NONPARAMETRIC STANDARD ERRORS AND CONFIDENCE INTERVALS

BY

BRADLEY EFRON

TECHNICAL REPORT NO. 166
APRIL 1981

PREPARED UNDER THE AUSPICES
OF
NATIONAL SCIENCE FOUNDATION GRANT MCS 80-24649

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
NONPARAMETRIC STANDARD ERRORS AND CONFIDENCE INTERVALS

BY

BRADLEY EFRON

TECHNICAL REPORT NO. 166
April 1981

PREPARED UNDER THE AUSPICES OF
NATIONAL SCIENCE FOUNDATION GRANT
MCS 80-24649

Also prepared under Public Health Service Grant 2 R01 GM21215-06, and issued as Technical Report No. 67, Stanford University, Division of Biostatistics.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
NONPARAMETRIC STANDARD ERRORS AND CONFIDENCE INTERVALS

Bradley Efron
Department of Statistics
Stanford University

Abstract

The bootstrap is used to assign standard errors and confidence intervals for nonparametric estimation problems. This is an invited review paper, prepared for discussion at the Canadian Statistical Society, and is based on previous reports by the author. The material on confidence intervals is discussed more thoroughly here. Connections are drawn to other nonparametric methods that have been proposed in the literature. The evidence for a useful small-sample nonparametric theory of confidence intervals is encouraging, though still not conclusive.
NONPARAMETRIC STANDARD ERRORS AND CONFIDENCE INTERVALS

Bradley Efron
Stanford University

1. Introduction

This article concerns nonparametric methods for estimating standard errors and confidence intervals. The discussion focuses on the bootstrap, Efron (1979A), which is easy to motivate and connects nicely to the jackknife, the delta method, and other more or less familiar nonparametric techniques.

We begin on relatively firm ground - assigning a nonparametric estimate of standard error to a real-valued statistic. Whether or not there exists a useful theory of nonparametric small sample confidence intervals is still a matter of speculation. Building on the well understood case of confidence intervals for the median, we offer some hopeful, if not conclusive, evidence that such a theory may be possible. Several different methods, all related to the bootstrap, are compared in two simple situations.

The author appreciates the invitation to present these ideas for discussion. There has been surprisingly little public discussion of jackknife related methods, considering their potential importance to the practicing statistician. A much longer review of the subject, including related topics such as cross-validation, resampling, subsampling, half-sampling, and influence functions, appears in Efron (1980C). Most of the presentation here is drawn from that report, and also Efron (1980B), (1980A), (1979A), some additional material appearing in the latter sections.
2. The Bootstrap Estimate of Standard Error

We have a real-valued statistic \(\hat{\theta}(x_1, x_2, \ldots, x_n) \), which is a function of \(n \) independent identically distributed observations

\[
x_1, x_2, \ldots, x_n \overset{\text{iid}}{\sim} F ,
\]

(2.1)

\(F \) being an unknown probability distribution on a space \(\mathcal{X} \). Having observed \(x_1 = x_1, x_2 = x_2, \ldots, x_n = x_n \), we wish to attach an estimate of standard error to \(\hat{\theta} \).

Example 1. \(\mathcal{X} = \mathbb{R}^1 \), the real line, and \(\hat{\theta} = 25\% \) trimmed mean, i.e. the average of the central 50\% of the sample.

Example 2. \(\mathcal{X} = \mathbb{R}^2 \), the plane, and \(\hat{\theta} = \hat{\theta}(x_1, x_2, \ldots, x_n) \), the Pearson product moment correlation coefficient for the observed sample.

The true standard error of \(\hat{\theta} \) is a function of \(F, n \), and the form of the statistic \(\hat{\theta} \), say

\[
\sigma(F, n, \hat{\theta}(*, *, \ldots, *)) = \sigma(F) .
\]

(2.2)

This last notation emphasizes that, knowing \(n \) and the form of \(\hat{\theta} \), the true standard error is only a function of the unknown distribution \(F \).

The bootstrap estimate of standard error, \(\hat{\sigma}_B \), is simply

\[
\hat{\sigma}_B = \sigma(\hat{F}) ,
\]

(2.3)

where \(\hat{F} \) is the empirical probability distribution

\[
\hat{F}: \text{mass } \frac{1}{n} \text{ on } x_i , \quad i=1, 2, \ldots, n .
\]

(2.4)

As a simple example, \(\mathcal{X} = \mathbb{R}^1 \) and suppose \(\theta = \bar{x} = \frac{1}{n} \sum x_i \), the average, in which case \(\sigma(F) = \left[\mu_2(F)/n \right]^{1/2} \), where \(\mu_2(F) = \int_{-\infty}^{\infty} (x - \mu_x)^2 \). Then

\[
\hat{\sigma}_B = \left[\hat{\mu}_2/n \right]^{1/2} , \quad \text{where } \hat{\mu}_2 = \sum(x_i - \bar{x})^2/n .
\]
In fact the function \(\sigma(F) \) is usually impossible to express in simple form, and \(\hat{\sigma}_B \) must be evaluated using a Monte Carlo algorithm.

Step 1. Construct \(\hat{F} \) as at (2.4).

Step 2. Draw a bootstrap sample from \(\hat{F} \),

\[
X_1^*, X_2^*, \ldots, X_n^* \text{iid } \hat{F},
\]

and calculate \(\hat{\theta}^* = \hat{\theta}(X_1^*, X_2^*, \ldots, X_n^*) \).

Step 3. Independently repeat Step 2 some number "B" times, obtaining bootstrap replications \(\hat{\theta}^*(1), \hat{\theta}^*(2), \ldots, \hat{\theta}^*(B) \), and calculate

\[
\hat{\sigma}_B = \left[\frac{1}{B} \sum_{b=1}^{B} [(\hat{\theta}^*(b) - \hat{\theta}^*(\cdot))^2/(B-1)] \right]^{1/2},
\]

where \(\hat{\theta}^*(\cdot) = \sum \hat{\theta}^*(b)/B \). As \(B \to \infty \), the right-hand side of (2.6) converges to \(\sigma(\hat{F}) \). In practice, the author has found \(B \) in the range 50-200 adequate for estimating standard errors. The point is discussed further below. Larger values of \(B \) are required for the confidence interval calculations of Sections 4 - 10.

Tables 1 and 2 report on sampling experiments relating to examples 1 and 2 respectively. Two distributions \(F \) are investigated in Table 1, a standard normal, \(F \sim \mathcal{N}(0, 1) \), and a standard negative exponential \(F \sim \mathcal{G}_1 \). The sample size is \(n = 15 \); \(\hat{\sigma}_B \) is based on \(B = 200 \) bootstrap replications in each trial\(^\dag\). Summary statistics are given for 200 trials, both for \(\hat{\sigma}_B \) and the jackknife estimate of standard error.

\(^\dag\)"Trial" refers to a new choice of the data \(X_1, X_2, \ldots, X_n \sim F \). "Replication" refers to a selection of the bootstrap sample \(X_1^*, X_2^*, \ldots, X_n^* \sim \hat{F} \).
\[\hat{c}_J = \left[\frac{n-1}{n} \sum (\hat{\theta}(i) - \hat{\theta}(\cdot))^2 \right]^{1/2}, \] (2.7)

\[\hat{\theta}(i) = \hat{\theta}(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n), \quad \hat{\theta}(\cdot) = \sum_i \hat{\theta}(i)/n. \] Both the bootstrap and the jackknife are nearly unbiased. The bootstrap performs better in that its coefficient of variation is lower. The bracketed figures show the minimum possible coefficient of variation for a scale invariant estimate of standard error, assuming full knowledge of F. In the normal case, for example, .19 is the coefficient of variation of \[[\sum (x_i - \bar{x})^2/14]^{1/2}. \]

<table>
<thead>
<tr>
<th>Summary Statistics for 200 Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>F ~ (\mathcal{N}(0,1))</td>
</tr>
<tr>
<td>Ave</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Jackknife</td>
</tr>
<tr>
<td>.280</td>
</tr>
<tr>
<td>Bootstrap (B = 200)</td>
</tr>
<tr>
<td>.287</td>
</tr>
<tr>
<td>True Standard Error [Minimum</td>
</tr>
<tr>
<td>Possible CV]</td>
</tr>
<tr>
<td>.289</td>
</tr>
</tbody>
</table>

Table 1. Estimates of standard error for the 25% trimmed mean using the jackknife and the bootstrap: 200 trials of \(X_1, X_2, \ldots, X_{15} \sim \text{iid F}\). The standard deviations of \(\hat{c}_B, \hat{c}_J\) for the 200 trials show a moderate advantage for the bootstrap.

Table 2 compares several nonparametric estimates for the standard error of \(\hat{\beta}\), the correlation coefficient, and also for \(\hat{\phi} = \tanh^{-1} \hat{\beta}\). The true distribution \(F\) is bivariate normal with \(\rho = .5\); the sample size is \(n = 14\). The true standard errors are \(\sigma(\hat{\beta}) = .218\), \(\sigma(\hat{\phi}) = .299\).
in this situation. Summary statistics for the estimates of standard error are presented, based on 200 trials.

The bootstrap was run with $B = 128$ and also with $B = 512$. The increased effort of the latter value yielded only slightly less variable estimates $\hat{\sigma}_B$. A standard argument based on components of variance shows that further increases of B would be pointless. Taking $B = \infty$ would reduce the root mean square error $\hat{\sigma}_B(\hat{\rho})$, as an estimator of the true standard error $\sigma(\hat{\rho})$, to .63. Likewise the value of $\sqrt{\text{MSE}}$ for $\hat{\sigma}_B(\hat{\rho})$ would be reduced to .61. As a point of comparison, the normal theory estimate $\hat{\sigma}_N(\hat{\rho}) = (1 - \hat{\rho}^2)/(n-3)^{1/2}$ has $\sqrt{\text{MSE}} = .056$.

