_{N,F}(t) = \sum_{n=0}^{N} k\left(\frac{u}{N}\right) \left(A_n \cos \omega_n t + B_n \sin \omega_n t \right) \]

where \(M = N \) and

\[k(u) = 1 - |u|, \quad |u| \leq 1 \]

(25) \[= 0, \quad |u| > 1 \]

with Fourier transform

\[K(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuz} k(u) \, du = \frac{1}{\pi} \int_{0}^{1} (1 - u) \cos uz \, du \]

(26) \[= \frac{1}{2\pi} \left(\frac{\sin(z/2)}{z/2} \right)^2 . \]

What (20) says is that

(27) \[\frac{1}{N} \left(\frac{\sin \frac{1}{2} Nz}{\sin \frac{1}{2} z} \right)^2 = \sum_{j=\infty}^{N} \left(\frac{\sin N(z - 2\pi j)/2}{N(z - 2\pi j)/2} \right)^2 . \]

An independent verification that (27) holds can be obtained by using the expansion
(28) \[\frac{1}{\sin^2 z} = \sum_{j=-\infty}^{\infty} \frac{1}{(z + \pi j)^2}. \]

To do this note that (27) holds if

\[
\left\{ \frac{\sin \frac{1}{2} Nz}{\sin \frac{1}{2} z} \right\}^2 = \sum_{j=-\infty}^{\infty} \left\{ \frac{\sin N(z - 2\pi j)/2}{\frac{1}{2}(z - 2\pi j)} \right\}^2
\]

\[= \sum_{j=-\infty}^{\infty} \left\{ \frac{\sin \frac{1}{2} Nz}{\frac{1}{2} z - \pi j} \right\}^2\]

which is an immediate consequence of (28).

We next use (20) and (28) to derive line VI in Table 4A: if

\[k(u) = 1 - 6u^2 + 5|u|^3, \quad |u| \leq \frac{1}{2},\]

(29)

\[= 2(1 - |u|)^3, \quad \frac{1}{2} < |u| < 1,\]

\[= 0, \quad |u| > 1,\]

if

(30) \[K_M(z) = \sum_{n=-N}^{N} \frac{1}{M} k(\frac{n}{M}) \cos nz,\]

and if \(M \) is an even integer less than \(N \), then

(31) \[K_M(z) = \frac{3}{4M^3} \left\{ \frac{\sin \frac{1}{4} Mz}{\frac{1}{2} \sin \frac{z}{2}} \right\}^4 \left\{ 1 - \frac{2}{3} \left(\sin \frac{z}{2} \right)^2 \right\} \cdot\]

To prove (31) we use the fact, which follows from (20), that
(32) \[K_M(z) = 2\pi M \sum_{j=-\infty}^{\infty} K(M(z - 2\pi j)) \]

where

(33) \[K(z) = \frac{3}{4\pi} \left(\frac{\sin \frac{z}{4}}{\frac{z}{4}} \right)^4. \]

Therefore, assuming \(M \) is even,

\[
K_M(z) = \frac{3}{4} M \sum_{j=-\infty}^{\infty} \left\{ \sin \left(\frac{Mz}{4} - \frac{M2\pi j}{4} \right) \right\}^4 \left(\frac{M}{4} \right)^4 \left(z - 2\pi j \right)^{-4}
\]

(34) \[
= \frac{3}{4M^3} \sum_{j=-\infty}^{\infty} \left\{ 2 \sin \left(\frac{Mz}{4} \right) \right\}^4 \left(\frac{M}{2} \right)^4 \left(\frac{3}{2} - \pi j \right)^{-4}
\]

To sum the last series in (34) we differentiate (28) and obtain:

\[
\frac{d}{dz} \sum_{j=-\infty}^{\infty} (z + \pi j)^{-2} = (-2) \sum_{j=-\infty}^{\infty} (z + \pi j)^{-3}
\]

\[
= \frac{d}{dz} \sin^{-2} z = (-2) \sin^{-3} z \cos z,
\]

\[
\frac{d}{dz} \sum_{j=-\infty}^{\infty} (z + \pi j)^{-3} = (-3) \sum_{j=-\infty}^{\infty} (z + \pi j)^{-4}
\]

\[
= \frac{d}{dz} \{ \sin^{-3} z \cos z \}
\]

\[
= -\sin^{-3} z \sin z + \cos z (-3) \sin^{-4} z \cos z
\]
\[(-3) \sin^{-1} z \left\{ \cos^2 z + \frac{1}{3} \sin^2 z \right\} \]

\[= (-3) \sin^{-1} z \left\{ 1 - \frac{2}{3} \sin^2 z \right\}. \]

