LIMIT THEOREMS FOR WEAKLY DEPENDENT
HILBERT SPACE VALUED RANDOM VARIABLES
WITH APPLICATION TO THE STATIONARY BOOTSTRAP

BY

DIMITRIS N. POLITIS and JOSEPH P. ROMANO

TECHNICAL REPORT NO. 407
OCTOBER 1992

PREPARED UNDER THE AUSPICES

OF

NATIONAL SCIENCE FOUNDATION GRANT DMS92–04864

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Limit Theorems for Weakly Dependent Hilbert Space Valued Random Variables
With Application to the Stationary Bootstrap

By

Dimitris N. Politis and Joseph P. Romano

Technical Report No. 407
October 1992

Prepared Under the Auspices
Of

National Science Foundation Grant DMS92-04864

Department of Statistics
Stanford University
Stanford, California
LIMIT THEOREMS FOR WEAKLY DEPENDENT
HILBERT SPACE VALUED RANDOM VARIABLES
WITH APPLICATION TO THE STATIONARY BOOTSTRAP

by

Dimitris N. Politis and Joseph P. Romano

Department of Statistics, Purdue University
and Department of Statistics, Stanford University

October 1992
Summary

In this article, some weak convergence results are developed for approximate sums of weakly dependent stationary Hilbert space valued random variables in a triangular array setting. The motivations for such results lies in understanding the weak convergence properties of estimators which are smooth functionals of the empirical process. By regarding the empirical process as an element of an appropriate Hilbert space, the asymptotic distributional properties can be deduced. The results are designed to be strong enough to handle the study of estimators under the stationary bootstrap resampling plan. In Politis and Romano (1991), a resampling procedure, called the stationary bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on weakly dependent stationary observations. The results derived here support the asymptotic validity of the stationary bootstrap method for a broad class of estimators. In particular, the class of minimum distance estimators, whose robustness properties have been well-established by Millar (1981, 1984), are shown to have a robustness of validity in the sense that confidence intervals constructed by the stationary bootstrap method based on such estimators are asymptotically valid even when the usual independence assumption often used in robustness studies is seriously violated.

Some key words: Approximate confidence limit; Bootstrap; Differentiability; Hilbert space; Minimum distance estimators; Stationary; Time Series.
1. INTRODUCTION

In this paper, some weak convergence results are proved for sums and approximate sums of dependent Hilbert space valued random variables. Some motivation for the present work is the following. Suppose ξ_1, \ldots, ξ_n are observations from a real-valued stationary time series with empirical distribution function \hat{F}_n. Many estimators can be regarded as smooth functionals of the empirical process Z_n defined by $Z_n(\cdot) = n^{1/2}[\hat{F}_n(\cdot) - F(\cdot)]$, where $F(\cdot)$ is the cumulative distribution function of ξ_1. Hence, to understand the behavior of such estimators, it suffices to understand the behavior of the empirical process. But, $Z_n(\cdot) = n^{-1/2} \sum_i X_i(\cdot)$ itself is a normalized sum of stationary processes, where $X_i(t) = 1(\xi_i \leq t) - F(t)$. We will regard X_i as elements of a certain Hilbert space, so that the problem is reduced to studying the behavior of a sum of stationary Hilbert space valued random variables. A very general class of estimators where this approach is fruitful is the class of minimum distance estimators, where the distance is defined by a Hilbertian norm.

A goal of this paper is to study the stationary bootstrap resampling method as a means of constructing confidence intervals based on such estimators. The stationary bootstrap, introduced in Politis and Romano (1991), is a variant of the moving blocks bootstrap developed by Künsch (1989) and Liu and Singh (1992), and the blocks of blocks bootstrap developed by Politis and Romano (1992a,b). All these methods are designed to construct nonparametric confidence intervals in the setting of stationary time series where even asymptotic distribution theory is often intractable. Specifically, in order to approximate the distribution of $\hat{\theta}_n(\xi_1, \ldots, \xi_n) - \theta$, we consider the distribution (conditional on the data ξ_1, \ldots, ξ_n) of $\hat{\theta}_n(\xi_1^*, \ldots, \xi_n^*) - \hat{\theta}_n(\xi_1, \ldots, \xi_n)$, where ξ_1^*, \ldots, ξ_n^* is a new pseudo time series generated by the stationary resampling scheme. This algorithm is presented more clearly later. For now, the motivating remark is that the behavior of this approximating distribution can be deduced by studying the bootstrap empirical process Z_n^* defined by $Z_n^*(\cdot) = n^{1/2}[\hat{F}_n^*(\cdot) - \hat{F}_n(\cdot)]$, where \hat{F}_n^* is the empirical distribution of ξ_1^*, \ldots, ξ_n^*. Again, we are led to considering the sum of stationary Hilbert space random variables, although in this case the underlying stochastic mechanism changes with n and is in fact random because it depends on the original data.