Why not generate the bootstrap observations from a smoother estimate of \hat{F} than \hat{F}? This is done in lines 3, 4, and 5 of Table 2. Let

$$\hat{F} = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})'/n,$$

the sample covariance matrix of the observed data. The normal smoothed bootstrap uses $X_1^*, X_2^*, \ldots, X_n^* \text{iid } \hat{F} * n_2(0, .25 \frac{\hat{\rho}}{2})$, $*$ indicating convolution. This amounts to estimating \hat{F} by a normal window estimate, that is by an equal mixture of the n distributions $n_2(x_i^*, .25 \frac{\hat{\rho}}{2})$. Smoothing gives a moderate improvement for estimating $\sigma(\hat{\rho})$, and an enormous improvement for estimating $\sigma(\hat{\rho})$. The latter result is suspect since the true sampling situation is itself bivariate normal, and the function $\hat{\rho} = \tanh^{-1}\hat{\rho}$ is chosen to have $\sigma(\hat{\rho})$ constant in the bivariate normal family. The uniform smoothed bootstrap uses $X_1^*, X_2^*, \ldots, X_n^* \text{iid } \hat{F} * U(0, .25 \frac{\hat{\rho}}{2})$, where $U(0, .25 \frac{\hat{\rho}}{2})$ is the uniform distribution on a rhombus selected to have mean vector 0 and covariance matrix $0.25 \frac{\hat{\rho}}{2}$.

The standard normal theory estimates of line 8, Table 2, are themselves bootstrap estimates, carried out in a parametric framework. At step 1 of the bootstrap algorithm, the fitted distribution is taken to be the parametric MLE $\hat{F}_N = n_2(\bar{x}, \frac{\hat{\rho}}{2})$, rather than the nonparametric MLE \hat{F}. The

\daggerThe notation $\hat{\sigma}_B(\hat{\rho})$ indicates the bootstrap estimate of $\sigma(\hat{\rho})$, the true standard deviation for the statistic $\hat{\rho}$.

5
<table>
<thead>
<tr>
<th></th>
<th>Standard Error Estimates for $\hat{\rho}$</th>
<th></th>
<th>Standard Error Estimates for $\hat{\phi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave</td>
<td>Std Dev</td>
<td>CV</td>
</tr>
<tr>
<td>1. Bootstrap B = 128</td>
<td>.206</td>
<td>.066</td>
<td>.32</td>
</tr>
<tr>
<td>2. Bootstrap B = 512</td>
<td>.206</td>
<td>.063</td>
<td>.31</td>
</tr>
<tr>
<td>5. Uniform Smoothed Bootstrap B = 512</td>
<td>.205</td>
<td>.059</td>
<td>.29</td>
</tr>
<tr>
<td>6. Jackknife</td>
<td>.223</td>
<td>.085</td>
<td>.38</td>
</tr>
<tr>
<td>7. Delta Method</td>
<td>.175</td>
<td>.058</td>
<td>.33</td>
</tr>
<tr>
<td>(Infinitesimal Jackknife)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Normal Theory</td>
<td>.217</td>
<td>.056</td>
<td>.26</td>
</tr>
<tr>
<td>True Standard Error</td>
<td>.218</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Estimates of standard error for the correlation coefficient $\hat{\rho}$ and for $\hat{\phi} = \tanh^{-1} \hat{\rho}$.

The sampling experiment consisted of 200 trials of $X_1, X_2, \ldots, X_{14} \sim \text{Bivariate Normal}$, true $\rho = .5$. The delta method estimates are badly biased downward. The jackknife estimates are substantially more variable than the bootstrap. From a larger table in Efron (1980B).
bootstrap observations $X_1^*, X_2^*, \ldots, X_n^*$ are drawn independently from \hat{F}_N rather than from \hat{F}, and the algorithm proceeds as described in steps 2 and 3. This process isn't actually carried out. If it were, and if $B \to \infty$, then a high order Taylor series approximation shows that $\hat{\sigma}_N(\hat{\theta}) \approx (1-\hat{\rho}^2)/[n-3]^{1/2}$, $\hat{\sigma}_N^2(\hat{\theta}) \approx 1/(n-3)^{1/2}$, see Johnson and Kotz (1970), page 229. Notice that the normal smoothed bootstrap can be thought of as a compromise between using \hat{F} or \hat{F}_N to begin the bootstrap process.

3. The Jackknife and the Delta Method

We can restate the bootstrap idea in a way which makes clear its connection with the jackknife and the delta method. Suppose $\hat{\theta}$ is a functional statistic, i.e. of the form $\hat{\theta} = \theta(\hat{F})$, where $\theta(F)$ is a functional assigning a real number to any distribution F on \mathcal{X}. Both examples in Section 2 are of this form. Let $\tilde{P} = (P_1, P_2, \ldots, P_n)$ be a probability vector, having nonnegative weights summing to one, and define the reweighted empirical distribution

$$\hat{F}(\tilde{P}) : \text{mass } P_i \text{ on } x_i^*, \ i=1, 2, \ldots, n. \quad (3.1)$$

Corresponding to \tilde{P} is a resampled value of the statistic, say $\hat{\theta}(\tilde{P}) = \theta(\hat{F}(\tilde{P}))$. The shorthand notation $\hat{\theta}(\tilde{P})$ assumes that $x_1^*, x_2^*, \ldots, x_n^*$ are fixed at their observed values.

Another way to describe the bootstrap estimate $\hat{\sigma}_B$ is as follows. Let \tilde{P}^* indicate a vector drawn from the rescaled multinomial distribution

$$\tilde{P}^* \sim \text{Mult}_n(n, \tilde{P}^\circ)/n, \quad (\tilde{P}^\circ = (\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n})), \quad (3.2)$$

meaning the observed proportions from n draws on n categories, with equal probability $1/n$ for each category. Then
\[\hat{\sigma}_B = \left[\text{Var}_* \hat{\theta}(\tilde{P}^*) \right]^{1/2}. \] (3.3)

Var_* indicates variance\(^{\dagger}\) under (3.2). (\(P_{\tilde{i}}^*\) equals \(#\{x_j = x_{\tilde{i}}\}/n\) in step 2 of the bootstrap algorithm.)

The jackknife values \(\hat{\theta}(i)\) equal \(\hat{\theta}(P_{\tilde{i}})\), where \(P_{\tilde{i}} = (1,1,...,0,1,1)/(n-1)\), 0 in the \(i^{th}\) place. We can approximate \(\hat{\theta}(P)\) by the linear function of \(P\), say \(\hat{\theta}_L(P)\), having \(\hat{\theta}_L(P_{\tilde{i}}) = \hat{\theta}(P_{\tilde{i}})\) for \(i = 1, 2, \ldots, 0\). It is easy to see that

\[\hat{\theta}_L(P) = \hat{\theta}(\cdot) + (P - P^0)U, \] (3.4)

where \(U\) is the column vector having \(i^{th}\) coordinate

\[U_i = (n-1)(\hat{\theta}(\cdot) - \hat{\theta}(i)). \] (3.5)

Theorem (Efron, 1980B).

\[\hat{\sigma}_J = \left[\frac{n}{n-1} \text{Var}_* \hat{\theta}_L(P^*) \right]^{1/2}. \] (3.6)

The theorem says that the jackknife estimate of standard error for \(\hat{\theta}\) is \([n/(n-1)]^{1/2}\) times the bootstrap estimate of standard error for \(\hat{\theta}_L\). In other words the jackknife is, almost\(^{\dagger}\), a bootstrap itself. The

\(^{\dagger}\)Notation: we will use "Var_*" and "Prob_*" to indicate variances and probabilities calculated from (2.5), which is equivalent to (3.2). In both (2.5) and (3.2), the observations \(x_1, x_2, \ldots, x_n\) are fixed.

\(^{\dagger}\)The factor \([n/(n-1)]^{1/2}\) makes \(\hat{\sigma}_J^2\) unbiased for \(\sigma^2\) if \(\hat{\theta}\) is a linear statistic, e.g., \(\hat{\theta} = \bar{x}\). We could multiply \(\hat{\sigma}_B\) by this same factor, but there doesn't seem to be any particular advantage to doing so.
advantage of working with the linear approximation \(\hat{\theta}_L \), rather than \(\hat{\theta} \), is that there is no need for Monte Carlo calculations:

\[
\text{Var}_* \hat{\theta}_L(p^*) = \text{Var}_*(p^* - \tilde{p})U = \Sigma U_i^2 / n^2, \]

using the known covariance of (3.2) and the fact that \(\Sigma U_i = 0 \). The disadvantage is increased error of estimation, as evidenced in Tables 1 and 2.

Instead of approximating \(\hat{\theta}(p) \) by \(\hat{\theta}_L(p) \), we could use the first order Taylor series expansion for \(\hat{\theta}(p) \) about the point \(\tilde{p} = p^0 \),

\[
\hat{\theta}_T(p) = \hat{\theta}(p^0) + (p - p^0)U^0, \tag{3.7}
\]

\[
U_i^0 = \lim_{\varepsilon \to 0} \frac{\hat{\theta}(p^0 + \varepsilon(\tilde{\xi}_i - p^0)) - \hat{\theta}(p^0)}{\varepsilon},
\]

\(\tilde{\xi}_i \) being the \(i \)th coordinate vector. This suggests the standard error estimate

\[
\hat{\sigma}_{IJ} = \left[\text{Var}_* \hat{\theta}_T(p^*) \right]^{1/2} = \left[\Sigma U_i^0 / n^2 \right]^{1/2}, \tag{3.8}
\]

with \(\text{Var}_* \) still indicating variance under (3.2). The initials "IJ" stand for infinitesimal jackknife, as defined by Jaeckel in his highly original 1972 paper. The ordinary jackknife takes \(\varepsilon = -1/(n-1) \) in (3.7) while the infinitesimal jackknife lets \(\varepsilon \to 0 \), thereby earning its name.

The \(U_i^0 \) are values of the empirical influence function, Mallows 1974, their definition being an obvious nonparametric estimate of the true influence function.
IF(x) = \lim_{\varepsilon \to 0} \frac{\Theta((1-\varepsilon)F + \varepsilon \delta_x) - \Theta(F)}{\varepsilon}, \quad (3.9)

where \(\delta_x \) is the degenerate distribution putting mass 1 on point \(x \). The right side of (3.8) is then the obvious estimate of the influence function approximation to the standard error of \(\hat{\theta} \), Hampel 1974, \(\sqrt{\int IF^2(x) \, dF(x)/n} \). The empirical influence function approach and the infinitesimal jackknife give identical estimates of standard error.