Thus

\[\sum_{j=-\infty}^{\infty} (z + \pi j)^{-1} = \sin^{-1} z \left\{ 1 - \frac{2}{3} \sin^2 z \right\}, \]

\[\sum_{j=-\infty}^{\infty} \left(\frac{\pi}{2} - \pi j \right)^{-1} = \sin^{-1} \frac{z}{2} \left\{ 1 - \frac{2}{3} \sin^2 \frac{z}{2} \right\}. \]

Combining (36) and (34), one obtains (31).

From (20) we also obtain an approximate expression for the amplitude window

\[\sum_{n=-\infty}^{\infty} \cos nz \left(\frac{n}{M} \right), \quad 0 \leq z \leq 2\pi \]

corresponding to the coefficient window \(\left(\frac{n}{M} \right) \): approximately,

\[K_M(z) = 2\pi M K(Mz). \]

In writing (38), we are assuming that \(K(z) \) becomes negligibly small for \(|z| \geq 2\pi M \).
5. **Evaluation of Fourier coefficients using equi-spaced points.**

It may be difficult to obtain the Fourier coefficients of a periodic function $f(t)$, with period θ, because of the difficulty in evaluating the integrals defining the coefficients. Further, the function $f(t)$ may not be known at all points t in the interval $0 \leq t \leq \theta$, but may be known (especially if it is an empirically observed function) only at a set of equi-distantly spaced points. In this section we consider the problem of evaluating the Fourier coefficients

$$A_0 = \frac{1}{\theta} \int_0^\theta f(t) \, dt,$$

(1) $$A_n = \frac{2}{\theta} \int_0^\theta f(t) \cos\left(n \frac{2\pi}{\theta} t\right) \, dt, \quad n \geq 1,$$

$$B_n = \frac{2}{\theta} \int_0^\theta f(t) \sin\left(n \frac{2\pi}{\theta} t\right) \, dt, \quad n \geq 1,$$

when the values of the function $f(t)$ are known only at the r equispaced points $t_0, t_1, \ldots, t_{r-1}$ defined by

(2) $$t_j = \frac{\theta}{r} j, \quad j = 0, 1, \ldots, r - 1.$$

In the theory of Riemann integration it is shown that if $g(t)$ is a continuous function, then

(3) $$\int_0^\theta g(t) \, dt = \lim_{r \to \infty} \frac{\theta}{r} \sum_{j=0}^{r-1} g\left(\frac{\theta}{r} j\right).$$

In view of (3), it seems natural to approximate the Fourier coefficients
Define A_0, A_n, and B_n by the respective quantities

$$A_{0,r} = \frac{1}{r} \sum_{j=0}^{r-1} f(t_j)$$

$$A_{n,r} = \frac{2}{r} \sum_{j=0}^{r-1} f(t_j) \cos\left(\frac{2\pi}{r} j \right)$$

$$B_{n,r} = \frac{2}{r} \sum_{j=0}^{r-1} f(t_j) \sin\left(\frac{2\pi}{r} j \right)$$

The quantities defined in (4) are called the Fourier coefficients of $f(t)$ over the discrete set of points $\{t_0, t_1, \ldots, t_r\}$. For brevity we sometimes call them the discrete Fourier coefficients of $f(t)$.

