ON THE CENTRAL LIMIT THEOREM AND ITERATED LOGARITHM LAW FOR STATIONARY PROCESSES

BY

C. C. HEYDE

TECHNICAL REPORT NO. 76
MARCH 26, 1973

PREPARED UNDER CONTRACT
N00014-67-A-0112-0051 (NR-042-993)
FOR THE OFFICE OF NAVAL RESEARCH

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
ON THE CENTRAL LIMIT THEOREM AND ITERATED
LOGARITHM LAW FOR STATIONARY PROCESSES

by

C. C. HEYDE

TECHNICAL REPORT NO. 76
MARCH 26, 1973

PREPARED UNDER CONTRACT
N00014-67-A-0112-0051 (NR-042-993)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
ON THE CENTRAL LIMIT THEOREM AND ITERATED LOGARITHM LAW FOR STATIONARY PROCESSES

by

C. C. HEYDE

Stanford University and Australian National University

ABSTRACT

Invariance principles are given for both the central limit theorem and iterated logarithm law for a wide class of stationary processes. The results are derived from corresponding results for martingales with stationary ergodic increments. This is accomplished via a representation for the stationary process in terms of stationary martingale differences plus other terms whose sum telescopes and disappears under suitable norming. An application is given to show how previously known results for stationary uniformly mixing processes can be improved.
ON THE CENTRAL LIMIT THEOREM AND ITERATED LOGARITHM LAW FOR STATIONARY PROCESSES

BY C. C. HEYDE

Stanford University and Australian National University

1. Introduction and Principal Results. In this paper our setting is that of a probability space \((\Omega, \mathcal{F}, P)\) with ergodic measure preserving transformation \(T\). Let \(L_2(P)\) be the Hilbert space of random variables with finite second moment. Define \(U\) on \(L_2(P)\) by \(UX(\omega) = X(T\omega)\) for \(X \in L_2(P)\), \(\omega \in \Omega\) and write \(X_k = U^kX_0\) for some particular \(X_0 \in L_2(P)\) with \(EX_0 = 0\). Set also, \(S_0 = 0, S_n = \sum_{k=1}^{n}X_k\) for \(n \geq 1\) and

\[\sigma_n^2 = ES_n^2.\]

We shall be concerned with giving invariance principles for both the central limit theorem and iterated logarithm law for appropriate random functions in \(C\) or \(D\) defined from the partial sums \(S_k\). Here \(C = C[0,1]\) is the space of continuous functions on \([0,1]\) and \(D = D[0,1]\) the space of functions on \([0,1]\) which are right continuous with left hand limits. In both cases we employ the supremum metric which we denote by \(\rho\).

Let \(\{\theta_n(\cdot)\}\) be a sequence of random functions on \([0,1]\) defined by

\[\theta_n(t) = S_j/\sigma_n, \quad j/n \leq t < (j+1)/n, \quad j = 0,1,\ldots,n-1,\]

AMS 1970 subject classifications. Primary 60G10; Secondary 60B10, 60F15.
Key words. Invariance principles, central limit theorem, iterated logarithm law, stationary processes, uniformly mixing processes, martingales.
and

$$\theta_n(1) = S_n / \sigma_n.$$

Also, let \(\{\eta_n(\cdot)\} \) be a sequence of random functions on \([0,1]\) defined by

$$\eta_n(t) = (2\sigma_n^2 \log \log \sigma_n)\frac{1}{2}(S_k + (nt-k)X_k),$$

$$k \leq nt \leq k+1; \quad k = 0,1,\ldots,n-1.$$

Let \(K \) be the set of absolutely continuous \(x \in C \) such that

$$x(0) = 0$$

and

$$\int_0^1 \left[x'(t) \right]^2 dt \leq 1$$

where \(x' \) denotes the derivative of \(x \) determined almost everywhere with respect to Lebesgue measure. Also define

$$g = \sup \{ n : \sigma_n^2 \leq \varepsilon \}.$$

Let \(\mathcal{M}_0 \) be a \(\sigma \)-field such that \(\mathcal{M}_0 \subset \mathcal{B} \) and \(\mathcal{M}_0 \subset \mathcal{T}^{-1}(\mathcal{M}_0) \) and
write \(\mathcal{M}_k = T^{-k}(\mathcal{M}_0) \), \(\mathcal{M}_\infty = \bigcap_{k=\infty}^{\infty} \mathcal{M}_k \) and \(\mathcal{M}_\infty = \sigma \)-field generated by \(\bigcup_{k=\infty}^{\infty} \mathcal{M}_k \).