The nonparametric delta method applies to statistics of the form
\[t(\bar{q}_1, \bar{q}_2, \ldots, \bar{q}_A) \], where \(t(\cdot, \cdot, \ldots, \cdot) \) is a known function and each \(\bar{q}_a \) is an observed average, \(\bar{q}_a = \frac{1}{n} \sum_{i=1}^{n} q_a(X_{i}^4)/n \). For example, the correlation \(\hat{\rho} \) is a function of \(A = 5 \) such averages,

\[\hat{\rho}(x_1, \ldots, x_n) = \frac{\bar{q}_4 - \bar{q}_1 \bar{q}_2}{[\bar{q}_3 - \bar{q}_1^2]^{1/2} [\bar{q}_5 - \bar{q}_2^2]^{1/2}}, \quad (3.10) \]

\(Q_1(X) = Q_1(Y,Z) = Y, Q_2 = Z, Q_3 = Y^2, Q_4 = YZ, Q_5 = Z^2. \) The method works by (i) expanding \(t \) in a linear Taylor series about the expectations of the \(\bar{q}_a \); (ii) evaluating the standard error of the Taylor series, using the usual expressions for variances of averages; and (iii) substituting \(\gamma(F) \) for any unknown quantity \(\gamma(F) \) occurring in (ii). For example, the delta method estimate of the standard error of \(\hat{\rho} \) is

\[\left\{ \frac{\hat{\rho}^2}{4n} \left[\hat{\mu}_{20}^2 + \hat{\mu}_{02}^2 + \frac{2\hat{\mu}_{22}^2}{\hat{\mu}_{20}} + \frac{4\hat{\mu}_{31}^2}{\hat{\mu}_{11}} - \frac{4\hat{\mu}_{13}^2}{\hat{\mu}_{11}} \right] \right\}^{1/2}, \quad (3.11) \]

where, if \(x_1 = (y_1, z_1) \), then \(\hat{\mu}_{gh} = \sum (y_1 - \bar{y})(z_1 - \bar{z})^{h-1}/n \). See Cramér 1945, p. 359.
Efron 1980B proves that for any statistic of the form \(\hat{\theta} = t(\overline{O}_1, \ldots, \overline{O}_A) \), the nonparametric delta method and the infinitesimal jackknife give the same estimate of standard error. The infinitesimal jackknife, the delta method, and the empirical influence function approach are three names for the same method, and all are Taylor series approximations to the bootstrap, as in (3.8). Notice that the results reported in line 7 of Table 2 show a serious downward bias. Efron and Stein, 1981, prove that the ordinary jackknife estimate of standard error will tend to be biased upward, in a sense made precise in that paper. In the author's opinion, the ordinary jackknife is the method of choice for estimating standard errors if one doesn't want to do extensive bootstrap computations.

4. The Percentile Method

Estimated standard errors, along with assumptions of approximate normality, provide the rough confidence intervals so widely used in applied statistics: \(\hat{\theta} \pm z_{\alpha} \hat{\sigma} \), with \(z_{\alpha} \) being the upper 1-\(\alpha \) point of a standard normal distribution. In small sample parametric situations, where we can do exact calculations, confidence intervals are often highly asymmetric about the best point estimate \(\hat{\theta} \). The asymmetry, which is \(O(1/\sqrt{n}) \) in magnitude, is substantially more important than the student t correction, (replacing \(\hat{\theta} \pm z_{\alpha} \hat{\sigma} \) by \(\hat{\theta} \pm t_{\alpha} \hat{\sigma} \), with \(t_{\alpha} \) the 1-\(\alpha \) point of an appropriate t distribution) which is only \(O(1/n) \). We will discuss some nonparametric methods of assigning confidence intervals which attempt to capture the correct degree of asymmetry. This is a brave venture since the problem isn't well understood even in parametric settings, but the results are mildly encouraging.
We begin with an example described more fully in Efron, 1979B. The data consists of \(n = 15 \) pairs of points: (576, 3.39), (635, 3.30), (558, 2.81), (578, 3.03), (666, 3.44), (580, 3.07), (555, 3.00), (661, 3.43), (661, 3.36), (605, 3.13), (653, 3.12), (575, 2.74), (545, 2.76), (572, 2.88), (594, 2.96). Each pair is two statistics describing the 1973 entering class at an American law school. The observed correlation between the two statistics is \(\hat{\rho} = .776 \). Figure 1 shows the histogram of \(B = 1000 \) bootstrap replications \(\hat{\rho}^* \), with the abscissa plotted in terms of \(\hat{\rho}^* - \hat{\rho} \). Also shown is the normal theory density curve \(f_{\hat{\rho}}(\hat{\rho}^*) \) for \(\hat{\rho} = .776 \), plotted versus \(\hat{\rho}^* - \hat{\rho} \), Johnson and Kotz, 1970, p.222.

The similarity between the histogram and \(f_{\hat{\rho}}(\hat{\rho}^*) \) is striking. It suggests, in a manner motivated in Sections 5-7, a simple method for constructing nonparametric confidence intervals. Let \(\text{CDF}(t) \) represent

![Figure 1](attachment:image1.png)

Figure 1. Histogram of 1000 bootstrap replications \(\hat{\rho}^* - \hat{\rho} \) for the law school data. The smooth curve is the normal theory density of \(\hat{\rho}^* \), centered at \(\hat{\rho} \), when the true correlation is \(\hat{\rho} = .776 \).
the cumulative of the bootstrap distribution for some real valued functional statistic $\hat{\theta} = \theta(\hat{F})$,

$$\text{CDF}(t) = \text{Prob}_*\{\hat{\theta}^* < t\} = \frac{\#\{\hat{\theta}^*(b) < t\}}{B}. \quad (4.1)$$

"Prob$_*$" indicates the bootstrap probability, as induced by mechanism (2.5); the last expression equals this probability as $B \to \infty$, a distinction we shall ignore. For a given value of α between 0 and 1 define

$$\hat{\theta}(\alpha) = \text{CDF}^{-1}(\alpha). \quad (4.2)$$

The percentile method assigns

$$\theta \in [\hat{\theta}(\alpha), \hat{\theta}(1-\alpha)], \quad (4.3)$$

as a putative 1-2α central confidence interval for the parameter $\theta = \theta(\hat{F})$. With $\alpha = .16$, the 1000 bootstrap replications for the law school data gave $\rho \in [.654, .908] = [\hat{\rho} - .12, \hat{\rho} + .13]$ as a central 68% interval for ρ, compared to the standard normal theory interval $[\hat{\rho} - .16, \hat{\rho} + .09]$, obtained by inverting $\bar{\Phi} \sim \text{n}(\Phi + \frac{\rho}{2(n-1)}, \frac{1}{n-3})$. We shall also consider the bias-corrected percentile method

$$\theta \in [\text{CDF}^{-1}(\Phi(2z_0 - z_\alpha)), \text{CDF}^{-1}(\Phi(2z_0 + z_\alpha))] \quad (4.4)$$

$$(z_0 = \Phi^{-1}(\text{CDF}(\hat{\theta})), \quad (4.4)$$

$$\Phi(z) = (1/\sqrt{2\pi}) \int_{-\infty}^{z} e^{-s^2/2} \, ds. \quad \text{For the law school data, } \text{CDF}(\hat{\theta}) = .433$$
(433 out of 1000 bootstrap replications $\hat{\theta}^*$ is less than .776), so

$z_0 = \Phi(.433) = -.17$. The bias-corrected central 68% interval was

$\rho \in [\hat{\Phi}^{-1} (-1.34), \hat{\Phi}^{-1} (.66)] = [\hat{\rho} - .17, \hat{\rho} + .10]$, almost the same as the normal theory interval.

Table 3 shows the results of 10 Monte Carlo trials with X_1, X_2, \ldots, X_{15} bivariate normal, true correlation $\rho = .5$. For each trial, central 68% intervals were constructed using normal theory, the percentile method, the bias-corrected percentile method, and a smoothed version of this last approach. The smoothed version is based on (4.4), but with $\hat{\Phi}(t)$ being the cumulative of smoothed bootstrap replications $\hat{\theta}^*$, the smoothing mechanism being the same one used in line 3 of Table 2. The resemblance between the normal intervals and the smoothed bias-corrected intervals is impressive, though again one must be suspicious of a smoothing mechanism which obviously relates to the true distribution. The unsmoothed bias-corrected intervals are more variable, but still give an excellent suggestion of the correct left-right asymmetry in the normal theory intervals. The percentile method doesn't do this consistently.

On the other hand, 100 trials of the same experiment showed the percentile method giving correct average coverage rates: in 13 out of the 100 trials $\rho = .5$ was less than $\hat{\Phi}^{-1}(.10)$, compared to the theoretical expected value 10 out of 100; likewise 16 trials had

$\hat{\Phi}^{-1}(.10) \leq \rho < \hat{\Phi}^{-1}(.25)$, 22 had $\hat{\Phi}^{-1}(.25) \leq \rho < \hat{\Phi}^{-1}(.50)$, 27 had $\hat{\Phi}^{-1}(.50) \leq \rho < \hat{\Phi}^{-1}(.75)$, 12 had $\hat{\Phi}^{-1}(.75) \leq \rho < \hat{\Phi}^{-1}(.90)$, and 10 had $\hat{\Phi}^{-1}(.90) \leq \rho$.