The above considerations motivate the need for the results presented in Section 2. In particular, we develop simple conditions for tightness of a sum of stationary Hilbert space valued random variables in a triangular array setup. Tightness plus examination of finite dimensional projections
allows one to deduce weak convergence results. The conditions presented in Theorem 2.1 are particularly simple to apply because they do not involve a particular choice of basis and because all that is required is a means of getting a handle on second order moments of the underlying processes.

In Section 3, the weak convergence of the autocovariance estimator sequence is studied, by regarding the sequence as a random element of the Hilbert space ℓ^2. The results are not crucial to the later development and may be of independent interest.

In Section 4, we prove a bootstrap central limit theorem for the mean of i.i.d. Hilbert space valued random variables. The point here is to show that the general results of Section 2 reduce to a simple extension of bootstrap results for the mean in \mathbb{R}^k. Moreover, it is hoped this will allow the reader to understand the strategy in proving a bootstrap central limit theorem before tackling the case when the observations are dependent.

The paper culminates in Section 5. Here, the stationary bootstrap resampling algorithm is presented. A general bootstrap central limit theorem is proved under relatively mild dependence assumptions. The motivation for studying the empirical process and bootstrap empirical process is elaborated to deduce asymptotic validity of bootstrap confidence intervals. Some effort is spent to show how these results immediately imply asymptotic distributional results for minimum distance estimators. Minimum distance estimators have been well-studied in Millar (1981, 1984), where a certain robustness of these estimators is impressively demonstrated from a decision theoretic point of view. In short, the efficiency of the estimators does not deteriorate if the underlying model is misspecified. Our goal is to show that the stationary bootstrap method for constructing confidence regions based on such estimators has a certain robustness of validity even in the sense that the usual independence assumption imposed in robustness studies can be seriously violated.
2. BASIC THEOREM

Throughout, H denotes a separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Equip H with the usual Borel σ-field. A sequence of H-valued random variables Z_n converges in distribution to Z if $E[f(Z_n)] \to E[f(Z)]$ for all real-valued bounded continuous functions f. Alternatively, in terms of probability distributions, a sequence of probability measures μ_n on H converges weakly to μ if $\int f \, d\mu_n \to \int f \, d\mu$ for all real-valued bounded continuous functions f. The basic theory of weak convergence of Hilbert space valued random variables may be found in Parthasarathy (1967) and Bergstrom (1982).

Suppose Z takes values in H and has probability distribution μ, so that $\mu(E)$ is the probability Z falls in E. If $E(\|Z\|^2) < \infty$, then the covariance operator of Z (or μ) is a continuous, linear, symmetric, positive operator S from H to H satisfying

$$\langle Sh, h \rangle = \int_{x \in H} \langle x, g \rangle \langle x, h \rangle \mu(dx) = E(\langle Z, g \rangle \langle Z, h \rangle).$$

Z has mean vector $m \in H$ if $E(\langle Z, h \rangle) = \langle m, h \rangle$ for all $h \in H$.

Theorem 2.1. Let $X_{n,1}, \ldots, X_{n,n}$ be H-valued, stationary, mean zero random variables such that $E(\|X_{n,i}\|^2) < \infty$. Assume, for any integer $k \geq 1$, $(X_{n,1}, \ldots, X_{n,k})$, regarded as a random element of H^k, converges in distribution to (X_1, \ldots, X_k), say. Moreover, assume, $E[(X_{n,1}, X_{n,k})] \to E[(X_1, X_k)]$ as $n \to \infty$ and

$$\lim_{n \to \infty} \sum_{k=1}^{n} E((X_{n,1}, X_{n,k})) \to \sum_{k=1}^{\infty} E((X_1, X_k)) < \infty. \quad (2.1)$$

Let $Z_n = n^{-1/2} \sum_{i=1}^{n} X_{n,i}$. Then, Z_n is weakly compact.

