INTERACTION INFORMATION IN
MULTIVARIATE PROBABILITY DISTRIBUTIONS

BY
MINORU SAKAGUCHI

TECHNICAL REPORT NO. 54
SEPTEMBER 13, 1965

PREPARED UNDER CONTRACT Nonr-225(72)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
INTERACTION INFORMATION IN
MULTIVARIATE PROBABILITY DISTRIBUTIONS

by

Minoru Sakaguchi

TECHNICAL REPORT NO. 54
September 13, 1965

PREPARED UNDER CONTRACT Nonr-225(72)
(NR-042-993)
FOR
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
INTERACTION INFORMATION IN
MULTIVARIATE PROBABILITY DISTRIBUTIONS

by

Minoru Sakaguchi*
Stanford University

We show in this note that the entropy of a multivariate distribution can be expressed in terms of the sum of one-dimensional marginal entropies, the sum of transmitted information between each pair of component variables, the sum of interaction information in trivariate component distributions, and so on (Section 1). Using this result we give, in Section 2, a class of multivariate distributions having specified component densities and some preassigned association measure between some component variables. Proofs of equations and statements which are not so evident are given in Section 3.

1. **Multivariate Information Transmission**

The transmission of information requires the presence of a source of information coupled with an appropriate channel; the two together form what is called an information system. Here an information system is described in terms of joint probabilities of inputs and outputs, and a channel is defined by its transition probabilities. The formulae are written as if $x, y, \text{ etc.}$, were continuous real variables; the obvious modifications must be made if they are discrete or vector-valued.

Let us consider a communication channel and its input and output. Transmitted information measures the amount of association between the

On leave from Osaka University, Osaka, Japan
input and output of the channel. If input and output are independent, no
information is transmitted. On the other hand, if both are perfectly
correlated, all the input information is transmitted through the channel.
In most cases, naturally, information transmission is found between these
extremes.

We are interested in the amount of information transmitted. Suppose
that we have a bivariate probability distribution with the density function
$p(x,y)$. This means that if the input variable assumes a value or signal
x, then noise of the channel alters it, at the output, to a value between
y and $y + dy$ with probability $p(y|x)dy$, where

$$p(y|x) = \frac{p(x,y)}{\int p(x,y)dy},$$

and that the rules governing the selection of signals at the input must
be constructed so that they take on values between x and $x + dx$ with
probabilities $p(x)dx = dx/\int p(x,y)dy$. To avoid complexity we use the same
notation $p(\cdot)$ to represent the various density functions of random vari-
ables, without any suggestion that they have the same density.

Under these conditions, and if successive signals are independent the
amount of information transmitted per signal is defined by Shannon [4] as

$$(1.1) \quad T(x;y) = H(x) + H(y) - H(x,y) = \int \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \, dx \, dy,$$

where $H(x) \equiv -\int p(x) \log p(x) dx, H(y) \equiv -\int p(y) \log p(y) dy$ and
$H(x,y) \equiv -\int \int p(x,y) \log p(x,y) dx \, dy$. It is well known (Kullback [2]) that
$T(x;y)$ is non-negative and equals zero if and only if x and y are
independent.

We introduce the conditional entropies
\[H_x(y) = -\int p(x,y) \log p(y|x) dx dy, \] etc.

Then we have the additive formula

\[H(x_1, x_2, \ldots, x_k) = H(x_1) + H_x(x_2) + \cdots + H_{x_1, \ldots, x_k-1}(x_k), \quad k \geq 2. \]

Thus we have other expressions of \(T(x;y) \) as

\[T(x;y) = H(x) - H_y(x) = H(y) - H_x(y). \] (1.2)

Now let us consider the case where we have several sources that transmit to \(y \). Then we take the input variable as multidimensional and we have, for instance,

\[T(u,v;y) = H(u,v) + H(y) - H(u,v,y) = H(u,v) - H_y(u,v) = H(y) - H_{u,v}(y). \] (1.3)