<table>
<thead>
<tr>
<th>Trial</th>
<th>$\hat{\rho}$</th>
<th>Normal Theory</th>
<th>Percentile Method</th>
<th>Bias-Corrected Percentile Method</th>
<th>Smoothed and Bias-Corrected Percentile Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.16</td>
<td>(-.29, .26)</td>
<td>(-.29, .24)</td>
<td>(-.28, .25)</td>
<td>(-.28, .24)</td>
</tr>
<tr>
<td>2</td>
<td>.75</td>
<td>(-.17, .09)</td>
<td>(-.05, .08)</td>
<td>(-.13, .04)</td>
<td>(-.12, .08)</td>
</tr>
<tr>
<td>3</td>
<td>.55</td>
<td>(-.25, .16)</td>
<td>(-.24, .16)</td>
<td>(-.34, .12)</td>
<td>(-.27, .15)</td>
</tr>
<tr>
<td>4</td>
<td>.53</td>
<td>(-.26, .17)</td>
<td>(-.16, .16)</td>
<td>(-.19, .13)</td>
<td>(-.21, .16)</td>
</tr>
<tr>
<td>5</td>
<td>.73</td>
<td>(-.18, .10)</td>
<td>(-.12, .10)</td>
<td>(-.16, .10)</td>
<td>(-.20, .10)</td>
</tr>
<tr>
<td>6</td>
<td>.50</td>
<td>(-.26, .18)</td>
<td>(-.18, .18)</td>
<td>(-.22, .15)</td>
<td>(-.26, .14)</td>
</tr>
<tr>
<td>7</td>
<td>.70</td>
<td>(-.20, .11)</td>
<td>(-.17, .12)</td>
<td>(-.21, .10)</td>
<td>(-.18, .11)</td>
</tr>
<tr>
<td>8</td>
<td>.30</td>
<td>(-.29, .23)</td>
<td>(-.29, .25)</td>
<td>(-.33, .24)</td>
<td>(-.29, .25)</td>
</tr>
<tr>
<td>9</td>
<td>.33</td>
<td>(-.29, .22)</td>
<td>(-.36, .24)</td>
<td>(-.30, .27)</td>
<td>(-.30, .26)</td>
</tr>
<tr>
<td>10</td>
<td>.22</td>
<td>(-.29, .24)</td>
<td>(-.50, .34)</td>
<td>(-.48, .36)</td>
<td>(-.38, .34)</td>
</tr>
<tr>
<td>AVE</td>
<td>.48</td>
<td>(-.25, .18)</td>
<td>(-.21, .19)</td>
<td>(-.26, .18)</td>
<td>(-.25, .18)</td>
</tr>
</tbody>
</table>

Table 3. Central 68% confidence intervals, 10 trials of X_1, X_2, \ldots, X_{15} bivariate normal, true $\rho = .5$. Each interval has $\hat{\rho}$ subtracted from both endpoints.

5. Bayesian Justification for the Percentile Method

Suppose the sample space \mathcal{Y} is discrete, say $\mathcal{Y} = \{1, 2, \ldots, L\}$. This is no real restriction since we can discretely approximate most situations if L is taken sufficiently large. Let $f_\ell = \text{Prob}_P\{X=\ell\}$ and $\hat{f}_\ell = \#\{x_1=\ell\}/n$ be the true and observed frequencies for category ℓ, and denote $\hat{f} = (f_1, f_2, \ldots, f_L)$, $\hat{\tau} = (\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_L)$.

Consider the symmetric Dirichlet prior distribution with parameter a,

$$\hat{f} \sim \text{Di}_L(a).$$ \hspace{1cm} (5.1)
i.e., take the prior density function of \(\hat{f} \) proportional to \(\Pi \hat{f}_{\lambda}^{a-1} \).

Having observed \(\hat{f} \), the aposteriori density of \(f | \hat{f} \) is proportional to
\[
\pi \hat{f}_{\lambda}^{n_{\lambda} + a - 1}.
\]
Letting \(a \rightarrow 0 \) to represent prior ignorance gives the well-known result
\[
\hat{f} | \hat{f} \sim D_{L}(n_{\hat{f}}).
\] (5.2)

Result (5.2) is quite similar to the bootstrap distribution when \(\lambda \) is discrete,
\[
\hat{f}^{\ast} | \hat{f} \sim \text{Mult}_{L}(n_{\hat{f}}/n),
\] (5.3)

where \(\hat{f}^{\ast}_{\lambda} = \# \{ X_{i}^{\ast} = \lambda \} / n \): (i) Both distributions are supported entirely on those categories in which data was observed, i.e., those \(\lambda \) for which \(\hat{f}_{\lambda} > 0 \); (ii) Both distributions have expectation vector \(\hat{f} \); (iii) The covariance matrices are also nearly equal, \(\text{Cov}(f | \hat{f}) = \hat{f}_{\lambda} / (n + 1) \),
\[
\text{Cov}_{\ast}(\hat{f}^{\ast} | \hat{f}) = \hat{f}_{\lambda} / n,
\]
where \(\hat{f}_{\lambda} \) has diagonal elements \(\hat{f}_{\lambda}(1 - \hat{f}_{\lambda}) \), and off-diagonals \(-\hat{f}_{\lambda} \hat{f}_{m} \). A continuity correction for the discreteness of the bootstrap distribution makes the covariance matrices agree even more closely.

The point here is that the aposteriori distribution of \(\theta(f) | \hat{f} \) is likely to be well approximated by the bootstrap distribution of \(\theta(f^{\ast}) | \hat{f} \), whenever \(\theta(f) \) is a reasonably smooth function of \(f \). If this is true, the percentile method \(1 - 2\alpha \) central confidence interval will be a good approximation to the central Bayes interval of probability \(1 - 2\alpha \).
Rubin (1981) has criticized the bootstrap for agreeing with a silly prior, a form of guilt by association, and suggests doing a genuine Bayesian analysis for these problems. On the other hand, we shall see in Section 7 that the uninformative Dirichlet approach gives a quite reasonable answer in the case where \(\theta(F) \) is the median.

6. Transformations and Pivotal Quantities

The argument supporting the bias-corrected percentile method (4.4) is based on hypothesizing a transformation to a normal pivotal quantity. Suppose there exists a monotonic increasing function \(g(\cdot) \) such that the transformed quantities

\[
\phi = g(\hat{\theta}), \quad \hat{\phi} = g(\hat{\theta}), \quad \hat{\phi}^* = g(\hat{\theta}^*)
\]

(6.1)
satisfy

\[
\hat{\phi} - \hat{\phi} \sim n(-z_0\sigma, \sigma^2) \quad \text{and} \quad \hat{\phi}^* - \hat{\phi} \sim n(-z_0\sigma, \sigma^2)
\]

(6.2)

for some constants \(z_0 \) and \(\sigma \). The symbol "\(\sim \)" indicates distribution under bootstrap sampling (2.5). In other words, \(\hat{\phi} - \hat{\phi} \) is a normal pivotal having the same distribution under both \(F \) and \(\hat{F} \).

We shall see that (6.2) leads easily to (4.4), and also (4.3). The interesting aspect of this argument is that the bias-corrected percentile method requires no knowledge of the transformation \(g(\cdot) \), or the constants \(z_0, \sigma \). All we need to know to construct the appropriate interval for \(\theta = \theta(F) \) is \(\hat{\theta} = \theta(\hat{F}) \) and \(\text{CDF}(t) \), the cumulative distribution
of the statistic of interest assuming \(F = \hat{F} \). This is particularly useful in nonparametric contexts where it is difficult to imagine interesting alternative distributions to the MLE \(\hat{F} \). (An attempt at imagining such alternatives is made in Section 11.)

In parametric contexts, (6.2) is a device frequently used to obtain confidence intervals. Fisher's transformation \(\phi = \tanh^{-1} \rho \) is a classic example. Within the class of bivariate normal distributions it produces a good approximation to (6.2), with \(\sigma^2 = 1/(n-3) \) and

\[
z_0 = -\frac{\hat{\rho}\sqrt{n-3}}{2(n-1)} .
\]

It is interesting to apply (4.4) directly to this parametric situation. To do so it is only necessary to redefine

\[
\hat{CDF}(t) = \int_{-1}^{t} F_\rho(\rho^*) d\rho^* \text{ where } f_\rho(\rho^*) \text{ is the normal theory density of the correlation coefficient when the true correlation equals } \hat{\rho} .
\]

Then \(\hat{CDF}(t) \) is still the bootstrap CDF of \(\hat{\rho}^* \), but working off the parametric maximum likelihood estimate \(F = \hat{F}_N \). For the case \(n = 15, \hat{\rho} = .5 \), the 95% central interval obtained from (4.4) is \(\rho \in [-.039, .798] \).

Again, it should be emphasized that this calculation requires no knowledge of the \(\tanh^{-1} \) transformation or of \(z_0 \) and \(\sigma^2 \), only the density \(f_{\hat{\rho}}(\cdot) \). The exact 95% interval obtained from the Biometrika tables (1954) is \(\rho \in [-.024, .790] \).

Now to verify (4.4) from (6.2). Notice that the middle statement in (6.1) is actually a definition of the estimator \(\hat{\phi} \). The last relationship in (6.1) then follows from

\[
\hat{\phi}^* = \hat{\phi}(X_1^*, X_2^*, ..., X_n^*) = g(\hat{\theta}(X_1^*, X_2^*, ..., X_n^*)) = g(\hat{\theta}^*) .
\]

It implies that the bootstrap CDF of \(\hat{\phi}^* \), say

\[
\hat{CDF}(s) = \text{Prob}_\hat{\phi}\{\hat{\phi}^* \leq s\}
\]

\((6.3) \)

18
is the obvious transformation of \(\hat{CDF}(t) \),

\[
\hat{CDG}(g(t)) = \hat{CDF}(t) .
\] (6.4)

The first relationship in (6.2) gives

\[
\phi \in [\hat{\phi} + z_0 \sigma \pm z_\alpha \sigma]
\] (6.5)

as the 1-2\(\alpha\) central confidence interval for \(\phi \). Transforming (6.5) back to the \(\theta \) scale, by the transformation \(g^{-1}(\cdot) \), turns out to give (4.4). First notice that (6.2) and (6.4) imply

\[
\text{Prob}_x(\hat{\phi}^* \leq \hat{\phi}) = \hat{\phi}(z_0) = \hat{CDG}(g(\hat{\theta})) = \hat{CDF}(\hat{\theta}) ,
\] (6.6)

which gives \(z_0 = \phi^{-1} \hat{CDF}(\hat{\theta}) \) as in (4.4).