Fortunately it is possible to give exact expressions for the relations between the Fourier coefficients and the discrete Fourier coefficients. We first notice that the set of numbers $\{A_{n,r}, n = 0, 1, 2, \ldots\}$ actually consists of at most r different integers! Indeed if n is an integer from 1 to r, then for any integer k it holds for any t in $\{t_0, t_1, \ldots, t_r\}$

$$\cos(kr + n) \frac{2\pi}{\theta} t_j = \cos\left(\frac{2\pi}{\theta} t_j \right),$$

(5)

$$\cos(kr - n) \frac{2\pi}{\theta} t_j = \cos\left(\frac{2\pi}{\theta} t_j \right).$$

In words, given values only at the points t_0, t_1, \ldots, t_r, a harmonic $\cos m \frac{2\pi}{\theta} t$, with frequency $m \frac{2\pi}{\theta}$, cannot be distinguished from a harmonic $\cos n \frac{2\pi}{\theta} t$ if m is related to n by

$$m = kr + n \quad \text{or} \quad m = kr - n$$

(6)
for some integer \(k \). To describe this situation we introduce the following intuitive terminology: we call the frequency \(m \frac{2\pi}{\theta} \) an alias of the frequency \(n \frac{2\pi}{\theta} \) over the points \(t_j = j \frac{\theta}{r} \) if \(m \) is related to \(n \) by (6). The fact that aliases exist is called the "aliasing effect of sampling."

For sines, instead of (5) we have

\[
\sin(kr + n) \frac{2\pi}{\theta} t_j = \sin(n \frac{2\pi}{\theta} t_j)
\]

(7)

\[
-\sin(kr - n) \frac{2\pi}{\theta} t_j = \sin(n \frac{2\pi}{\theta} t_j).
\]

The proof of (5) and (7) is immediate; for \(j = 0, 1, \ldots, r, \)

\[
\cos \left\{ (kr + n) \frac{2\pi}{\theta} \left(\frac{\theta}{r} j \right) \right\} = \cos \left\{ (kr + n) \frac{2\pi j}{r} \right\}
\]

\[
= \cos(kr \frac{2\pi j}{r}) \cos(n \frac{2\pi j}{r}) - \sin(kr \frac{2\pi j}{r}) \sin(n \frac{2\pi j}{r})
\]

\[
= \cos(n \frac{2\pi j}{r}) = \cos \left\{ n \frac{2\pi}{\theta} \left(\frac{\theta}{r} j \right) \right\};
\]

\[
\sin \left\{ (kr + n) \frac{2\pi}{\theta} \left(\frac{\theta}{r} j \right) \right\} = \sin \left\{ (kr + n) \frac{2\pi j}{r} \right\}
\]

\[
= \sin(kr \frac{2\pi j}{r}) \cos(n \frac{2\pi j}{r}) + \cos(kr \frac{2\pi j}{r}) \sin(n \frac{2\pi j}{r})
\]

\[
= \sin(n \frac{2\pi j}{r}) = \sin \left\{ n \frac{2\pi}{\theta} \left(\frac{\theta}{r} j \right) \right\};
\]

and so on.
Pictorial representation of aliasing. Let us represent the frequencies \(n \frac{2\pi}{\theta} \) on a line running from 0 to \(\infty \), with the integer \(n \) on the line representing the frequency \(n \frac{2\pi}{\theta} \). Then we can represent the aliasing as a "folding" of the line into the interval 0 to \(r \) (see Figure 5A). There is thus a confusion of frequencies due to the fact that two harmonics whose frequencies are related by (6) have the same values at the sampling points \(t_j \). One refers to this confusion of frequencies as "aliasing" because one can regard the various different frequencies \((kr + n) \frac{2\pi}{\theta} \) and \((kr - n) \frac{2\pi}{\theta} \) as adopting the name of the frequency \(n \frac{2\pi}{\theta} \) which is the lowest positive frequency of all those which are aliased.

The number of distinct Fourier coefficients. From (5) and (7) one sees that in order to know the values of all the discrete Fourier coefficients \(A_{n;r} \) and \(B_{n;r} \) it suffices to know them for

\[
\begin{align*}
\text{if } r \text{ is odd, } & \quad n = 0, 1, \ldots, \frac{1}{2} (r - 1) \\
(8) & \quad = 0, 1, \ldots, \frac{1}{2} r \quad \text{if } r \text{ is even.}
\end{align*}
\]