Proof. Fix a complete orthonormal basis for H, denoted by e_1, e_2, \ldots. Let $r_N^2(x) = \sum_{j=N}^{\infty} |\langle x, e_j \rangle|^2$. By Theorem 1.13 of Prokhorov (1956), it is sufficient to show $\lim_{N} \sup_n E[r_N^2(Z_n)] = 0$. Moreover, because $r_N^2(x)$ monotonically decreases to 0 for every x, it is sufficient to show $E[r_N^2(Z_n)] \to 0$ as $N, n \to \infty$. Now, $E[r_N^2(Z_n)] = \sum_{j=N}^{\infty} E[|\langle Z_n, e_j \rangle|^2]$. By stationarity,

$$E[|\langle Z_n, e_j \rangle|^2] = E[|\langle X_{n,1}, e_j \rangle|^2 + 2 \sum_{i=1}^{n} (1 - \frac{i}{n}) E[\langle X_{n,1}, e_j \rangle \langle X_{n,1+i}, e_j \rangle]].$$

Summing over j yields for $N = 1$

$$E[r_1^2(Z_n)] = E\|X_{n,1}\|^2 + 2 \sum_{i=1}^{n} (1 - \frac{i}{n}) E[\langle X_{n,1}, X_{n,1+i} \rangle] \to$$
\[E\|X_1\|^2 + 2 \sum_{i=1}^{\infty} E[(X_1, X_{1+i})] = L < \infty, \]

by the assumptions. Hence, it suffices to show \(E[r_1^2(Z_n) - r_N^2(Z_n)] \to L \) as \(N, n \to \infty \). But,

\[E[r_1^2(Z_n) - r_N^2(Z_n)] = \sum_{j=1}^{N-1} E[(X_{n,1}, e_j)(X_{n,1}, e_j)] + 2 \sum_{i=1}^{n} (1 - \frac{i}{n}) \sum_{j=1}^{N-1} E[(X_{n,1}, e_j)(X_{n,1+i}, e_j)]. \]

Hence, it suffices to show for every \(i \) and \(j \),

\[E[(X_{n,1}, e_j)(X_{n,1+i}, e_j)] \to E[(X_1, e_j)(X_{1+i}, e_j)] \quad (2.2) \]

as \(n \to \infty \). To show this, first consider the case \(i = 0 \). By the continuous mapping theorem, \(|(X_{n,1}, e_j)|^2 \) converges in distribution to \(|(X_1, e_j)|^2 \) for every \(j \). Hence,

\[\liminf_n E|(X_{n,1}, e_j)|^2 \geq E|(X_1, e_j)|^2 \quad (2.3) \]

for every \(j \). But by assumption,

\[E\|X_{n,1}\|^2 = \sum_{j=1}^{\infty} E[(X_{n,1}, e_j)(X_{n,1}, e_j)] - \sum_{j=1}^{\infty} E[(X_1, e_j)(X_1, e_j)] = E\|X_1\|^2. \]

Hence, the inequality in (2.3) must be an equality for every \(j \). To prove (2.2) for general \(i \), by the continuous mapping theorem, \((X_{n,1} + X_{n,1+i}, e_j) \) converges in distribution to \((X_1 + X_{1+i}, e_j) \). By the assumptions, \(E\|X_{n,1} + X_{n,1+i}\|^2 \to E\|X_1 + X_{1+i}\|^2. \) Hence, the previous argument with \(i = 0 \) implies

\[E|(X_{n,1} + X_{n,1+i}, e_j)|^2 \to E|(X_1 + X_{1+i}, e_j)|^2, \]

Expanding the square and applying the case \(i = 0 \) (and noting \(X_{n,1+i} \) has the same distribution as \(X_{n,1} \)) yields (2.2).

Remark 2.1. The assumptions in Theorem 2.1 of the weak convergence of \((X_{n,1}, \ldots, X_{n,k})\) for each fixed \(k \) actually guaranteed the existence of a single limiting process \(X_1, X_2, \ldots \) that satisfies the conditions of the theorem. So, there is no abuse of notation in the theorem as stated. To see why a single process satisfies the conditions, apply a variant of Kolmogorov's Consistency Theorem, such as Theorem 2, p.42 in Bergstrom (1982).

Remark 2.2. The proof shows the weak convergence of \((X_{n,1}, \ldots, X_{n,k})\) to \((X_1, \ldots, X_k)\) may be weakened; this condition may be deleted as long as (2.2) holds. In fact, the proof shows that, by
assuming (2.2), only second order stationarity need be assumed. We have opted for a cleaner result at the expense of slightly stronger assumptions.