Using (6.2) again,

\[
\text{Prob}_x(\hat{\phi}^* < \hat{\phi} + z_0 \sigma \pm z_\alpha \sigma) = \text{Prob}_\theta(\hat{\phi} < \phi + z_0 \sigma \pm z_\alpha \sigma) = \phi(2z_0 \pm z_\alpha) .
\]

This can be written as \(\hat{CDG}(\phi + z_0 \sigma \pm z_\alpha \sigma) = \phi(2z_0 \pm z_\alpha) \), or

\[
\hat{\phi} + z_0 \sigma \pm z_\alpha \sigma = \hat{CDG}^{-1}[\phi(2z_0 \pm z_\alpha)] .
\]

Transforming (6.5) back to the \(\theta \) scale by the mapping \(g^{-1}(\cdot) \) gives the interval with endpoints \(g^{-1}(\hat{\phi} + z_0 \sigma \pm z_\alpha \sigma) = g^{-1} \hat{CDG}^{-1}[\phi(2z_0 \pm z_\alpha)] = \hat{CDF}^{-1} \phi(2z_0 \pm z_\alpha) \), the last equality following from (6.4):

\[
\hat{CDF}^{-1} = [\hat{CDG} g]^{-1} = g^{-1} \hat{CDG}^{-1} .
\] We now have derived (4.4), the bias-corrected percentile interval, from (6.2).
The normal distribution plays no special role in this argument. We could assume that the pivotal quantity has some other symmetric distribution than the normal, in which case "\(\hat{\phi} \) would have a different meaning in (4.4). In the unbiased case, \(z_0 = 0 \), the normal distribution plays no role at all since we get the uncorrected percentile interval (4.3). This is worth stating separately: if we assume there exists a monotonic mapping \(g(\cdot) \) such that \(\hat{\phi} - \hat{\phi} \) and \(\hat{\phi}^* - \hat{\phi} \) have the same distribution, symmetric about the origin, then the percentile interval (4.3) has the correct coverage probability.

7. The Percentile Method for the Median

We now consider a parameter, almost the only one, for which exact non-parametric confidence intervals exist, namely, the median \(\mu(F) \) of a continuous distribution \(F \) on the real line, \(\mu = \inf \{ \text{Prob}_F \{ X \leq t \} = .5 \} \).

Define

\[
b_{k,n}(p) = \binom{n}{k} p^k (1-p)^{n-k}.
\]

(7.1)

The random variable \(Z = \#\{ X_i < \mu \} \) is a pivotal for \(\mu \), always having binomial distribution \(Z \sim B(n, \frac{1}{2}) \). Given the observed order statistics \(x(1) < x(2) < \cdots < x(n) \) of an i.i.d. sample from \(F \), we can make the confidence statement

\[
\text{Prob}_F \left[\mu \in [x(k_1), x(k_2)] \right] = \sum_{k=k_1}^{k_2-1} b_{k,n}(.5)
\]

(7.2)

since \(\{ x(k_1) < \mu < x(k_2) \} \) has the same probability as \(\{ x(k_1) < \mu \leq x(k_2) \} \), which is equivalent to \(\{ k_1 \leq Z < k_2 \} \).
As an example, take \(n = 13, k_1 = 4, k_2 = 10 \). Then a binomial table shows that

\[
\mu \in [x_{(4)}, x_{(10)}]
\]

is a central .908 confidence interval for \(\mu \).

It turns out, happily enough, that the percentile method agrees closely with the binomial intervals (7.2) in the case of the median. First of all we notice that the bootstrap distribution of the sample median can be calculated exactly without resorting to Monte Carlo. Assuming odd sample size, say \(n = 2m-1 \), then \(\hat{\mu} = x_{(m)} \), the middle order statistic, and

\[
P(k) \equiv \text{Prob}_{\hat{\mu}}(\hat{\mu} = x_{(k)}) = \sum_{j=0}^{m-1} \left\{ b_{j,n}(k-1) - b_{j,n}(k) \right\} ,
\]

(7.4)

Efron, 1979, p. 6. For \(n = 13 \) the bootstrap distribution is as follows,

\[
P(k) = \begin{array}{ccccccccc}
0.0000 & 0.0015 & 0.0142 & 0.0550 & 0.1242 & 0.1936 & 0.2230 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

(7.5)

with \(P_{(7+i)} = P_{(7-i)} \) for \(i = 1, 2, \ldots, 6 \), by symmetry.

In the example just given, \([x_{(4)}, x_{(10)}]\) is a central 1-2\(\alpha\) percentile interval for \(\mu \), with \(\alpha = (.0000 + .0015 + .0142 + .0550/2) = .0432 \).

Here we have split the bootstrap probability at the endpoint \(\hat{\mu}^* = x_{(4)} \), for reasons having to do with the "grainy" nature of the simple median:

The bootstrap median \(\hat{\mu}^* \) takes on only \(n \) possible values, compared to
possible bootstrap values for \(\hat{\theta}^* \) if \(\hat{\theta} \) is smoothly defined, as is the correlation coefficient. Splitting the endpoint probabilities can be justified by approximating \(\hat{\mu} \) with a series of less grainy statistics. With the endpoint probabilities split, the percentile method gives

\[
\mu \in [x_{(4)}, x_{(10)}]
\]

as a central .914 confidence interval, agreeing remarkably well with (7.3). Numerical investigation confirms that the agreement is always excellent as long as \(\alpha \geq .01 \). Some theoretical reasons are given in Section 10.5 of Efron 1980C. The bootstrap distribution (7.4) is median unbiased, \(\text{Prob}_*\{\hat{\mu}^* \leq \hat{\mu}\} = .50 \) splitting the probability \(\text{Prob}_*\{\hat{\mu}^* = \hat{\mu}\} \), so the bias correction (4.4) has no effect.

The Bayesian statement (5.2) gives

\[
\text{Prob}\{\mu = x_{(k)}|\hat{\theta}\} = b_{k-1,n-1}(.5)
\]

assuming that \(X = \mathbb{R}^l \) has been partitioned so finely that \(\hat{\theta}_\lambda \) equals 1 or 0 for every category \(l \). ((7.7) makes use of a well-known relationship between the beta and binomial distributions.) Realistically we would never believe that the a posteriori distribution for \(\mu \) concentrates exclusively on the observed values \(x_i \). Interpreting "\(\mu = x_{(k)} \)" in (7.7) as "\(\mu = x_{(k)} + \varepsilon \)", where \(\varepsilon \) has any distribution symmetric about 0, for example, \(\varepsilon \sim N(0, .01) \), gives
\[
\text{Prob}\left[\mu \in \left(x_{(k_1)}, x_{(k_2)} \right) \mid \frac{\bar{x}}{\hat{\sigma}} \right] = \frac{1}{2} b_{k_1-1,n-1}(.5) + \sum_{k=k_1}^{k_2-2} b_{k,n-1}(.5) + \frac{1}{2} b_{k_2-1,n-1}(.5)
\]

\[
= \sum_{k=k_1}^{k_2-1} b_{k,n}(.5).
\]

(7.8)

Splitting the endpoint probabilities makes the Bayesian coverage probability for \([x_{(k_1)}, x_{(k_2)}]\) exactly agree with that for the classical confidence level (7.2). From Section 5 we then expect the percentile method to agree well with (7.2), which is indeed the case.

8. Confidence Intervals for the Mean

The rest of this paper concerns setting nonparametric confidence intervals for the mean \(\mu = E_F X\) of a distribution \(F\) on the real line on the basis of observing \(X_1, X_2, \ldots, X_n\) \(\text{iid} F\). In one sense this problem is impossible, since modifying \(F\) with a tiny probability of \(X\) being enormous, say \(\text{Prob}_F \{X = 10^{100}\} = 10^{-10}\), can totally change \(\mu\) without ever showing up in most samples of size \(n < 10^5\). On the other hand, the problem is "solved" every day using the standard student \(t\) intervals, \(\bar{x} \pm t_{\alpha,n-1} \hat{\sigma}\) with \(\hat{\sigma}^2 = \Sigma(x_i - \bar{x})^2 / (n-1)\). Genuine parametric intervals for \(\mu\) are often strikingly nonsymmetric about \(\hat{\mu} = \bar{x}\). We will consider several nonparametric methods which attempt to capture this asymmetry.

The discussion of general methods will be illustrated on the specific problem of Table 4. Ten i.i.d. samples \(X_1, X_2, \ldots, X_{15}\) were obtained from the negative exponential distribution centered at 0,
\[\text{Prob}(X > x) = e^{-(x+1)}, \quad x > -1. \] Each sample \(x_1, x_2, \ldots, x_{15} \) was standardized: translated to have \(\hat{\mu} = \bar{x} = 0 \) and scaled to have \(\Sigma(x_i - \bar{x})^2/14 = 1 \). This stabilized the entries of Table 4 without affecting comparisons between the various methods of setting confidence intervals, all of which scale and translate in the obvious way.

Four different methods are illustrated in Table 4: (1) the percentile method based on the bootstrap distribution of \(\hat{\mu} = \bar{X}^* \), \(B = 1000 \); (2) random subsampling, \(B = 1000 \), explained in the next paragraph; (3) the bias-corrected percentile method; (4) and the Pitman intervals. The latter assume that we are sampling from a translated and rescaled negative exponential, say \(\mu + \sigma X \), \(X \) as above, and are the confidence intervals based on the conditional distribution of the usual \(t \) statistic, given the standardized version of the sample. They are also the Bayes posterior intervals versus the uninformative prior \(d\mu d\sigma/\sigma \). The Pitman intervals would usually be considered the correct parametric solution and we will use them here as a standard of comparison.\(^+\) Notice that they extend much further to the right of \(\hat{\mu} \) (=0 in the standardized samples) than to the left.