The two equations in (8) can be expressed by one equation which holds for any value of \(r \):

\[
(8') \quad n = 0, 1, \ldots, \left[\frac{1}{2} r \right]
\]

where the square brackets indicate that we take the integral part of the number within the brackets.
Now \(B_0 = 0 \) and if \(r \) is even then \(B_{r/2} = 0 \). Consequently the \(r \) observation points \(f(t_j), j = 0, 1, \ldots, r - 1 \) always yield exactly \(r \) distinct discrete Fourier coefficients. Further, the relation between these discrete Fourier coefficients \(A_{n;r} \) and \(B_{n;r} \) is given by

\[
A_{0;r} = A_0 + \sum_{k=1}^{\infty} A_{rk}
\]

\[
A_{n;r} = A_n + \sum_{k=1}^{\infty} (A_{rk+n} + A_{rk-n})
\]

\[
B_{n;r} = B_n + \sum_{k=1}^{\infty} (B_{rk+n} - B_{rk-n})
\]

To prove (9), substitute the Fourier series expansion

\[
f(t) = \sum_{n=0}^{\infty} \left\{ A_n \cos \left(\frac{2\pi}{\theta} t \right) + B_n \sin \left(\frac{2\pi}{\theta} t \right) \right\}
\]

in (4), and use (5) and (7) as well as the fact that

\[
\begin{align*}
\sum_{j=0}^{n-1} \cos \left(\frac{2\pi}{r} j \right) &= 0 \quad \text{if} \quad n \neq 0, r, 2r, \\
\sum_{j=0}^{r-1} \sin \left(\frac{2\pi}{r} j \right) &= 0 \quad \text{if} \quad r \quad \text{is odd}
\end{align*}
\]

which follows from the fact that

\[
\sum_{j=0}^{r-1} \exp \left[i n \frac{2\pi}{r} j \right] = \frac{1 - \exp \left[i n \frac{2\pi}{r} \right]}{1 - \exp \left[i \frac{2\pi}{r} \right]}
\]
From (9) one obtains the following conclusion: given the values of a function at a discrete set of points, one can not obtain the true harmonic spectrum of the function which is contained in the Fourier coefficients. Rather one can obtain estimates of the Fourier coefficients of the low frequency harmonics, these estimates being somewhat "contaminated" by higher frequency contributions. In order for the discrete Fourier coefficients \(A_{n;r} \) and \(B_{n;r} \) to be satisfactory approximations to the Fourier coefficients \(A_n \) and \(B_n \), it is necessary and sufficient that the Fourier coefficients be negligible for

\[
 n > \frac{1}{2} (r - 1), \quad \text{if } r \text{ is odd},
\]

\[
 n > \frac{1}{2} r, \quad \text{if } r \text{ is even}.
\]

For example, if the Fourier coefficients are of the order of \(1/n^2 \), then the difference between \(A_{n;r} \) and \(A_n \) (and similarly between \(B_{n;r} \) and \(B_n \)) is of the order of \(1/r^2 \).

Nevertheless, if our aim is merely to approximate the function \(f(t) \) by a harmonic polynomial, knowing the values of the function at a discrete set of points provides almost as good an approximation as knowing it over an interval.

Harmonic interpolation: Let \(f(t) \) be a function with period \(\theta \), and discrete Fourier coefficients \(A_{n;r} \) and \(B_{n;r} \) defined by (4). Given a coefficient window \(z_M(n) \), the function

\[
 f_{I;k_n}^{r} (t) = \sum_{n=0}^{N} k_n(n) \left\{ A_{n;r} \cos\left(\frac{2\pi}{\theta} t\right) + B_{n;r} \sin\left(\frac{2\pi}{\theta} t\right) \right\}
\]

45
defines a harmonic approximation to \(f(t) \) which can be regarded as arising from interpolation of the values of the function at \(t_0, \ldots, t_{r-1} \); the subscript \(I \) is used to connote interpolation. It is shown below that in terms of the values of \(f(t) \) at these points,

\[
(11) \quad f_{I; k_N}(t) = \sum_{j=0}^{r-1} f(t_j) \frac{1}{r} K_N \left(\frac{2\pi}{\sigma} (t - t_j) \right)
\]

where \(K_N(z) \) is the amplitude window corresponding to the coefficient window \(k_N(n) \). It should be noted that the right hand side of (11) can be regarded as a discrete approximation to the Riemann integral on the right hand side of equation (3) of section 4.