We can express \(T(u,v;y) \) as a combination of the bivariate transmissions between \(u \) and \(y \), and \(v \) and \(y \). Define \(T_{u=u_0}(v;y) \) as transmitted information between \(v \) and \(y \) for a particular value of \(u \), namely, \(u_0 \). If we set

\[T_u(v;y) = \int_{T_{u=u_0}} (v;y)p(u_0)du_0, \]
we easily find that

\[T_u(v;y) = H_u(v) + H_y(v) - H(u,v) = H_u(v) - H_{u,y}(v) = H_y(v) - H_{u,v}(y). \] (1.4)

Hence we have, from (1.2), (1.3) and (1.4),

\[T(u,v;y) = T(u;y) + T_u(v;y) = T(v;y) + T_v(u;y), \] (1.5)

which means that the additive formula for information transmission also
holds true. We have from (1.2) and (1.4)

\[T(v;y) - T_u(v;y) = (H(y) - H_v(y)) - (H_u(y) - H_{u,y}(y)) \]

\[= (H(v) - H_y(v)) - (H_u(v) - H_{u,y}(v)), \]

which may be positive, zero or negative. These identities show the symmetry of the left-hand side expression in the arguments \(u \) and \(v \), and \(u \) and \(y \). Since the symmetry between \(v \) and \(y \) is evident from (1.1) and (1.3), we get

(1.6) \[A(uvy) = T(v;y) - T_u(v;y) \]

\[= T(u;y) - T_v(u;y) \]

\[= T(u;v) - T_y(u;v). \]

We call this quantity \(A(uvy) \), following McGill [3], the interaction information between the three variables. It is the gain or loss in transmitted information between any two of the variables, due to additional knowledge of the third variable.

We can derive another expression for \(A(uvy) \) as follows: subtracting \(T(v;y) \) from both sides of the first identity of (1.5) we have

(1.7) \[T(u,v;y) = T(u;y) + T(v;y) - A(uvy). \]

By (1.3) we have \(T(u,v;y) = H(u) + H_u(v) + H(y) - H(u,v,y) \). Then from these two identities and the fact that \(T(u;v) = H(v) - H_u(v) \), we finally obtain

(1.8) \[H(u,v,y) = H(u) + H(v) + H(y) - (T(u;v) + T(u;y) + T(v;y)) + A(uvy). \]

According to the definition (1.6) the interaction information is positive (negative) when the effect of holding one of the interacting
variables constant is to decrease (increase) the amount of association between the other two. We easily observe from (1.8)

Theorem 1'. If the random variables in a trivariate distribution are pairwise independent, then \(A(uvy) \leq 0 \), with equality if and only if the three variables are mutually independent.

It is well-known that pairwise independence of three random variables does not imply mutual independence. Let \(\mathcal{X} = \{ a_1, \ldots, a_4 \} \) be a probability space with probabilities \(1/4 \) for each elementary event \(a_i (i=1, \ldots, 4) \). Let \(A = \{ a_1, a_2 \} \), \(B = \{ a_1, a_3 \} \) and \(C = \{ a_1, a_4 \} \). Let \(u, v \) and \(y \) be indicator functions of the events \(A, B, \) and \(C \), respectively. Then we find that the three random variables are pairwise independent but are not mutually independent. We have

\[
A(uvy) = H(u,v,y) - (H(u)+H(v)+H(y)) = 2 \log 2 - 3 \log 2 = -\log 2 .
\]

A class of continuous trivariate distribution having this nature is given in the next section.

In a similar way as the above discussion we can decompose four-variate distributions. Let \((x_1, x_2, x_3, y) \) be a four-variate distribution. Define \(A_{x_1} \) as the conditional interaction information between the variables \(x_2, x_3 \) and \(y \) given that \(x_1 = x_1^0 \). Define

\[
A_{x_1}(x_2, x_3, y) = \int A_{x_1=x_1^0}(x_2, x_3, y)p(x_1)dx_1 .
\]

Then we can prove the following relations:

\[
A_{x_1}(x_2, x_3, y) = T_{x_1}(x_2; y) - T_{x_1 x_3}(x_2; y) = \cdots
\]

is invariant under any permutations of the variables \(x_2, x_3 \) and \(y \);

\[
A(x_2, x_3, y) - A_{x_1}(x_2, x_3, y) = A(x_1 x_2 x_3, y) , \text{ say}
\]
is invariant under any permutation of the variables x_1, x_2, x_3 and y;