Before writing down limit results, we recall some standard notation. For a stationary time series \(X = \{X_n, n \in \mathbb{Z}^+\} \), define Rosenblatt’s \(\alpha \)-mixing coefficient by \(\alpha_X(j) = \sup_{A,B} |P(AB) - P(A)P(B)| \), where \(A \) and \(B \) vary over events in the \(\sigma \)-fields generated by \(\{X_n, n \leq k\} \) and \(\{X_n, n \geq j + k\} \), respectively. The sequence \(X \) is said to be \(\alpha \)-mixing if \(\alpha_X(j) \to 0 \) as \(j \to \infty \).

Remark 2.3. The assumption \(\sum_k E(\langle X_1, X_k \rangle) < \infty \) in Theorem 2.1 follows if the process \(X_1, X_2, \ldots \) is essentially bounded and has \(\alpha \)-mixing coefficients \(\alpha_X(\cdot) \) that satisfy \(\sum_j \alpha_X(j) < \infty \). Indeed, a basic inequality (3.1) of Dehling (1983) states (assuming \(\|X_j\| \leq 1 \) almost surely) that \(E(\langle X_k, X_{k+j} \rangle) \leq 10 \alpha_X(j) \). Alternatively, if the process is only assumed to satisfy \(E(\|X_1\|^{2+\delta}) < \infty \) for some \(\delta > 0 \), then a sufficient condition for \(\sum_k E(\langle X_1, X_k \rangle) < \infty \) is \(\sum_j [\alpha_X(j)]^{\delta/(2+\delta)} < \infty \); see (3.2) of Dehling (1983).

Remark 2.4. The assumptions in Theorem 2.1 yield, for any \(m \),

\[
\lim_{n \to \infty} \sum_{k=1}^m E(\langle X_{n,1}, X_{n,k} \rangle) \to \sum_{k=1}^m E(\langle X_1, X_k \rangle).
\]

Hence, to prove condition (2.1) holds, it suffices to show, given any \(\epsilon > 0 \), there exists \(N \) so that

\[
\lim_{n \to \infty} \sum_{k=N}^\infty |E(\langle X_{n,1}, X_{n,k} \rangle)| < \epsilon.
\]

For example, if \(\|X_{n,1}\| \leq 1 \) for all \(n \), then a sufficient condition becomes

\[
\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{j=N}^\infty \alpha_n(j) = 0,
\]

where \(\alpha_n(j) \) is the \(j \)th \(\alpha \)-mixing coefficient of the sequence \(X_{n,1}, X_{n,2}, \ldots \). If \(E(\|X_{n,1}\|^{2+\delta}) \leq B < \infty \) for some \(\delta > 0 \), then \(\alpha_n(j) \) in (2.4) should be replaced by \([\alpha_n(j)]^{\delta/(2+\delta)} \).

In order to apply Theorem 1 to prove a limit result for \(Z_n \), the projections of \(Z_n \) must be examined. But, \(\langle Z_n, h \rangle = n^{-1/2} \sum_{i=1}^n \langle X_{n,i}, h \rangle \) is a sum of weakly dependent, stationary real-valued random variables. Moreover, \(\langle Z_n, h \rangle \) has mean 0 and variance

\[
E|\langle Z_n, h \rangle|^2 = \text{Var}(\langle X_{n,1}, h \rangle) + 2 \sum_{i=1}^n (1 - \frac{i}{n}) \text{cov}(\langle X_{n,1}, h \rangle, \langle X_{n,1+i}, h \rangle),
\]
which by the assumptions of Theorem 1 tends to

\[\sigma_h^2 \equiv \text{Var}(\langle X_1, h \rangle) + 2 \sum_{i=1}^{\infty} \text{Cov}(\langle X_1, h \rangle, \langle X_{1+i}, h \rangle). \] \hspace{1cm} (2.5)

Hence, \(Z_n \) should tend weakly to \(Z \), where \(Z \) is asymptotically Gaussian, mean 0, and covariance operator \(S \) satisfying \(\langle Sh, h \rangle = \sigma_h^2 \).