To prove (11), we write for \(n \geq 1 \) (defining \(\omega_n = 2\pi n/\theta \))

\[
A_n = \frac{r}{r} \sum_{j=0}^{r-1} f(t_j) \left(\cos \omega_n t_j \cos \omega_n t + \sin \omega_n t_j \sin \omega_n t \right)
\]

\[
= \frac{r}{r} \sum_{j=0}^{r-1} f(t_j) \cos \omega_n (t - t_j).
\]

Consequently

\[
f_{I; k_N}(t) = \frac{1}{r} \sum_{j=0}^{r-1} f(t_j) \left(1 + 2k_N(1) \cos \omega_1 (t - t_j) + \ldots + 2k_N(\sqrt{N}) \cos \omega_N (t - t_j) \right).
\]

The proof of (11) is complete.
From (11) one sees that for certain choices of \(k_n(n) \) the interpolatory polynomial is exactly equal to the function \(f(t) \) at the points \(t_j \); in symbols,

\[
(12) \quad f_{I,k_N}^N(t_j) = f(t_j) \quad \text{ for } \quad j = 0, 1, \ldots, r.
\]

In order for (12) to hold it suffices that

\[
\frac{1}{r} K_N(0) = 1,
\]

(13)

\[
K_N^N\left(\frac{2\pi j}{r}\right) = 0 \quad \text{for any integer } \quad j \neq 0.
\]

For a given value of \(r \), (13) implies the following relation between \(r \) and \(N \) for the various coefficient windows we have considered:

- **Dirichlet** \(r = 2N + 1 \)
- **Modified Dirichlet** \(r = 2N \)
- **Fejér** \(r = N + 1 \)
- **Tukey** \(r = N \)
- **Parzen** \(r = N/2 \)

Explicitly, we have the following relations for \(t = \{t_0, \ldots, t_{r-1}\} \), defining for any integers \(n \) and \(r \)
\begin{align}
C_{n; r} &= \frac{1}{r} \sum_{j=0}^{r-1} f(t_j) \exp[-i n \frac{2\pi}{r} j], \\
D_{n; r}(t) &= A_{n; r} \cos\left(\frac{2\pi}{\theta} t\right) + B_{n; r} \sin\left(\frac{2\pi}{\theta} t\right). \\
\text{(i) Exact Interpolation with Dirichlet kernel: for } r \text{ odd,} \\
f(t) &= \sum_{n=0}^{(r-1)/2} D_{n; r}(t) \\
&= \sum_{n=-(r-1)/2}^{(r-1)/2} C_{n; r} \exp[i n \frac{2\pi}{\theta} t]. \\
\text{(ii) Exact Interpolation with modified Dirichlet kernel: for } r \text{ even,} \\
f(t) &= A_{0; r} + \sum_{n=0}^{(r/2)-1} D_{n; r}(t) \\
&\quad + A_{r/2; r} \cos\left(\frac{2\pi}{\theta} t\right). \\
\text{(iii) Exact Interpolation with Fejér kernel:} \\
f(t) &= \sum_{n=0}^{r-1} \left(1 - \frac{n}{r}\right) D_{n; r}(t) \\
&= \sum_{n=-r}^{r} \left(1 - \frac{n}{r}\right) C_{n; r} \exp[i n \frac{2\pi}{\theta} t]. \\
\text{(iv) Exact Interpolation with Tukey kernel:} \\
f(t) &= \sum_{n=0}^{r} \frac{1}{2} \left\{1 + \cos \frac{\pi n}{r}\right\} D_{n; r}(t)
\end{align}
(v) Exact Interpolation with Parzen kernel:

\begin{equation}
(20) \quad f(t) = \sum_{n=0}^{r} \left\{ 1 - 6\left(\frac{n}{2r}\right)^2 + 6\left(\frac{n}{2r}\right)^3 \right\} D_{n;r}(t) + \sum_{n=r+1}^{2r} 2\left(1 - \frac{n}{2r}\right)^3 D_{n;r}(t)
\end{equation}
References