Our object is the following theorem.

Theorem If

\[
(1) \quad \sum_{n=1}^{\infty} \left(\sum_{r=n}^{\infty} x_r \right)^2 \in \mathcal{B}_{\text{\tiny \mathbb{M}}} (\sum_{r=n}^{\infty} x_r)^2 < \infty
\]

where

\[
x_r = \mathbb{E}(X_r|\mathcal{M}_0) - \mathbb{E}(X_r|\mathcal{M}_{-1})
\]

and \(\mathbb{E}(X_0|\mathcal{M}_\infty) = X_0 \) a.s., \(\mathbb{E}(X_0|\mathcal{M}_\infty) = 0 \) a.s., then \(\lim_{n \to \infty} \sigma_n / \sqrt{n} = \sigma \)

exists for \(0 < \sigma < \infty \). If \(\sigma > 0 \) then \(\sigma_n \to \mathcal{W} \) in the sense \((D, \rho) \)

where \(\mathcal{W} \) is a standard Wiener process. Also, \(g < \infty \), \{\(\eta_n ; n > g \)\} is relatively compact and the set of its limit points coincides with \(\mathcal{K} \).

This result extends those of Theorem 3 of Scott \([10] \) (central limit case) and Theorem 2 of Hayde and Scott \([4] \) (iterated logarithm case) which were both given with the condition

\[
(2) \quad \sum_{n=1}^{\infty} \left\{ \left(\mathbb{E}(X_0|\mathcal{M}_{-m}) \right)^2 + \left(\mathbb{E}(X_0 - \mathbb{E}(X_0|\mathcal{M}_{-m})) \right)^2 \right\} < \infty
\]

replacing those above. The idea in each case involves a representation for the \(X \)'s of the form

\[
(3) \quad X_0 = Y_0 + UZ_0 - Z_0
\]
where the $Y_0, Z_0 \in L_2(P)$ and $\{U_k Y_0\}$ forms a stationary ergodic sequence of martingale differences. This idea is due to Gordin [2] and the conditions of the theorem appear to be the most general under which (3) will hold as above. Of course the limit behaviour of S_n is then easy to study via the corresponding behaviour of \[\sum_{k=1}^n U_k Y_0 \] since

\[S_n = \sum_{k=1}^n U_k Y_0 = \sum_{k=1}^n U_k Y_0 + U^{n+1} Z_0 - U Z_0 \]

and the effect of $U^{n+1} Z_0 - U Z_0$ disappears under suitable norming.

That the representation (3) holds under the asserted conditions of the theorem can easily be extracted from the proof of Theorem 3 of [10]. Condition (1) gives \[\lim_{n \to \infty} \lim_{m \to \infty} \mathbb{E}(\sum_{r=n}^m x_r)^2 = \lim_{n \to \infty} \lim_{m \to \infty} \mathbb{E}(\sum_{r=n}^m x_r)^2 = 0 \] so that \[\sum_{r=0}^\infty x_r \]
and \[\sum_{r=0}^\infty x_{-r} \] converge in $L_2(P)$. That they also converge almost surely follows simply from the Borel-Cantelli lemma and (1). The $L_2(P)$ convergence result gives

\[\lim_{m \to \infty} \mathbb{E}(\sum_{r=n}^m x_r)^2 + \lim_{m \to \infty} \mathbb{E}(\sum_{r=n}^m x_{-r})^2 = \mathbb{E}(\sum_{r=n}^\infty x_r)^2 + \mathbb{E}(\sum_{r=n}^\infty x_{-r})^2 \]

and our condition (1) is just the condition (46) of [10]. Once the representation (3) is obtained the remainder of the proof is exactly that of Theorem 3 of [10] in the central limit case and Theorem 2 of [4] in the case of the iterated logarithm law.