(1.12) \[A((x_1, x_2, x_3) y) = A(x_1 x_2 y) + A(x_2 x_3 y) - A(x_1 x_2 x_3 y) \; ; \text{ and} \]

(1.13) \[T(x_1, x_2, x_3, y) = T(x_1; y) + T(x_2; y) + T(x_3; y) - A(x_1, x_2) - A(x_2, x_3) - A(x_1, x_3) + A(x_1, x_2, x_3, y) . \]

These identities correspond to those, in the trivariate case, (1.4), (1.6), (1.7) and (1.7), respectively. From (1.8) and (1.13) we finally obtain, rewriting y as x_4,

(1.14) \[H(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} H(x_i) - \sum_{i \neq j} T(x_i; x_j) + \sum_{i,j,k \text{ diff}} A(x_i, x_j, x_k) - A(x_1, x_2, x_3, x_4) , \]

where the sums \sum' and \sum'' contain six T-terms and four A-terms, respectively. We call $A(x_1 x_2 x_3 x_4)$ higher-order interaction information (with order 2). Note that this is not equal to the interaction information (with order 1) $A((x_1, x_2) x_3 x_4)$, as is shown by (1.12). For the proofs of (1.10) - (1.14) see Section 3.

From Theorem 1' and (1.14) we have

Theorem 1". If every three random variables in a four-variate distribution are independent, then $A(x_1 x_2 x_3 x_4) \geq 0$, with equality if and only if the four variables are independent.

Generalization of this theorem to n-dimensional distributions is immediate. Define higher-order interaction information recursively by

\[A(x_1 x_2 \cdots x_n) = A(x_2 \cdots x_n) - A_{x_1}(x_2 \cdots x_n) , \; n > 4 , \]

starting from $A(x_1 x_2 x_3 x_4)$, where $A_{x_1}(x_2 \cdots x_n)$ is defined by a similar
expression used in (1.9). Then we can prove by mathematical induction
the following relation corresponding to (1.10) - (1.14):

(1.15) \[A_{x_1} (x_2 x_3 \cdots x_n) = A_{x_1} (x_3 \cdots x_n) - A_{x_1, x_2} (x_3 \cdots x_n) = \cdots \]
is invariant under any permutation of the variables \(x_2, x_3, \ldots, x_n \);

(1.16) \(A(x_1, x_2 \cdots x_n) \) is invariant under any permutation of

the variables \(x_1, x_2, \ldots, x_n \);

(1.17) \[A((x_1, x_2)x_3 \cdots x_n) = A(x_1 x_3 \cdots x_n) + A(x_2 x_3 \cdots x_n) - A(x_1, x_2, x_3 \cdots x_n); \]

(1.18) \[T(x_1, \ldots, x_{n-1}; y) = \sum_{i=1}^{n-1} T(x_i; y) - \sum_{i,j < n-1 \atop i \neq j} A(x_i x_j y) \]

\[+ \sum_{i,j,l \leq n-1 \atop i,j,l \text{ diff.}} A(x_i x_j x_l y) - \cdots + (-1)^{n-2} \]

\[A(x_1 \cdots x_{n-1} y); \text{ and finally} \]

(1.19) \[H(x_1, \ldots, x_n) = \sum_{i=1}^{n} H(x_i) - \sum_{i \neq j} T(x_i; x_j) + \sum_{i,j,l \text{ diff.}} A(x_i x_j x_l) \]

\[- \cdots + (-1)^{n-1} A(x_1 \cdots x_n). \]