Table 4A: Harmonic Approximations and their Windows

<table>
<thead>
<tr>
<th>Coefficient Window $k_n(n)$</th>
<th>Amplitude Window $K_N(z)$</th>
<th>$K_N(0)$</th>
<th>First right hand zero at $z = \frac{\pi}{N + \frac{1}{2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Truncated Fourier Series</td>
<td>$D_N(z) = \frac{\sin\left(N + \frac{1}{2}\right)}{\sin\frac{1}{2}z}$</td>
<td>$2N + 1$</td>
<td>$\frac{\pi}{N + \frac{1}{2}}$</td>
</tr>
<tr>
<td>$l, n = 0, 1, \ldots, N.$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Modified Truncated Fourier Series	$D^*_N(z) = \frac{\sin \frac{Nz}{\tan \frac{1}{2}z}}{z}$	$2N$	$\frac{\pi}{N}$
$l, n = 0, 1, \ldots, N-1;$			
$l, n = N.$			

| III. Pejic means | $P_N(z) = \frac{1}{N+1} \left(\frac{\sin(N+1)\frac{1}{2}z}{\sin\frac{1}{2}z}\right)^2$ | $N + 1$ | $\frac{2\pi}{N + 1}$ |
| $l = \frac{|n|}{N+1}, n=0,1,\ldots,N.$ | | | |

Footnote: $k_N(0) = 1, k_N(-n) = k_N(n), \ k_N(n) = \frac{1}{2\pi} \int_0^{2\pi} \cos nx K_N(z) \, dz; \ K_N(z) = k_N(0) + 2 \sum_{j=1}^{N} k_N(j) \cos jz = \sum_{j=-N}^{N} k_N(j) \cos jz.$

True Window is $\frac{1}{\theta} K_N\left(\frac{2\pi}{\theta} t\right)$ since $f_{N,k}(t) = \int_0^\theta \frac{1}{\theta} K_N\left(\frac{2\pi}{\theta} [x - t]\right) f(x) \, dx.$
Table 4A: Harmonic Approximations and their Windows (continued)

Coefficient Window $k_N(n)$
Amplitude Window $K_N(z)$
First right hand zero at $z = 2\pi/N$

IV. Tukey means

$T_N(z) = \frac{1}{2} p_N^*(z) + \frac{1}{4} p_N^*(z + \frac{\pi}{N}) + \frac{1}{4} p_N^*(z - \frac{\pi}{N})$

$= \sin \frac{\pi n}{N} \cotan \frac{z}{2} - \frac{1}{4} \cotan \left(\frac{z + \frac{\pi}{N}}{2} \right) - \frac{1}{4} \cotan \left(\frac{z - \frac{\pi}{N}}{2} \right)$

V. Lanczos means

$L_N(z) = \frac{\pi}{\pi n/N} \int_{-\pi/N}^{\pi/N} p_N(z+u) du$

$= \frac{2N}{\pi} \int_{-\pi/N}^{\pi/N} \sin \frac{\pi u}{N} du$

$= (1.18)N$

VI. Parzen means

$P_N(z) = \frac{5}{4N^2} \left\{ \frac{1}{2} \sin \frac{\pi n}{N} \right\}^4 \left\{ 1 - \frac{2}{3} \left(\sin \frac{\pi n}{N} \right)^2 \right\} \frac{3}{4} N$

$= \frac{1}{2} \left(\frac{\pi n}{N} \right)^2 + \frac{1}{6} \left(\frac{\pi n}{N} \right)^3$, $n = 0, 1, \ldots, N - 1$.

$2 \left(1 - \frac{n^3}{N^2} \right)$, $n = N/2 + 1, \ldots, N$.

$4\pi/N$
Table 4B: Window Generators

\begin{align*}
 k(u) & \quad k_n(u) = \mathcal{K}\left(\frac{u}{N}\right) \\
 K(z) & = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-izu} k(u) \, du \\
 \text{Approximation } K_M(z) & = 2\pi M K(Mz) \\
 K_M(0) & \\

 \text{I. Dirichlet} & \\
 k_D(u) = 1, \, |u| \leq 1 & \text{if } M = N, \, k_N(n) = 1, \\
 = 0, \, |u| > 1 & \quad n = 0, \, \pm 1, \ldots, \pm N \\

 \text{II. Modified Dirichlet} & \\
 k_D^*(u) = 1, \, |u| < 1 & k_N(n) = 1, \, n = 0, \, \pm 1, \ldots, \pm (N-1), \\
 = \frac{1}{2}, \, |u| = 1 & \quad = \frac{1}{2}, \, n = N \\
 = 0, \, |u| > 1 & \\