We remark that (1) arises via the restriction $Z_0 \in L_2(P)$. In fact

\[EZ_0^2 = \sum_{n=1}^{\infty} \mathbb{E}(\sum_{r=n}^{\infty} x_r)^2 + (\sum_{r=n}^{\infty} x_{-r})^2. \]
Note also that under the conditions of the theorem we have that (3) holds and \(\lim_{n \to \infty} \frac{\sigma_n}{\sqrt{n}} = \sigma \) exists for \(0 \leq \sigma < \infty \). Now \(z_0 \in L_2(\mathbb{P}) \) so \(\sigma^2 = EY_0^2 \) and we can only obtain \(\sigma = 0 \) in the case where \(X_n = u_{n+1}z_0 - u_nz_0 \), some \(z_0 \in L_2(\mathbb{P}) \).

We shall show that a useful sufficient condition for (1) is

\[
(4) \quad \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \left| E(X_k^* E(X_0|\mathcal{M}_{-n})) + E(X_k^* X_0) - E(X_k^* E(X_0|\mathcal{M}_{n-1})) \right| < \infty.
\]

To obtain this we first note that, under the condition (1),

\[
E\{ (\sum_{r=n}^{\infty} x_r)^2 + (\sum_{r=1}^{\infty} x_r)^2 \}
\]

\[
(5) \quad = \lim_{m \to \infty} \left\{ \sum_{r=n}^{m} E(x_r^2 x_{-r}^2) + 2 \sum_{k=1}^{m-n} \sum_{r=n}^{m-k} E(x_r^* x_{r+k}^* x_{-r}^* x_{-r-k}^*) \right\}.
\]

Now for any \(k, r, \)

\[
E(x_r x_{r+k}) = E(E(x_r | M_0^r)E(x_{r-k} | M_0^k)) - E(E(x_r | \mathcal{M}_{-r-k})E(x_{r-k} | \mathcal{M}_{-r-k}^k))
\]

\[
= E(x_{r-k}^* E(x_r | \mathcal{M}_{-r-k}^k)) - E(x_{r-k}^* E(x_{r-k} | \mathcal{M}_{-r-k}^{k+1})).
\]

so that for \(k \geq 0, \)

\[
\sum_{r=n}^{m-k} E(x_r x_{r+k}) = E(x_{-k}^* E(X_0 | \mathcal{M}_{n-k}^m)) - E(x_{-k}^* E(X_0 | \mathcal{M}_{n-1}^{m-k})),
\]

\[
\sum_{r=n}^{m-k} E(x_{-r} x_{-r-k}) = E(x_k^* E(X_0 | \mathcal{M}_{-n}) - E(x_k^* E(X_0 | M_{n-m+k-1})).
\]
Standard martingale results give \(\mathbb{E}(X_0^{M_{-n}}) \sim \mathbb{E}(X_0^{M_{-\infty}}) = 0 \) a.s. and
\(\mathbb{E}(X_0^{M_n}) \sim \mathbb{E}(X_0^{M_{-\infty}}) = x_0 \) a.s. so that \(\mathbb{E}(\mathbb{E}(X_0^{M_{-n}})^2) \rightarrow 0 \) and
\(\mathbb{E}(X_0 - \mathbb{E}(X_0^{M_n}))^2 \rightarrow 0 \) as \(n \rightarrow \infty \) and hence

(6) \[\lim_{m \rightarrow \infty} \sum_{r=n}^{m} \mathbb{E}(x_r^2 + x_r^{-2}) = \mathbb{E}x_0^2 - \mathbb{E}(X_0 \mathbb{E}(X_0^{M_{n-1}})) + \mathbb{E}(X_0 \mathbb{E}(X_0^{M_{-n}})). \]

Also,

\[\sum_{k=1}^{m-n} \sum_{r=n}^{k-m} \mathbb{E}(x_r x_r + x_{-r} x_{-r-k}) \]

\[= \sum_{k=1}^{m-n} \{ \mathbb{E}(x_k \mathbb{E}(X_0^{M_{-n}})) + \mathbb{E}(X_{-k} x_0) - \mathbb{E}(X_{-k} \mathbb{E}(X_0^{M_{n-1}})) \}
\]

\[- \sum_{k=1}^{m-n} \{ \mathbb{E}(x_k \mathbb{E}(X_0^{M_{-m+k-1}})) + \mathbb{E}(X_{-k} x_0) - \mathbb{E}(X_{-k} \mathbb{E}(X_0^{M_{n-k}})) \}\]

and under the condition (4),

(7) \[\lim_{m \rightarrow \infty} \sum_{k=1}^{m-n} \sum_{r=n}^{m-k} \mathbb{E}(x_r x_r + x_{-r} x_{-r-k}) \]

\[= \sum_{k=1}^{\infty} \{ \mathbb{E}(x_k \mathbb{E}(X_0^{M_{-n}})) + \mathbb{E}(X_{-k} x_0) - \mathbb{E}(X_{-k} \mathbb{E}(X_0^{M_{n-1}})) \}. \]

It is then clear from (5), (6) and (7) that (1) holds under the condition (4).