From Theorem 1" and (1.19) we get

Theorem 1. If every \((n-1)\) random variables in an \(n\)-variate dis-

tribution (with \(n \geq 3 \)) are independent, then for the higher-order inter-

action information (with order \(n-2 \)) \(A(x_1 \cdots x_n) \) we have

\((-1)^n A(x_1 \cdots x_n) \geq 0, \) with equality if and only if the \(n \) variables

are independent.
2. Multivariate Distributions with Given Marginal Distributions

There exist infinitely many bivariate distributions with a given pair of marginal distributions. Let \(f_1(\cdot) \) and \(f_2(\cdot) \) be two given pdf's. A class of bivariate densities \(f(x_1,x_2) \) with given marginal densities \(f_1(\cdot) \) and \(f_2(\cdot) \) is given by

\[
f(x_1,x_2) = f_1(x_1)f_2(x_2)[1+a(1-2F_1(x_1))(1-2F_2(x_2))],
\]

where \(F_i(x_i), i=1,2, \) is the cdf of \(f_i(x_i) \) and \(a \) is an arbitrary constant satisfying \(-1 \leq a \leq 1 \) (Gumbel [1]). It is easy to check that the bivariate cdf is given by

\[
F(x_1,x_2) = F_1(x_1)F_2(x_2)[1+a(1-F_1(x_1))(1-F_2(x_2))]
\]

and that \(x_1 \) and \(x_2 \) are independent if and only if \(a = 0 \). However, the correlation coefficient of this bivariate distribution depends on \(f_1(\cdot) \) and \(f_2(\cdot) \) and cannot be expressed in terms of \(a \) only. We want to show that the constant \(a \) actually measures dependency between the two variables, independently of \(f_1(\cdot) \) and \(f_2(\cdot) \), in the following two senses.

(i) Silvey [5] defined a measure of association between two random variables \(x \) and \(y \) by

\[
\Delta = \iint_{p(x,y)/(p(x)p(y)) > 1} (p(x,y)-p(x)p(y)) \, dx \, dy,
\]

about which he showed some desirable properties in measuring association.

For the density (2.1) this becomes

\[
\Delta = a \int\int_{a(2u_1-1)(2u_2-1)du_1du_2} (2u_1-1)(2u_2-1) \, du_1 \, du_2 = \frac{|a|}{16},
\]

\(0 \leq u_1, u_2 \leq 1 \).
Thus this measure of association is a function of $|a|$ only and is monotonically increasing.

(ii) Elementary calculation yields that information transmitted between x_1 and x_2 is given by

$$T(x_1; x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) \log \frac{f(x_1, x_2)}{f_1(x_1)f_2(x_2)} \, dx_1 \, dx_2$$

(2.3)

$$= \sum_{m=1}^{\infty} \frac{a^{2m}}{(2m)(2m-1)(2m+1)^2} \, (\equiv t(|a|), \text{say})$$

independently of $f_1(\cdot)$ and $f_2(\cdot)$. This is again a function of $|a|$ only, and increases monotonically from zero to $t(1)$ in $0 \leq |a| \leq 1$.

Usual calculation gives another expression for (2.3) as

$$t(|a|) = \frac{(1+a)(3+a)}{-8a} \log (1+a) + \frac{(1-a)(3-a)}{-8a} \log (1-a) - \frac{3}{4} + \frac{1}{2} \sum_{m=1}^{\infty} \frac{a^{2m}}{(2m+1)^2}$$

and $t(1) = \log 2 - \frac{5}{4} + \frac{\pi^2}{16}$, since $\sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{\pi^2}{6}$.

The class (2.1) can easily be extended to trivariate distributions.

Let $f_i(\cdot)$, $i=1,2,3$, be three given pdf's. A class of trivariate densities $f(x_1, x_2, x_3)$ with given marginal densities is given by

(2.4) \[f(x_1, x_2, x_3) = f_1 f_2 f_3 (1+a(l-2F_1)(1-2F_2)+b(l-2F_2)(1-2F_3) +c(l-2F_1)(1-2F_3)+d(l-2F_1)(1-2F_2)(1-2F_3)) \]

where $F_i(\cdot)$ is the cdf of $f_i(\cdot)$ and the obvious arguments x_i, $i=1,2,3$, are omitted. The corresponding trivariate cdf is