However, in order to conclude the limiting distribution of \(\langle Z_n, h \rangle \) is actually Gaussian, further assumptions are required. Most of the existing Central Limit Theorems for the mean of weakly dependent stationary real-valued random variables employ mixing conditions and moments assumptions. Moreover, there is a tradeoff between the mixing conditions and the moment assumptions in the sense that if higher moments are assumed, the conditions on the mixing coefficients can be less stringent. In addition, the existing results are typically not stated for triangular arrays. Some of the results that do apply to triangular arrays (e.g. Withers (1981)) assume too strong mixing conditions that are not applicable when we discuss the stationary bootstrap. One could easily adapt proofs of the asymptotic normality of sample means of weakly dependent real-valued sequences of \(\alpha \)-mixing variables (or other types of mixing) to sample means in a triangular array setting. This could be accomplished by imposing conditions on \(\alpha(j) \equiv \sup_n \alpha_n(j) \), where \(\alpha_n(\cdot) \) is the mixing sequence corresponding to the \(n \)th row of the triangular array. The conditions imposed on \(\alpha(\cdot) \) would then be such that asymptotic normality holds for the sample mean of a dependent sequence with mixing coefficients \(\alpha(\cdot) \). Unfortunately, taking such an approach would not be useful when we study the stationary bootstrap because, in essence, we will be studying triangular arrays satisfying \(\sup_n \alpha_n(j) = 1 \) for every \(j \). For now, appealing to Corollary 1 of Withers (1975) does yield the following useful result.

Theorem 2.2. Assume the \(X_{n,j} \) satisfy the conditions of Theorem 2.1, and the \(n \)th row of variables \(X_{n,1}, X_{n,2}, \ldots \) has \(\alpha \)-mixing coefficients denoted by \(\alpha_n(\cdot) \). Assume, for all \(n \), \(\|X_{n,1}\| \leq B \) with probability one, and

\[\sum_{i=1}^{j} i^2 \alpha_n(i) \leq K j^r \]

for all \(1 \leq j \leq n \) and \(n \) and some \(r < 3/2 \). Then, \(Z_n \) converges weakly to \(Z \), where \(Z \) is Gaussian with mean 0 and covariance operator \(S \) satisfying \(\langle Sh, h \rangle = \sigma_h^2 \), and \(\sigma_h^2 \) is given by (2.5).

In the special case when the \(X_{n,j} = X_j \) form a stationary sequence, the following is true.
Theorem 2.3. Assume X_1, X_2, \ldots is a stationary sequence of H-valued random variables with mean m and mixing sequence $\alpha_X(\cdot)$. Let $Z_n = n^{-1/2} \sum_{i=1}^{n} (X_i - m)$.

(i). If $E(\|X_1\|^{2+\delta}) < \infty$ for some $\delta > 0$ and $\sum_j [\alpha_X(j)]^{(2+\delta)/(2)} \infty$, then Z_n converges weakly to a Gaussian measure with mean 0 and covariance operator S satisfying $(Sh, h) = \sigma_h^2$, where σ_h^2 is given by (2.5).

(ii). If the X_i are essentially bounded and $\sum_j \alpha_X(j) < \infty$, then Z_n converges weakly to a Gaussian measure with mean 0 and covariance operator S.

Proof. Tightness follows in each case by Theorem 2.1 and Remark 2.3. The convergence of finite dimensional distributions follows, for example, from Corollary 8 of Carlstein (1986) under assumptions (i) and Corollary 9 of Carlstein (1986) under assumptions (ii).

Remark 2.5. Almost sure invariance principles for partial sums of H-valued stationary random variables have been obtained by Dehling and Philipp (1982) and Dehling (1983). While these results are stronger than our Theorem 2.3, they depend on heavier assumptions on the mixing sequence $\alpha_X(\cdot)$.
3. The AUTOCOVARIANCE ESTIMATOR SEQUENCE.

In this section, a limit result is derived for the estimates of autocovariance. Specifically, assume \(\xi_1, \ldots, \xi_n \) are real-valued observations from a stationary sequence with mean 0, mixing sequence \(\alpha_\xi(\cdot) \), and autocovariance \(R(j) = E(\xi_i \xi_{i+j}) \). Let \(\hat{R}_n(j) = n^{-1} \sum_{i=1}^{n-j} \xi_i \xi_{i+j} \) for \(0 \leq j \leq n - 1 \) and \(\hat{R}_n(j) = 0 \) otherwise. Let \(w = (w_0, w_1, \ldots) \) satisfy \(w_i \geq 0 \) and \(\sum w_i = 1 \). Let \(Z_n(j) = n^{1/2}(\hat{R}_n(j) - R(j)) \) and regard \(Z_n \) as a random element of \(\ell^2(w) \), the Hilbert space of sequences \(x = (x_0, x_1, \ldots) \) satisfying \(\sum_i x_i^2 w_i < \infty \).