Conditions (1) and (4) do not appear to simplify in any really
convenient way in general. However, we remark that we are free to choose a convenient \mathcal{M}_0. For example, if \mathcal{M}_0 is the σ-field generated by X_k, $k < 0$, then the condition (4) becomes just

$$(5) \quad \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} |E(X_k E(X_0 | \mathcal{M}_n))| < \infty.$$

In some cases it may be useful to translate (1) (or (4)) into a condition on the Fourier coefficients of the expansion of X_0 in terms of a suitable complete orthonormal set. Certainly (1) represents a significant improvement over (2) and this justifies its use. An example is given in section 3 to illustrate this point. It should also be remarked that conditions (1) (or (4)) and (2) provide a convenient vehicle for the study of central limit and iterated logarithm results for stationary processes satisfying uniform mixing or strong mixing conditions. This will be the subject of a forthcoming paper but we illustrate here by considering the case of uniformly mixing processes.

2. Uniformly Mixing Processes. Here we suppose that $\{X_j\}$ is a (strictly) stationary process defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with $E X_0 = 0$, $E X_0^2 < \infty$ and satisfying the uniform mixing condition:

$$\sup_{A \in \mathcal{F}_k^{\infty}, \ B \in \mathcal{F}_k^{\infty+n}} \frac{1}{\mathbb{P}(A)} |\mathbb{P}(A \cap B) - \mathbb{P}(A) \mathbb{P}(B)| = \phi(n) \downarrow 0 \quad \text{as} \quad n \to \infty$$

where \mathcal{F}_a^{b} denotes the σ-field generated by $\{X_j, \ a \leq j \leq b\}$. We shall
obtain the following result.

Corollary Let \(\{X_j\} \) satisfy the uniform mixing condition and suppose that

\[
(\mathfrak{q}) \quad \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \left[\phi(n) \phi(k) \phi(n+k) \right]^{\frac{1}{2}} < \infty
\]

then (1) holds and the results of the theorem apply.

This corollary extends previous results in this area. Ibragimov [5] proved a central limit result under the condition \(\sum_{n=1}^{\infty} \left[\phi(n) \right]^{\frac{1}{2}} < \infty \) and Billingsley [1] later obtained an invariance principle for the central limit theorem under the same conditions, as did Scott [10]. Iterated logarithm results have been obtained by various authors under the condition \(\sum_{n=1}^{\infty} \left[\phi(n) \right]^{\frac{1}{2}} < \infty \) together with a variety of additional assumptions. The classical Hartman-Wintner form was obtained by Iosifescu [6] and by Reznik [9] under the additional condition \(E|X_0|^{2+\delta} < \infty \), some \(\delta > 0 \). Iosifescu [7] later obtained an invariance principle form under the same conditions. An earlier invariance principle form was obtained by Oodaira and Yoshihara [8] under the weaker additional condition that

\[
\int_{|x| > N} x^2 d\mathbb{P}(X_0 \leq x) = O((\log N)^{-5}) \quad \text{as} \quad N \to \infty.
\]

Heyde and Scott [4] obtained the invariance principle form under \(\sum_{n=1}^{\infty} \left[\phi(n) \right]^{\frac{1}{2}} < \infty \) without additional assumptions.

Proof of Corollary. We choose \(F_{-\infty}^0 \) as the \(\mathcal{M}_0 \) in the theorem and the framework there applies. Clearly \(E(X_0 | \mathcal{M}_{-n}) \xrightarrow{a.s.} 0 \) as \(n \to \infty \) via the
martingale convergence theorem and it suffices to show that the condition (4) ensures that (9) holds.