 \text{III. Fejer} & \\
 k_F(u) = 1 - |u|, \, |u| \leq 1 & k_N(n) = 1 - \frac{|n|}{N+1}, \, n = 0, \ldots, \pm N \\
 = 0, \, |u| > 0 &
\end{align*}
Table 4B: Window Generators (continued)

\[k(u) \quad k_N(n) = k\left(\frac{n}{N}\right) \quad K(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuz} k(u) \, du \quad \text{Approximation } K_N(z) = 2\pi M \, K(Mz) \quad K_M(0) \]

IV. Tukey

If \(M = N + \frac{1}{2} \),

\[k_N(n) = \frac{1}{2} \left(1 + \cos \frac{\pi n}{N + \frac{1}{2}} \right) \]

V. Lanczos

If \(M = N \),

\[k_N(n) = \frac{\sin \frac{\pi n}{N} \sin \frac{\pi n}{M}}{\pi n} \]

\[= 0, \quad |u| > 1 \]

VI. Parzen

\[k_N(n) = 1 - 6u^2 + 6|u|^3, \quad |u| \leq \frac{1}{2} \]

\[= 2(1 - |u|)^3, \quad \frac{1}{2} \leq |u| \leq 1 \]

\[\frac{1}{2\pi} \frac{\sin z}{z^2} \quad \frac{\sin z}{z^2(Mz)^2} \]

\[\frac{\text{Si}(z+\pi) - \text{Si}(z-\pi)}{\pi} \quad \frac{M}{\pi} \left[\text{Si}(Mz+\pi) - \text{Si}(Mz-\pi) \right] \quad \frac{2M}{\pi} \text{Si}(\pi) = M \frac{3\pi}{4} \]

\[\text{Si}(x) = \int_{0}^{x} \frac{\sin u}{u} \, du \]

\[= \int_{0}^{1} \frac{\sin xu}{u} \, du, \]

\[\text{Si}(-x) = -\text{Si}(x) \]

\[\frac{3}{8\pi} \left(\frac{\sin z/4}{z/4} \right)^4 \quad \frac{3}{4M^3} \left(\frac{\sin Mz/4}{z/4} \right)^4 \quad \frac{3}{4} M \]
\[2\pi K_D(z) = 2 \frac{\ln z}{z} \]

\[2\pi K_L(z) = \frac{1}{\pi} \sin(z+\pi) - \sin(z-\pi) \]

\[2\pi K_T(z) = \frac{\sin z}{z} \frac{\pi^2}{\pi^2 - z^2} \]

\[2\pi K_F(z) = \left(\frac{\sin z/2}{z/2} \right)^2 \]

\[2\pi K_P(z) = \beta/4 \left(\frac{\sin z/4}{z/4} \right)^4 \]

Figure 4A. Amplitude Window Generators.
Figure 4A'. Amplitude window generators; Figure 4A redrawn on an enlarged scale.
Figure 4A**: Continued on an enlarged scale.
$k_L(u) = \frac{\sin \mu u}{\mu u}$
$0 < u \leq 1$

$k_T(u) = \frac{1}{2} (1 + \cos \mu u)$
$0 < u \leq 1$

$k_P(u) = 1 - 6u^2 + 6u^3$
$0 < u \leq 1/2$
$= 2(1 - u)^3$
$1/2 < u \leq 1$

Figure 4B. Coefficient Window Generators
Figure 4C. Some windows normalized to have approximately same height at center frequency.

\[K_p(z) = \frac{4}{3} K_P \left(\frac{4z}{3} \right) \]

\[K_L(z) = \frac{\sin z}{z} \frac{\pi^2}{\pi^2 - z^2} \]

\[K_L'(z) = \frac{5}{6} K_L \left(\frac{5z}{6} \right) \]
STANFORD UNIVERSITY
TECHNICAL REPORTS DISTRIBUTION LIST
CONTRACT No. 225(21)
(NR-042-993)

Dr. Stephen G. Allen
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California
1

Professor W. T. Federer
Cornell University
Department of Plant Breeding

Biometrics Unit
Ithaca, New York
1

Professor T. W. Anderson
Dept. of Mathematical Statistics
Columbia University

New York 27, New York
1

Dr. George Fishman
Logistics Department
Rand Corporation
1700 Main Street
Santa Monica, California
1