In the following theorem, a limit result is derived for \(Z_n \). Typical text book limit theorems for the autocovariance estimators give the limiting joint distribution of the first \(d \) estimates of autocovariance, where \(d \) is fixed as \(n \to \infty \). Moreover, it is usually assumed the underlying process is linear. Here, we derive a limit result for the entire estimator sequence under minimal dependence assumptions. However, in the theorem below, it is assumed the observations are essentially bounded. This can be weakened to assuming the process has four moments at the expense of stronger dependence assumptions. The proof would be essentially the same.

Let \(\kappa_4(s, r, v) \) denote the fourth joint cumulant of the distribution of \((\xi_j, \xi_{j+r}, \xi_{j+s}, \xi_{j+r+s+v}) \); see (5.3.19) of Priestley (1981).

Theorem 3.1. Assume \(|\xi_i| \leq 1 \), \(\sum_j \alpha_\xi(j) < \infty \), and \(\sum_j w_j j^2 R^2(j) < \infty \). Then, \(Z_n \) converges weakly to \(Z \), where \(Z \) is Gaussian with mean 0 and

\[
E[Z(i)Z(j)] = \sum_{m=-\infty}^{\infty} [R(m)R(m+j-i) + R(m+j)R(m-i) + \kappa_4(m, i, j - i)].
\] (3.1)

Remark 3.1. The condition \(\sum_j w_j j^2 R^2(j) < \infty \) follows from \(\sum_j \alpha_\xi(j) < \infty \) and \(\sum_j jw_j < \infty \).

Proof of Theorem 3.1. The proof of tightness may be based on Theorem 2.1; however, we argue \(Z_n \) is tight from direct considerations. Let \(e_j \in \ell^2(w) \) be the basis vector with 1 in the \(j \)th component and 0 elsewhere. The tightness condition we must verify is

\[
\lim_{N \to \infty} \sup_n \sum_{j=N}^{\infty} w_j E[\hat{R}_n(j) - R(j)]^2 = 0.
\]

First note \(E[\hat{R}_n(j)] = (1 - \frac{1}{n}) R(j) \). Hence,

\[
\lim_{N} \sup_n \sum_{j=N}^{\infty} w_j [E(\hat{R}_n(j) - R(j))]^2 = \lim_{N} \sup_n n^{-1} \sum_{j=N}^{\infty} w_j j^2 R^2(j) = 0
\]
by assumptions. So, it suffices to show
\[
\lim_{N \to \infty} \sup_n \sum_{j=N}^{\infty} w_j \text{Var}[\hat{R}_n(j)] = 0. \tag{3.2}
\]

Now, by (5.3.21) of Priestley (1981),
\[
cov[\hat{R}_n(i), \hat{R}_n(j)] = n^{-1} \sum_{m=-(n-i)+1}^{n-j-1} [1 - \frac{\eta(m) + j}{n}] \times \\
[R(m)R(m + j - i) + R(m + j)R(m - i) + \kappa_4(m, i, j - i)], \tag{3.3}
\]
where \(\eta(m) = m \) if \(m > 0 \), \(\eta(m) = -m - (j - i) \) if \(-(n - i) + 1 < m < -(j - i) \) and \(\eta(m) = 0 \) otherwise. In the case \(i = j \),
\[
\kappa_4(m, j, 0) = E(\xi_0 \xi_j \xi_m \xi_{j+m}) - E(\xi_0 \xi_j)E(\xi_m \xi_{j+m}) - E(\xi_0 \xi_m)E(\xi_j \xi_{j+m}) - E(\xi_0 \xi_{m+j})E(\xi_j \xi_m).
\]

By repeated use of the inequality \(|E(\xi_i \xi_k)| \leq 4\alpha_\xi |k-i| \), it follows that \(|\kappa_4(m, j, 0)| \leq 12\alpha_\xi(|m-j|) \) if \(m \geq 0 \), and \(|\kappa_4(m, j, 0)| \leq 12\alpha_\xi(|m+j|) \) if \(m < 0 \). Hence,
\[
\left| \sum_{m=-(n-j)+1}^{n-j-1} \kappa_4(m, j, 0) \right| \leq \sum_{m=-n+1}^{0} 12\alpha_\xi(|m+j|) + \sum_{m=1}^{n-1} 12\alpha_\xi(|m-j|) \leq 48 \sum_{i=0}^{\infty} \alpha_\xi(i).
\]