(2.5) \[F(x_1, x_2, x_3) = F_1 F_2 F_3 (1+a(l-F_1)(1-F_2)+b(l-F_2)(1-F_3)+c(l-F_1)(1-F_3) +d(l-F_1)(1-F_2)(1-F_3)) \]
The four arbitrary constants a, b, c, and d satisfy

\[(2.6) \quad |a| \leq \bar{a}, \quad |b| \leq \bar{b}, \quad |c| \leq \bar{c}, \quad |d| \leq \bar{d},\]

where $\bar{a} + \bar{b} + \bar{c} + \bar{d} = 1$. They measure dependency between various variables in the following sense: $T(x_1; x_2) = t(|a|)$, $T(x_2; x_3) = t(|b|)$, $T(x_1; x_3) = t(|c|)$ and $A(x_1, x_2, x_3)$ can be expressed by a function of a, b, c and d, independently of f_1, f_2 and f_3. If $a = b = c = 0$, then the three variables are independent if and only if $d = 0$. The expression (2.4) gives a class of examples of trivariate distributions with the property that any two variables are independent but are not independent between the three variables. That is, if $f(x_1, x_2, x_3)$ belongs to the class of densities determined by $\bar{a} = \bar{b} = \bar{c} = 0$ and $\bar{d} = 1$, then $T(x_1; x_2) = T(x_2; x_3) = T(x_1; x_3) = 0$, but by (1.7),

\[-A(x_1, x_2, x_3) = T(x_1, x_2; x_3)\]

\[= \iiint f(x_1, x_2, x_3) \log \frac{f(x_1, x_2, x_3)}{f_1(x_1) f_2(x_2) f_3(x_3)} \, dx_1 dx_2 dx_3\]

\[= \iiint f(x_1, x_2, x_3) \log \left(\frac{f(x_1, x_2, x_3)}{f_1(x_1) f_2(x_2) f_3(x_3)} \right) \, dx_1 dx_2 dx_3\]

\[= \sum_{m=1}^{\infty} \frac{d^{2m}/(2m(2m-1)(2m+1)^3)}{2m+1}\]

by straightforward calculations. The last expression does not involve f_1's and is a function of only $|d|$ increasing monotonically from zero to $\sum_{m=1}^{\infty} \frac{1}{(2m(2m-1)(2m+1)^3)}$ in $0 \leq |d| \leq 1$.
3. Proofs

(1.10): From (1.7) we have

\[H_{x_1}(x_2, x_3, y) = H_{x_1}(x_2) + H_{x_1}(x_3) + H_{x_1}(y) = (T_{x_1}(x_2; x_3) + T_{x_1}(x_3; y) + T_{x_1}(x_2; y)) + A_{x_1}(x_2x_3y), \]

which shows invariance of \(A_{x_1}(x_2x_3y) \) under any permutations of \(x_2, x_3 \) and \(y \).

From (1.7) we have

\[(*) \quad A_{x_1}(x_2x_3y) = T_{x_1}(x_2; y) + T_{x_1}(x_3; y) - T_{x_1}(x_2, x_3; y). \]

From (1.5) we have

\[T_{x_1, x_3}(x_2; y) = T(x_1, x_3, x_2; y) - T(x_1, x_3; y) = (T(x_1; y) + T_{x_1}(x_2, x_3; y)) - (T(x_1; y) + T_{x_1}(x_3; y)) = T_{x_1}(x_2, x_3; y) - T_{x_1}(x_3; y). \]

Adding the last identity and (*) side-by-side, we obtain

\[A_{x_1}(x_2x_3y) + T_{x_1, x_3}(x_2; y) = T_{x_1}(x_2; y), \]

which proves (1.10).

(1.11): It suffices to show that \(A(x_1x_2x_3y) \) is invariant under any permutation of \(x_1 \) and any other one variable. From (1.6) and (1.10) we have

\[A(x_1x_2x_3y) = A(x_2x_3y) - A_{x_1}(x_2x_3y) = (T(x_2; y) - T_{x_3}(x_2; y)) - (T_{x_1}(x_2; y) - T_{x_1, x_3}(x_2; y)) = (T(x_2; y) - T_{x_1}(x_2; y)) - (T_{x_3}(x_2; y) - T_{x_3, x_1}(x_2; y)) = A(x_1x_2y) - A_{x_3}(x_1x_2y). \]
The last expression is invariant under any permutation of x_1, x_2 and y.