Random subsampling is based on Hartigan's typical value theory, 1969, 1971, 1975. A set \(S \) is chosen randomly from the \(2^n - 1 \) non-empty subsets of \(\{1, 2, \ldots, n\} \), \(n = 15 \) here, and the subsample mean \(\bar{x}_S = \frac{\Sigma_{i \in S} x_i}{\Sigma_{i \in S} 1} \) calculated. For column (2) of Table 4 this process was independently repeated \(B = 1000 \) times for each of the standardized

\(^+\) This is an arguable point. The Pitman intervals based on the translation model \(\mu + \sigma X, \sigma \) known, are completely different than (4). The "actual T" intervals of Section 9 are another reasonable standard of comparison.
<table>
<thead>
<tr>
<th>Trial</th>
<th>Percentile Method (B=1000)</th>
<th>Random Subsampling (B=1000)</th>
<th>Bias-Corrected Percentile Method (B=1000)</th>
<th>Pitman Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.38, -.31, .34, .41</td>
<td>-.44, -.34, .33, .43</td>
<td>-.34, -.27, .38, .48</td>
<td>-.31, -.25, .45, .60</td>
</tr>
<tr>
<td>2</td>
<td>-.39, -.34, .34, .45</td>
<td>-.47, -.36, .37, .46</td>
<td>-.36, -.27, .38, .54</td>
<td>-.34, -.27, .48, .64</td>
</tr>
<tr>
<td>3</td>
<td>-.44, -.35, .30, .40</td>
<td>-.42, -.36, .36, .46</td>
<td>-.42, -.32, .32, .41</td>
<td>-.42, -.34, .56, .66</td>
</tr>
<tr>
<td>4</td>
<td>-.38, -.32, .33, .45</td>
<td>-.44, -.35, .36, .47</td>
<td>-.38, -.32, .33, .45</td>
<td>-.30, -.24, .44, .58</td>
</tr>
<tr>
<td>5</td>
<td>-.37, -.32, .34, .44</td>
<td>-.42, -.36, .33, .46</td>
<td>-.35, -.28, .39, .49</td>
<td>-.25, -.20, .37, .50</td>
</tr>
<tr>
<td>6</td>
<td>-.37, -.31, .34, .44</td>
<td>-.47, -.36, .36, .48</td>
<td>-.34, -.27, .39, .50</td>
<td>-.41, -.33, .55, .65</td>
</tr>
<tr>
<td>7</td>
<td>-.42, -.34, .31, .39</td>
<td>-.45, -.36, .35, .46</td>
<td>-.38, -.29, .34, .46</td>
<td>-.40, -.32, .54, .65</td>
</tr>
<tr>
<td>8</td>
<td>-.35, -.30, .35, .46</td>
<td>-.42, -.35, .36, .48</td>
<td>-.32, -.27, .40, .50</td>
<td>-.32, -.26, .46, .62</td>
</tr>
<tr>
<td>9</td>
<td>-.40, -.32, .33, .43</td>
<td>-.48, -.37, .34, .42</td>
<td>-.38, -.30, .34, .45</td>
<td>-.33, -.27, .47, .62</td>
</tr>
<tr>
<td>10</td>
<td>-.38, -.31, .32, .41</td>
<td>-.42, -.36, .32, .43</td>
<td>-.37, -.30, .33, .42</td>
<td>-.32, -.26, .46, .61</td>
</tr>
<tr>
<td>AVE</td>
<td>-.39, -.32, .33, .43</td>
<td>-.44, -.36, .35, .46</td>
<td>-.36, -.29, .36, .47</td>
<td>-.34, -.27, .48, .61</td>
</tr>
</tbody>
</table>

Table 4. Nonparametric and parametric confidence intervals for the expectation, negative exponential distribution; 10 standardized samples, n = 15. Confidence limits are listed in the order 5%, 10%, 90%, 95%, so the outer [inner] two numbers are an approximate 90% [80%] interval.
samples. The percentile method (4.2), (4.3) provide the confidence limits,
but with \(\hat{CDF}(t) \) now being the cumulative distribution of the 1000 sub-
sample means. The typical value theorem, Hartigan 1969, says that these
confidence intervals will have exactly the claimed coverage probabilities
if \(F \) is continuous and symmetrically distributed about \(\mu \).

Random subsampling, like the bootstrap, is a resampling plan, as
described at the beginning of Section 3. Instead of the multinomial dis-
tribution (3.2), the resampling vector has components \(P_i = I_i / \sum_{j=1}^{n} I_j \),
where the \(I_i \) independently equal 0 or 1 with probability \(1/2 \). \(I_i \)
indicates whether or not \(x_i \) is included in the random subsample. An
easy calculation shows that, given \(x_1, x_2, \ldots, x_n \), a random subsample
mean has expectation and variance

\[
\bar{x}_S \sim \left(\bar{x}, \frac{n+2}{n-1} \frac{\sum (x_i - \bar{x})^2}{\frac{n-1}{n^2}} [1 + o\left(\frac{1}{n}\right)] \right) \tag{8.1}
\]

compared to the bootstrap expectation and variance

\[
\bar{x}^* \sim \left(\bar{x}, \frac{\sum (x_i - \bar{x})^2}{n^2} \right). \tag{8.2}
\]

Comparing the averages of columns (1) and (2) of Table 4, we see
that the random subsample intervals are just about \(\sqrt{(n+2)/(n-1)} = 1.10 \)
as wide as the percentile intervals, as suggested by (8.1), (8.2). For
1-2\(\alpha = .90 \), the ratio of widths is \((.46 + .44)/(.43 + .39) = 1.10 \).
Neither of the methods shows the right-left asymmetry of the Pitman in-
tervals. The bias correction of column (3) is helpful in this regard,
shifting all 10 percentile intervals rightward, though not far enough so. A similar bias correction was tried on the subsample intervals, but had little effect, often moving the intervals slightly leftwards.

9. **Bootstrap** T

Let Z_1, Z_2, \ldots, Z_n be i.i.d. from a known continuous distribution F on the real line, and suppose we observe X_1, X_2, \ldots, X_n where $X_i = \mu + \sigma Z_i$, μ and σ unknown. A confidence interval for μ can be based on the pivotal quantity

$$T = \frac{\hat{\mu} - \bar{X}}{\hat{\sigma}} \quad (\hat{\mu} = \bar{X}, \ \hat{\sigma} = \left[\sum(X_i - \bar{X})^2 / (n-1)\right]^{1/2}). \quad (9.1)$$

For example, if $n = 15$ and F is negative exponential centered at 0, then T has percentile points † (5%, 10%, 90%, 95%) = (-2.67, -1.94, 1.08, 1.39) compared to the t_{14} percentiles (-1.76, -1.34, 1.34, 1.76) appropriate for $n = 15$, $F \sim N(0,1)$.

If t_{α}, $t_{1-\alpha}$ are defined by $\text{Prob}\{T < t_{\alpha}\} = \alpha = \text{Prob}\{T > t_{1-\alpha}\}$, then

$$\mu \in [\hat{\mu} - t_{1-\alpha} \hat{\sigma}, \hat{\mu} - t_{\alpha} \hat{\sigma}] \quad (9.2)$$

is a 1-2α central confidence interval for μ. In the negative exponential case, $[\hat{\mu} - 1.39 \hat{\sigma}, \hat{\mu} + 2.67 \hat{\sigma}]$ is a central 90% interval. It extends nearly twice as far to the right as to the left of $\hat{\mu}$.

† Quadruples will always refer to these four percentiles.
We can apply (9.2) just as well if \(\hat{\mu} \) is any translation statistic,
\(\hat{\mu}(a_1 + bX) = a + b\hat{\mu}(X) \), and \(\hat{\sigma} \) is any scale statistic
\(\hat{\sigma}(a_1 + b(Z) = b\hat{\sigma}(X) \). Then \(T = (\hat{\mu} - \mu)/\hat{\sigma} \) is still pivotal, though of course its distribution, and the values of \(t_\alpha \), \(t_{1-\alpha} \), depend upon the specific forms of \(\hat{\mu}, \hat{\sigma} \). It is reasonably straightforward to prove the following theorem:

(9.2) is the central aposteriori interval, probability 1-2\(\alpha \), of \(\mu \) given \((\hat{\mu}, \hat{\sigma}) \), versus the uninformative prior \(d\mu d\sigma/\sigma \). In other words, (9.2) is the appropriate Bayes interval for \(\mu \) based on a reduced amount of information, the values of \(\hat{\mu}, \hat{\sigma} \) rather than the entire sample \(X_1, X_2, \ldots, X_n \).

In a nonparametric setting we don't know the distribution of \(T \), but we can use the bootstrap to estimate it. The entries in column 1 of Table 5 were obtained in this way. For each sample, \(B = 1000 \) bootstrap values of \(T \),

\[
T^* = \frac{\hat{\mu}^* - \hat{\mu}}{\hat{\sigma}^*} \quad (\hat{\mu}^* = \bar{X}^*, \hat{\sigma}^* = [\Sigma(x_i^* - \bar{X}^*)^2/n(n-1)]^{1/2}) \quad (9.3)
\]

were generated. The 1-2\(\alpha \) central confidence interval (9.2) was estimated by \([\hat{\mu} - t_{1-\alpha} \hat{\sigma}, \hat{\mu} - t_\alpha \hat{\sigma}] \) with \(t_\alpha, t_{1-\alpha} \) defined by \(\text{Prob}_x(T < t_\alpha^*) = \alpha = \text{Prob}_x(T > t_{1-\alpha}^*) \). Since \(\hat{\mu} = 0, \hat{\sigma} = 1/\sqrt{15} \) for each trial in Table 5, because the samples were standardized, the interval is simply \([t_{1-\alpha}/\sqrt{15}, t_\alpha/\sqrt{15}] \). Notice how closely the average endpoints for the 10 trials approximate the actual \(T \) values, \([-t_{1-\alpha}/\sqrt{15}, t_\alpha/\sqrt{15}] \). The bootstrap \(t \) intervals are highly asymmetric about \(\hat{\mu} = 0 \).
<table>
<thead>
<tr>
<th>Trial</th>
<th>(1) Bootstrap t (B=1000)</th>
<th>(2) Johnson's t</th>
<th>(3) Exponential Tilting</th>
<th>Sample Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.36, -.29, .53, .71</td>
<td>-.37, -.29, .46, .70</td>
<td>-.35, -.27, .42, .56</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>-.37, -.28, .52, .65</td>
<td>-.38, -.29, .46, .66</td>
<td>-.35, -.26, .41, .53</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>-.42, -.31, .39, .51</td>
<td>-.44, -.34, .36, .47</td>
<td>-.38, -.29, .33, .43</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>-.37, -.28, .51, .70</td>
<td>-.37, -.29, .46, .70</td>
<td>-.31, -.26, .42, .53</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>-.34, -.27, .62, .84</td>
<td>-.36, -.28, .57, *</td>
<td>-.31, -.26, .43, .57</td>
<td>1.86</td>
</tr>
<tr>
<td>6</td>
<td>-.39, -.30, .45, .59</td>
<td>-.39, -.30, .42, .59</td>
<td>-.34, -.30, .39, .50</td>
<td>1.04</td>
</tr>
<tr>
<td>7</td>
<td>-.39, -.29, .41, .61</td>
<td>-.41, -.32, .38, .52</td>
<td>-.38, -.28, .36, .47</td>
<td>0.62</td>
</tr>
<tr>
<td>8</td>
<td>-.33, -.27, .63, .77</td>
<td>-.35, -.28, .64, *</td>
<td>-.33, -.24, .45, .62</td>
<td>1.98</td>
</tr>
<tr>
<td>9</td>
<td>-.37, -.30, .45, .60</td>
<td>-.39, -.30, .42, .58</td>
<td>-.34, -.26, .38, .48</td>
<td>1.02</td>
</tr>
<tr>
<td>10</td>
<td>-.34, -.27, .56, .79</td>
<td>-.38, -.29, .45, .66</td>
<td>-.32, -.27, .39, .52</td>
<td>1.32</td>
</tr>
</tbody>
</table>