Professor T. W. Anderson
Dept. of Mathematical Statistics
Columbia University

New York 27, New York
1

Dr. M. C. Flood
Santillana Research Institute

205 North Forest Avenue
Ann Arbor, Michigan
1

Professor Fred C. Andrews
Department of Mathematics
University of Oregon
Eugene, Oregon
3

Dr. Albert W. Montague
Economics Department
University of California

Berkeley, California
1

Professor Robert Schick
Dept. of Industrial and Eng. Admin.
Sibley School of Mechanical Eng.
Cornell University
Ithaca, New York
1

Mr. J. Berkowitz
Quality Control Supervisor
NORDEN Division of United Aircraft Corp.
Kelby Department – Helen Street

Norwalk, Connecticut
1

Mr. Murray A. Gelsfer
Logistics Section
The Rand Corporation
1700 Main Street

Santa Monica, California
1

Professor H. P. Goede
Dept. of Industrial and Engineering
Administration

Cornell University
Ithaca, New York
1

Professor E. J. Gumbel
Industrial Eng., Department

409 Engineering Building
Columbia University
New York 27, New York
1

Professor Donald Gable, Jr.
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California
1

Professor Bernard Harris
Department of Mathematics
The University of Nebraska
Lincoln, Nebraska
1

Dr. Theodore E. Harris
The RAND Corporation
1700 Main Street

Santa Monica, California
1

Leon H. Herbach
Dept. of Industrial Engineering
and Operations Research
College of Engineering

New York University
New York 53, New York
1

Professor W. Hirsch
Institute of Mathematical Sciences
New York University

New York 3, New York
1

Professor Harold Hotelling
Associate Director
Institute of Statistics

University of North Carolina
Chapel Hill, North Carolina
1

Professor Stanley Isaacson
14706 Labor Drive

Des Moines 12, Iowa
1

Professor Oscar Kemphorne
Statistics Laboratory
Iowa State College

Ames, Iowa
1

Professor Solomon Kullback
Department of Statistics

George Washington University
Washington 7, D. C.
1

Dr. Eugene Lukacs
Department of Mathematics

Catholic University
Washington 17, D. C.
1

Professor G. W. McElrath
Department of Mechanical Engineering

University of Minnesota
Minneapolis 14, Minnesota
1

1

Anned Services Technical
Information Agency
Arlington Hall Station
Arlington 12, Virginia

: Bureau of Supplies and Accounts
Code D 0 W
Department of the Navy
Washington 25, D. C.

Head, Logistics and Mathematical
Statistics Branch
Code 436
Office of Naval Research
Washington 25, D. C.

Commanding Officer,
Office of Naval Research Branch Office
346 Broadway
New York 13, New York
Attn: J. Laderman
1

Commanding Officer,
Office of Naval Research Branch Office
1020 East Green Street
Pasadena 1, California
(Dr. A. R. Lauer)
1

Commanding Officer,
U. S. Army Signal Electronic Research
P. O. Box 205 – Major Admireto
Mountain View, California
1

Commanding Officer,
U. S. Navy Powder Factory
P. O. Box 205 – Major Admireto
Indianhead, Maryland
1

Director, Naval Research Lab.
Attn: Tech. Infor. Officer
Washington 25, D. C.
6

Director,
National Security Agency
Attn: RENP-1
Fort Meade, Maryland
2

Dept. of Mathematical Statistics
University of North Carolina
Chapel Hill, North Carolina
1

Department of Statistics
University of California
Berkeley 4, California
1

Department of Statistics
Michigan State University
East Lansing, Michigan
1

Library
Institute for Defense Analyses
Communications Research Division
Voe Reuss Hall
Princeton, New Jersey
1

Library
Department of Industrial Engr.
Operations Research
College of Engr.
New York University
University Heights
New York 53, New York
1

Office of the Asst's Naval
Attache for Research
American Embassy
Navy No. 100, Fleet P. O.
New York, New York
2

Scientific Section
Office of Naval Research
1000 Geary Street
San Francisco 9, California
2

Statistical Engineering Lab.,
National Bureau of Standards
Washington 25, D. C.
2

Statistical Laboratory
University of Washington
Seattle S, Washington
2

Superintendent
U. S. Navy Postgraduate School
Attn: Library
Monterrey, California
1

U. S. Naval Avionics Facility
Attn: Library
Indianapolis 18, Indiana
1

1