(1.12): From (1.6) and (1.11) we obtain

$$A(x_1 x_2 y) = T(x_1 y) - T_{x_3}(x_1 y)$$

$$A(x_2 x_3 y) = T(x_2 y) - T_{x_3}(x_2 y)$$

$$-A(x_1 x_2 x_3 y) = -A(x_1 x_2 y) + A_{x_3}(x_1 x_2 y).$$

Adding together we get

$$A(x_1 x_3 y) + A(x_2 x_3 y) - A(x_1 x_2 x_3 y) = (T(x_1 y) + T(x_2 y) - A(x_1 x_2 y))$$

$$- (T_{x_3}(x_1 y) + T_{x_3}(x_2 y) - A_{x_3}(x_1 x_2 y))$$

$$= T(x_1, x_2, y) - T_{x_3}(x_1, x_2, y) \quad \text{(by (1.7) and (*))}$$

$$= A((x_1, x_2) x_3 y) \quad \text{(by (1.6))},$$

which proves (1.12).

(1.13): From (1.7) we have

$$T(x_1, x_2, x_3; y) = T((x_1, x_2), x_3; y) = T(x_1, x_2; y) + T(x_3; y) - A((x_1, x_2)x_3 y)$$

$$= (T(x_1; y) + T(x_2; y) - A(x_1 x_2 y)) + T(x_3; y) - A((x_1, x_2)x_3 y).$$

(1.13) follows from (1.12).

(1.14): From (1.1) and (1.8) we have

$$H(x_1, x_2, x_3, y) = H(x_1, x_2, x_3) + H(y) - T(x_1, x_2, x_3; y)$$

$$= \left(\sum_{i=1}^{3} H(x_i) - \sum_{i \neq j} T(x_i; x_j) + A(x_1 x_2 x_3) \right) + H(y) - T(x_1, x_2, x_3; y).$$

(1.14) follows from (1.13).

Proofs of the relations (1.15) - (1.19) by mathematical induction

are identical, so will be omitted.
(2.3): Termwise integration of the power series

\[\log \left(\frac{f(x_1,x_2)}{f_1(x_1)f_2(x_2)} \right) = \sum_{n=1}^{\infty} \left(\frac{-1}{n} \right)^{n-1} \frac{a^n}{n} \left(1 - 2F_1(x_1) \right)^n \left(1 - 2F_2(x_2) \right)^n \]

gives (2.3). Another expression of \(|a|\) follows from the decomposition

\[\frac{1}{2m(2m-1)(2m+1)} = -\frac{1}{2m} + \frac{1}{2m} + \frac{3}{2m} - \frac{1}{2m} \cdot \]

(2.4) and (2.6): We show that the right-hand side of (2.4) is non-negative if \(a + b + c + d = 1 \). We have

\[\frac{a}{2} \left(\frac{1}{2} - F_1 \right) \left(\frac{1}{2} - F_2 \right) \geq -\frac{e}{8} , \text{ similar two inequalities, and} \]

\[d \left(\frac{1}{2} - F_1 \right) \left(\frac{1}{2} - F_2 \right) \left(\frac{1}{2} - F_3 \right) \geq -\frac{d}{8} . \]

Adding these four inequalities together we get

\[a(1-2F_1)(1-2F_2) + b(1-2F_2)(1-2F_3) + c(1-2F_1)(1-2F_3) \]

\[+ d(1-2F_1)(1-2F_2)(1-2F_3) \geq -(\bar{e} + b + c + d) = -1 . \]
References

Interaction Information in Multivariate Probability Distributions

We show in this note that the entropy of a multivariate distribution can be expressed in terms of the sum of one-dimensional marginal entropies, the sum of transmitted information between each pair of component variables, the sum of interaction information in trivariate component distributions, and so on (Section 1). Using this result we give, in Section 2, a class of multivariate distributions having specified component densities and some preassigned association measure between some component variables. Proofs of equations and statements which are not so evident are given in Section 3.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
</tr>
<tr>
<td>Entropy</td>
</tr>
<tr>
<td>Multivariate Distribution</td>
</tr>
<tr>
<td>Interaction Information</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking to be in accordance with appropriate security regulations.

3. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.15 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through __________________."
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through __________________."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through __________________."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T3), (S3), (C3), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.