| AVE | -.38, -.29, .51, .68 | -.38, -.30, .46, * | -.34, -.27, .40, .50 | 1.21 |

| Actual T | (-.36, -.28, .50, .69) |

Table 5. Three more nonparametric confidence interval methods applied to the 10 standardized negative exponential samples of Table 4. The averages of the bootstrap t endpoints almost equal the actual T distribution limits for the negative exponential, $n = 15$. Methods (2) and (3) are explained in Sections 10 and 11.
Fraser 1976, has suggested nonparametrically estimating the actual Bayes intervals, those given x_1, x_2, \ldots, x_n rather than those given only $\hat{\mu}, \hat{\sigma}$. The actual Bayes intervals, versus $d\mu d\sigma/\sigma$, are the Pitman intervals of column (4), Table 4. They are of the form

$$[\hat{\mu} - t_{1-\alpha}^{\hat{\mu}, \hat{\sigma}}, \hat{\mu} - t_{\alpha}^{\hat{\mu}, \hat{\sigma}}],$$

where $t_{\alpha}^{\hat{\mu}, \hat{\sigma}}$ is defined by

$$\alpha = \int_{-\infty}^{\hat{\mu} - t_{\alpha}^{\hat{\mu}, \hat{\sigma}}} \int_{0}^{\infty} \frac{1}{\sigma} L_\mu(\mu, \sigma) \, d\sigma \, d\mu / \int_{-\infty}^{\hat{\mu} - t_{1-\alpha}^{\hat{\mu}, \hat{\sigma}}} \int_{0}^{\infty} \frac{1}{\sigma} L_\mu(\mu, \sigma) \, d\sigma \, d\mu ,$$

(9.4)

$$L_\mu(\mu, \sigma) = \prod_{i=1}^{n} f_{\mu, \sigma}(x_i) ,$$

and similarly for $t_{1-\alpha}^{\hat{\mu}, \hat{\sigma}}$, with $1-\alpha$ replacing α in (9.4). Here $f_{\mu, \sigma}(x_i)$ is the density function.

One can replace $L_\mu(\mu, \sigma)$ by $\hat{L}_\mu(\mu, \sigma) = \prod \hat{f}_{\mu, \sigma}(x_i)$, where $\hat{f}_{\mu, \sigma}(*)$ is a window estimate of the unknown density function, and thereby estimate $t_{\alpha}^{\hat{\mu}, \hat{\sigma}}, t_{1-\alpha}^{\hat{\mu}, \hat{\sigma}}$ from the upper equation of (9.4). This was attempted for the 10 samples of Table 5, but with unsatisfactory results. The estimates were extremely sensitive to the way the window estimate $\hat{f}_{\mu, \sigma}(*)$ was constructed. Fraser 1976, obtained better results, but in his examples the true f was symmetric and $n = 100$.

10. Johnson's t Statistic

Johnson 1978, uses a Cornish-Fisher expansion to suggest that a certain function of (9.1),

$$g_T(T) = T + \frac{Y T^2}{3 \sqrt{n}} + \frac{Y}{6 \sqrt{n}} ,$$

(10.1)
is more nearly distributed as a standard t_{n-1} variable than is T itself. Here γ is the skewness of the distribution F, $\gamma = \mu_3/\mu_2^{3/2}$, $\mu_k = E_F(x - E_F x)^k$.

Column (2) of Table 5 was obtained by estimating γ by the sample skewness $\hat{\gamma} = \hat{\mu}_3/s^3$, where $s^2 = \Sigma(x_i - \bar{x})^2/(n-1)$; assuming that $g_\gamma(T)$ was distributed as t_{n-1}; and solving for the values of μ which gave $g_\gamma(\frac{\hat{\mu}_3}{\sigma})$ in the central 1-2α region for t_{n-1}. For example, in trial 1 μ in the interval $[-.37, .70]$ gave $g_\gamma(\frac{\hat{\mu}_3}{\sigma}) = 1.40(\frac{\hat{\mu}_3}{\sigma}) = 1.40(-\sqrt{15} \mu)$ in the interval $[-1.76, 1.76]$.

The results are in close agreement with column (1), the bootstrap t. In trials 5 and 8, which had large skewness, the upper 95% point could not be calculated. This is because (10.1) describes a parabolic curve†, and in these two trials no value of μ gave $g_\gamma(T) < -1.76$.

It is not surprising that Johnson's t and the bootstrap t tend to agree. Both methods can be described as follows: (i) the percentile points of $T = (\hat{\mu} - \mu)/\hat{\sigma}$ are functions of F, say $t_\alpha(F)$; (ii) if we knew F we would assign μ central 1-2α interval $[\hat{\mu} - \hat{\sigma} t_{1-\alpha}(F), \hat{\mu} - \hat{\sigma} t_\alpha(F)]$; (iii) we don't know F, so we assign the interval $[\hat{\mu} - \hat{\sigma} t_{1-\alpha}(\hat{F}), \hat{\mu} - \hat{\sigma} t_\alpha(\hat{F})]$. The bootstrap evaluates $t_\alpha(\hat{F})$ directly, while Johnson's method uses an asymptotic formula to approximate $t_\alpha(\hat{F})$,

\[
t_\alpha(\hat{F}) \approx g_\gamma^{-1}(t_{\alpha, n-1}).
\]

Johnson's t is much easier to use than the bootstrap t. Its unpleasant features, as shown in Table 5 and 8, can be mitigated by

†Column (2) of Table 5 ignores those values of μ far distant from 0 which also give $g_\gamma(-\sqrt{15} \mu)$ in the proper regions, the solutions on the wrong arm of the parabolic function (10.1).
replacing \(g_\gamma(T) \) with a monotonic function having the same first and second derivatives at \(T = 0 \), and perhaps, by estimating \(\gamma \) more robustly. It certainly deserves further attention as a device for assigning confidence intervals to a location parameter.\(^t\)

The bootstrap \(t \), and by implication Johnson's method also, performed poorly when used to set confidence intervals for the correlation coefficient. In this case the \(T \) statistic was taken to be

\[
T = \frac{\hat{\rho} - \rho}{\hat{\sigma}_J},
\]

(10.2)

\(\hat{\sigma}_J \) being the jackknife estimate of standard error for \(\hat{\rho} \). A bootstrap replication was \(T^* = (\hat{\rho}^* - \hat{\rho})/\hat{\sigma}_J^* \), where \(\hat{\sigma}_J^* \) was the jackknife estimate of standard error in the bootstrap sample. The bootstrap distribution of \(T^* \) was obtained by Monte Carlo, its percentiles \(\hat{t}_\alpha \) calculated, and \([\hat{\rho} - \hat{t}_{1-\alpha} \hat{\sigma}_J, \hat{\rho} - \hat{t}_{\alpha} \hat{\sigma}_J] \) assigned as a central \(1-2\alpha \) interval for \(\rho \). The results varied eccentrically with a tendency toward occasional extremely long intervals.

11. Nonparametric Tilting

A parametric confidence set consists of those members of the parametric family which cannot be soundly discredited as having generated the observed data. "Soundly discredited" means rejected by a hypothesis test. The hypothesis test is chosen to minimize, at least approximately,
the length of the confidence interval for the parameter of interest. If the parameter is the expectation \(\mu \) for example, the test might be based on the sampling distribution of \(\hat{\mu} \), the MLE for \(\mu \).

This program can be difficult to carry out, even in well-defined parametric situations. We have a trial value of \(\mu \), say \(\mu^t \), which we want to test for inclusion or exclusion from the confidence interval. However, the distribution of the test statistic \(\hat{\mu} \) depends upon nuisance parameters as well as \(\mu^t \), so it may be difficult to guarantee the significance level of the hypothesis test.

In a nonparametric situation there are an infinity of nuisance parameters, which makes the program described above impossible, for most parameters \(\mu \). This section discusses a method, nonparametric tilting, which is a less ambitious version of this same basic idea. First we will give an operational description of how the entries in column (3) of Table 5 was obtained, followed by a more general discussion of the method, and its connection with the previous results.