The other terms in (3.3) are even easier to bound. Therefore, \(\text{Var}[\hat{R}_n(j)] \leq C/n \), for some \(C < \infty \) independent of \(j \). Consequently, (3.2) is true and tightness is proved. To handle the finite dimensional distributions, simple observe that, for fixed \(j \), \(n/(n-j) \cdot \hat{R}_n(j) \) is an average \((n-j)^{-1} \sum_{i=1}^{n-j} (\xi_i \xi_{i+j} - R(j)) \) of stationary weakly dependent mean 0 random variables. Moreover, the mixing coefficient of the sequence \((\xi_1 \xi_{1+j}, \xi_2 \xi_{2+j}, \ldots) \) satisfies \(\alpha(k) \leq \alpha_\xi(max(0, k-j)) \) so that
\[
\sum_{k=0}^{\infty} \alpha(k) \leq j \alpha_\xi(0) + \sum_{k=j}^{\infty} \alpha_\xi(k-j) < \infty.
\]

Hence, by Corollary 9 of Carlstein (1986), \(\hat{R}_n(j) \) is asymptotically normal; the covariance calculation (3.1) follows from (3.3).
4. TRIANGULAR ARRAYS IN THE I.I.D. CASE

In this section, we apply the results in the Section 2 to triangular arrays of i.i.d. Hilbert space valued variables. The results are clean generalizations of well-known results for the real-valued case. The real purpose of this section, however, is to develop a bootstrap limit theorem in the Hilbert space setting without dealing with the complication of dependence among the observations. Having understood this situation, the case of dependent data will be studied in the next section.

Theorem 4.1. Let $X_{n,1}, \ldots, X_{n,n}$ be independent, identically distributed H-valued random variables with common distribution μ_n having mean 0 and $E\|X_{n,1}\|^2 < \infty$. Suppose μ_n converges weakly to μ and $E\|X_{n,1}\|^2 \to E\|X\|^2 < \infty$, where X has distribution μ. Let $Z_n = n^{-1/2} \sum_{i=1}^{n} X_{n,i}$. Then, Z_n converges weakly to the normal distribution on H having mean 0 and covariance operator S, where S is the covariance operator of μ.

Proof. The assumptions of Theorem 2.1 clearly hold. The finite-dimensional distributions converge appropriately because Theorem 4.1 is well-known in the case H is the real line; indeed, a direct verification of Lindeberg's condition is possible.

In the case X_1, X_2, \ldots is an i.i.d. sequence with mean m and covariance operator S, $n^{1/2}(\bar{X}_n - m)$ converges weakly to the normal distribution with mean 0 and covariance operator S, where $\bar{X}_n = \sum_{i=1}^{n} X_i / n$. Next, a bootstrap central limit theorem is proved, generalizing Theorem 2.1 of Bickel and Freedman (1981).

Theorem 4.2. Suppose X_1, X_2, \ldots are independent and identically distributed H-valued random variables with common distribution μ such that $E\|X_1\|^2 < \infty$. Conditional on X_1, \ldots, X_n, let X^*_1, \ldots, X^*_n be independent and identically distributed according the $\tilde{\mu}_n$, where $\tilde{\mu}_n$ is the empirical measure: $\tilde{\mu}_n(E) = n^{-1} \sum_{i=1}^{n} 1(X_i \in E)$. Let $\bar{X}_n = \sum_{i=1}^{n} X_i / n$ and $\bar{X}^*_n = \sum_{i=1}^{n} X^*_i$. Then, along almost all sample sequences X_1, X_2, \ldots, given (X_1, \ldots, X_n), the conditional distribution of $n^{1/2}(\bar{X}^*_n - \bar{X}_n)$ converges weakly to the normal distribution on H having mean 0 and covariance operator S, where S is the covariance operator of $X - m$ when X has distribution μ.