We have

\[\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} |E(X_k E(X_0 | M_{-n})| \]

\[= \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} |E(X_{2r} E(X_0 | M_{-n})| + \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} |E(X_{2r+1} E(X_0 | M_{-n})| \]

\[
\leq 4 \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} (\phi(r+n)) E[|E(X_0 | M_{-r})|^2] E[|E(X_0 | M_{-n})|^2]^{1/2},
\]

using stationarity, monotonicity of the \(\phi \)'s and a well-known Hölder type inequality for uniformly mixing processes (e.g. [1], Lemma 1, p. 170). Also, for \(s \geq 0 \),

\[E[|E(X_0 | M_{-s})|^2] = E[X_0 E(X_0 | M_{-s})]\]

\[\leq 2(\phi(s)) E[X_0 E(X_0 | M_{-s})] E[X_0^2]^{1/2} \]

so that

\[(E[|E(X_0 | M_{-s})|^2])^{1/2} \leq 2(\phi(s)) E[X_0^2]^{1/2} \]

(16)
and using (8) in (10) we obtain the desired result.

3. **An Example.** To illustrate the improvement of (1) over (2) we introduce the stationary linear process \(\{x(n)\} \) given by

\[
x(n) - \mu = \sum_{j=-\infty}^{\infty} \alpha(j) e(n-j), \quad \sum_{j=-\infty}^{\infty} \alpha^2(j) < \infty,
\]

where the \(\{e(n)\} \) are independent and identically distributed with zero mean and variance \(\sigma^2 \). Suppose that \(x(1), x(2), \ldots, x(N) \) is a sample of \(N \) consecutive observations on the process \(\{x(n)\} \) and \(\bar{x} \) denotes the sample mean. It follows from the ergodic theorem that \(\bar{x} \xrightarrow{\text{s.s.}} \mu \) as \(N \to \infty \) and it is of interest to obtain central limit and iterated logarithm results which give information on the rate of this convergence. Here we have \(X_k = x(k) - \mu \) and we can take \(\mathcal{M}_k \) as the \(\sigma \)-field generated by \(e(m), m \leq k \). Then,

\[
x_r = E(X_{-r} | \mathcal{M}_0) - E(X_{-r} | \mathcal{M}_{-1}) = \alpha(-r) e(0)
\]

and the theorem of this paper applies if

\[
(\Omega) \quad \sum_{n=1}^{\infty} \left\{ \left(\sum_{r=n}^{\infty} \alpha(r) \right)^2 + \left(\sum_{r=n}^{\infty} \alpha(-r) \right)^2 \right\} < \infty.
\]

On the other hand, the corresponding results based on the use of condition (2) hold if
\[(13) \quad \sum_{n=1}^{\infty} \left(\sum_{|r| > n} a^2(r) \right)^{\frac{1}{2}} < \infty, \]

as in the lemma of Heyde [3]. (12) represents a significant improvement over (13) in the case where the \(a's \) continually vary in sign. If the \(a's \) are ultimately all positive, an example where (12) holds but (13) does not is provided by \(a(|r|) \sim C r^{-3/2} (\log r)^{-1} \) as \(r \to \infty \) for some \(C > 0 \).
REFERENCES

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305
UNCLASSIFIED

ON THE CENTRAL LIMIT THEOREM AND ITERATED LOGARITHM LAW FOR STATIONARY PROCESSES

TECHNICAL REPORT

HEYDE, C. C.

MARCH 26, 1973

N00014-67-A-0112-0051

NR-042-993

#76

Unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government

Office of Naval Research
Arlington, Va.
Statistics & Prob. Program

Invariance principles are given for both the central limit theorem and iterated logarithm law for a wide class of stationary processes. The results are derived from corresponding results for martingales with stationary ergodic increments. This is accomplished via a representation for the stationary process in terms of stationary martingale differences plus other terms whose sum telescopes and disappears under suitable norming. An application is given to show how previously known results for stationary uniformly mixing processes can be improved.
Invariance principles; central limit theorem; iterated logarithm law; stationary processes; uniformly mixing processes; martingales.

INSTRUCTIONS

5. **ORIGINATING ACTIVITY**: Enter the name and address of the contractor, subcontractor, grantor, Department of Defense activity or other organization (corporate author) issuing the report.

7a. **REPORT SECURITY CLASSIFICATION**: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Markings to be in accordance with appropriate security regulations.

7b. **GROUP**: Automatic downgrading is specified in DoD Directive 5205.10, Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that clearing has been completed for Group 3 and Group 4 as authorized.

9a. **ORIGINATOR'S REPORT NUMBER(S)**: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S)**: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES**: Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY**: Enter the name of the military department project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T), (D), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words, but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.