For a given value of the real number \(t \), define weights

\[
w_i^t = e^{\frac{tx_i}{\sum_{j=1}^{n} e^{tx_j}}}, \quad i = 1, 2, \ldots, n, \tag{11.1}
\]

the data \(x_1, x_2, \ldots, x_n \) (\(n = 15 \) in our example) being fixed as observed. The trial value of the expectation \(\mu \), which we will test for inclusion or exclusion from the confidence interval, is

\[
\mu^t = \sum_{i=1}^{n} w_i^t x_i. \tag{11.2}
\]
Notice that \(t = 0 \) gives \(\mu = \hat{\mu} = \bar{x} \). Instead of (3.2), consider choosing resampling vectors \(\mathbf{P}^*_\sim = (\mathbf{P}^*_1, \ldots, \mathbf{P}^*_n) \) according to

\[
\mathbf{P}^*_\sim = \text{Mult}_n(n, w^t) / n,
\]

(11.3)

\(w^t = (w^t_1, w^t_2, \ldots, w^t_n) \). If \(t = 0 \) then (11.3) is the same as (3.2), but otherwise the bootstrap sample is selected non-uniformly from \(\{x_1, x_2, \ldots, x_n\} \): \(\text{Prob}_\sim (X^*_j = x_1) = w^t_1 \). This defines a "tilted" bootstrap distribution for \(\hat{\mu}^* = \sum_{i=1}^n \frac{\mathbf{P}^*_i x_i}{n} \), with expectation \(\sum_{i=1}^n \frac{w^t_i x_i}{n} = \mu^t \) and variance \(\frac{\sum_{i=1}^n x_i^t x_i^t/n}{\sum_{i=1}^n w^t_i} \), where \(\frac{\sum_{i=1}^n x_i^t x_i^t}{n} \) has diagonal elements \(w^t_1 (1 - w^t_1) \), off-diagonals \(-w^t_i w^t_j \). We will write "Prob_\sim^t" to indicate probabilities under this distribution.

Define

\[
\alpha^t = \text{Prob}_\sim^t (\hat{\mu}^* < \hat{\mu}) \, ,
\]

(11.4)

the achieved significance level of the observed value \(\hat{\mu} = \bar{x} \) under the bootstrap distribution (11.3) of \(\hat{\mu}^* \). The upper 95\% point of the tilted confidence interval, (\(= .56 \) for trial 1 of Table 5) is the value of \(\mu^t \) corresponding to that \(t \) having \(\alpha^t = .05 \), and similarly for the other percentile points. The results reported in Table 5 are intermediate to the Pitman intervals and the bias-corrected percentile intervals, Table 4, lying somewhat closer to the latter.

The distributions (11.3), thought of as a family indexed by \(t \), form a one parameter exponential family with sufficient statistic.
\[\hat{\mu}^* = \sum_{i=1}^{n} p_i^* x_i \]. (The \(x_i \) are fixed at their observed values, as before.)

An easy calculation shows that the probability density function of \(\hat{\mu}^* \), say \(f_t(\hat{\mu}^*) \), satisfies

\[
\frac{f_t(\hat{\mu}^*)}{f_0(\hat{\mu}^*)} = e^{n[t(\hat{\mu}^* - \hat{\mu}) - \phi(t)]} \left(\phi(t) = \log \frac{1}{n} \sum_{i=1}^{n} e^{t(x_i - \hat{x})} \right). \tag{11.5}
\]

In other words, the bootstrap distribution of \(\hat{\mu}^* \) under (11.4) is an exponential tilt\(^\dagger\) of the bootstrap distribution under (3.2). The calculations in column 3 of Table 5 were obtained using this shortcut trick.

The motivation for the weights (11.1) is as follows. Among all distributions putting mass only on the observed data points \(x_1, x_2, \ldots, x_n \),

\[
\tilde{w}: \text{mass } w_i \text{ on } x_i, \quad \left(w_i \geq 0, \sum_{i=1}^{n} w_i = 1 \right), \tag{11.6}
\]

the choice \(\tilde{w} = \tilde{w}^t = (w_1^t, \ldots, w_n^t) \) minimizes the Kullback-Liebler distance from \(\tilde{w} = 1/n \),

\[
D(\tilde{w}, \tilde{w}^0) = \sum_{i=1}^{n} w_i \log(n, w_i), \tag{11.7}
\]

subject to the constraint \(\mu(\tilde{w}) = \sum w_i x_i = \mu^t \). In this sense \(\tilde{w}^t \) is the closest distribution to the observed data, subject to \(\mu = \mu^t \). Testing the observed value \(\hat{\mu} \) versus the \(\tilde{w}^t \) distribution of \(\hat{\mu}^* \), to see whether or not to include \(\mu^t \) in the confidence interval, is similar to parametric

\(^\dagger\)Tilting is a useful tool in large deviations theory, see Chernoff 1972, p. 45.
techniques. In effect we are estimating the nuisance parameters, everything about F except μ, as well as possible subject to $\mu = \mu^*$, and then using this estimated distribution to assign a significance value to the observed value $\hat{\mu}$.

In a parametric problem, with parameters (μ, η), it is common to estimate the nuisance parameters η by $\hat{\eta}^*$, the MLE subject to $\mu = \mu^*$. We can do the same thing here. Instead of (11.1), the weights turn out to be

$$w_i = \frac{[1 + t x_i]^{-1}}{\sum_{j=1}^{n} [1 + t x_j]^{-1}}. \quad (11.8)$$

Then \bar{w}^* is the nonparametric maximum likelihood estimate of F subject to $\mu = \mu^* = \Sigma w_i x_i$, with the understanding that we are only considering distributions supported on x_1, \ldots, x_n. The distance minimized is $D(1/n, \bar{w}) = \Sigma (1/n) \log (1/nw_i)$ rather than (11.7). Our method of assigning confidence intervals, comparing the observed $\hat{\mu}$ to the distribution of $\hat{\mu}^*$ under $(\mu^*, \hat{\eta}^*)$, is now quite similar to standard exponential family testing theory, except that the latter would usually be based on conditional rather than unconditional distributions. The most compelling reason for using (11.1) rather than (11.8) in Table 5 was the computational advantage of the tilting argument (11.4).

Nonparametric tilting is fundamentally more ambitious than anything else we have considered. The bootstrap, and the other methods, replace the true distribution F by an estimate \hat{F}. Tilting replaces the entire family of possible distributions we might consider, say $F \in \mathcal{F}$,
by an estimated family $\hat{\mathcal{F}}$. The estimated family is

$$\hat{\mathcal{F}}: \mathcal{M} \sim \text{Mult}_n(n, \omega^t) \quad (\omega^t = e^{tx_i/S}, -\infty < t < \infty). \quad (11.9)$$

The entries in column 3 of Table 5 are the confidence limits for $\mu(\omega) = \sum w_i x_i$ in the family $\hat{\mathcal{F}}$, having observed $\omega = (1, 1, \ldots, 1)$. As before, the data x_1, \ldots, x_n is considered fixed.

It is easy to verify that the Cramer-Rao variance bound for the unbiased estimation of $\mu(\omega)$ in $\hat{\mathcal{F}}$, evaluated at $\omega = \omega^0 = (1/n, \ldots, 1/n)$, equals

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n^2}, \quad (11.10)$$

which is the bootstrap estimate of variance for $\hat{\mu} = \bar{x}$, i.e., the non-parametric maximum likelihood estimate of variance. The estimated variance is not made smaller by restricting attention to the one parameter family $\hat{\mathcal{F}}$, rather than considering the problem of estimating μ in a full non-parametric setting. In this sense at least, the restriction to $\hat{\mathcal{F}}$ isn't spuriously helpful. This "least favorable" property of $\hat{\mathcal{F}}$ can be shown to hold everywhere, not just at $\omega = \omega^0$, but won't be discussed further here.

Closed form expressions for the endpoints of the tilting intervals can be obtained if one is willing to accept certain approximations: $\phi(t)$, (11.5), is approximated by a Taylor's series about 0, beginning $\phi(t) = \hat{\mu}_2 t^2/2 + \hat{\mu}_3 t^3/6 + \ldots$, and the distribution of $\hat{\mu} = \sum w_i x_i/n$
under (11.9) is approximated by an Edgeworth series. The crudest such approximation gives the interval \(\hat{\mu} \pm z_{\alpha/2} \sqrt{\mu \sigma^2 / n} \), the standard large-sample result. Going to the next level of approximation gives, to a reasonable degree of accuracy, Johnson's \(t \) interval, as described in Section 10.

As a final point, suppose we are interested in a parameter \(\theta(F) \) other than the expectation. Let \(\theta(\bar{w}) \) be the value of \(\theta \) for that \(F \) putting mass \(w_i \) on \(x_i \), \(i = 1, 2, \ldots, n \) and define

\[
\hat{U}_i(w) = \lim_{\varepsilon \to 0} \frac{\theta((1-\varepsilon)\bar{w} + \varepsilon \bar{w}_i) - \theta(\bar{w})}{\varepsilon}.
\] (11.11)

In particular \(\hat{U}_i(\bar{w}) \) is the empirical influence function of \(\theta \), called \(U_i(\bar{w}) \) in (3.7). For a trial value \(\theta = \theta^t \), we can now look for the vector \(\bar{w}^t \) minimizing \(D(\bar{w}, \bar{w}^0) = \Sigma w_i \log (n, w_i) \), as at (11.7), among all \(\bar{w} \) satisfying \(\theta(\bar{w}) = \theta^t \). Standard calculations show that the solution satisfies

\[
w_i^t = \frac{e^{t U_i(\bar{w})}}{\sum_{j=1}^{n} e^{t U_i(\bar{w})}}, \quad i = 1, 2, \ldots, n. \tag{11.12}
\]

Equation (11.1) is a special case of (11.12) since it can be expressed as \(w_i^t = \exp(t(x_i - \bar{x}) / \exp(t(x_j - \bar{x})) \) \(\bar{x}^t = \Sigma w_i x_j \) \(\bar{x}_j \) and \(\hat{U}_i(\bar{w}) = x_i - \Sigma w_j x_j \) for \(\theta(\bar{w}) = \Sigma w_i x_i \).

Confidence intervals for \(\theta \) can now be constructed as before. They are the limits for \(\theta(\bar{w}) \) in \(\hat{\mathcal{F}} = \{ \bar{w} \sim \text{Mult}_n(n, w^t) \} \), \(w^t \) defined by (11.12), having observed \(\bar{w} = (1, 1, \ldots, 1) \). The Cramer-Rao variance bound for \(\theta(\bar{w}) \) in \(\hat{\mathcal{F}} \), evaluated at \(\bar{w} = \bar{w}^0 \), equals \(\Sigma U_i(\bar{w}^0)^2 / n^2 \). This is the
infinitesimal jackknife-influence function-delta method nonparametric estimate for the variance of \(\hat{\theta} = \theta(\hat{F}) \), (3.8), in analogy to (11.10). Unfortunately, the tilting property (11.5) no longer applies, so that the actual computation of the tilted intervals appears difficult.

References