Proof. By Theorem 2.1, it suffices to show $\tilde{\mu}_n$ converges weakly to μ with probability one, $\bar{X}_n \to$
$E(X_1)$ with probability one, and

$$E(||X_i^* - \bar{X}_n||^2|X_1, \ldots, X_n) = n^{-1} \sum_{i=1}^{n} ||X_i - \bar{X}_n||^2$$

converges to $E(||X_1 - m||^2)$ with probability one, where m is the mean of X_1. The weak convergence of the empirical measure $\hat{\mu}_n$ to μ with probability one holds for general metric spaces by a result of Varadarajan (1958). The assumptions imply $n^{1/2}(\bar{X}_n - m)$ is asymptotically Gaussian; hence, $\bar{X}_n \rightarrow m$ in probability. By Theorem 3.1 of DeAcosta (1981), $\bar{X}_n \rightarrow m$ with probability one as well. Finally,

$$n^{-1} \sum_{i=1}^{n} ||X_i - \bar{X}_n||^2 = n^{-1} \sum_{i=1}^{n} ||X_i - m||^2 + ||\bar{X}_n - m||^2.$$

By the strong law, $n^{-1/2} \sum_{i=1}^{n} ||X_i - m||^2 \rightarrow E(||X_1 - m||^2)$ with probability one. The result follows.
5. THE STATIONARY BOOTSTRAP

5.1. The stationary resampling algorithm.

Suppose \(\{X_j, j \in \mathbb{Z}\} \) is a strictly stationary and weakly dependent time series, where the \(X_j \) may take values in an arbitrary space \(S \). In the mathematical theory developed in this section, \(S \) will be a separable Hilbert space \(H \), but the stationary resampling scheme applies more generally. Let \(P_0 \) be the marginal distribution of \(X_1 \). Interest focuses on a parameter \(T(P_0) \), where \(T \) is some functional of \(P_0 \). The case where \(T \) is a functional of the \(m \)-dimensional marginal distribution of \((X_1, \cdots, X_m) \) can also be considered by a simple reduction to the previous case; just consider a new series \(Y_i \) defined by \(Y_i = (X_i, \cdots, X_{i+m-1}) \). Given data \(X_1, \cdots, X_n \), the goal is to make inferences about \(T(P_0) \) based on the estimator \(T_n = T(\hat{P}_n) \), where \(\hat{P}_n \) is the empirical measure constructed from \(X_1, \cdots, X_n \). In particular, we are interested in constructing a confidence region for \(T(P_0) \) or constructing an estimate of the standard error of the estimator \(T_n \). Typically, an estimate of the sampling distribution of \(T_n \) is required, and the stationary bootstrap method proposed here is developed for this purpose. This resampling algorithm is similar to that of Künsch (1989) and Liu and Singh (1992), and has been introduced in Politis and Romano (1991). In general, we are led to considering a “root” or an approximate pivot \(R_n = R_n(X_1, \cdots, X_n; T(P_0)) \), which is just some functional depending on the data and possibly on \(T(P_0) \) as well. For example, \(R_n \) might be of the form \(R_n = T_n - T(P_0) \), or possibly a studentized version. The idea is that is the true sampling distribution of \(R_n \) were known, probability statements about \(R_n \) could be inverted to yield confidence statements about \(T(P_0) \). The stationary bootstrap is a method that can be applied to approximate the distribution of \(R_n \).

To describe the algorithm, let

\[
B_{i,b} = \{X_i, X_{i+1}, \cdots, X_{i+b-1}\}
\]

be the block consisting of \(b \) observations starting from \(X_i \). In the case \(j > n \), \(X_j \) is defined to be \(X_i \), where \(i = j \mod n \) and \(X_0 = X_n \). Let \(p \) be a fixed number in \([0,1]\). Independent of \(X_1, \cdots, X_n \), let \(L_1, L_2, \cdots \) be a sequence of independent and identically distributed random variables having the geometric distribution, so that the probability of the event \(\{L_i = m\} \) is \((1 - p)^{m-1}p\) for \(m = 1, 2, \cdots \). Independent of the \(X_i \) and the \(L_i \), let \(I_1, I_2, \cdots \) be a sequence of independent and identically distributed variables which have the discrete uniform distribution on \(\{1, \cdots, n\} \). Now, a pseudo time series \(X_1^*, \cdots, X_n^* \) is generated in the following way. Sample a sequence of blocks of
random length by the prescription \(B_{I_1, L_1}, B_{I_2, L_2}, \cdots \). The first \(L_1 \) observations in the pseudo time series \(X^*_1, \cdots, X^*_n \) are determined by the first block \(B_{I_1, L_1} \) of observations \(X_{I_1}, \cdots, X_{I_1+L_1-1} \), the next \(L_2 \) observations in the pseudo time series are the observations in the second sampled block \(B_{I_2, L_2} \), namely \(X_{I_2}, \cdots, X_{I_2+L_2-1} \). Of course, this process is stopped once \(n \) observations in the pseudo time series have been generated (though it is clear that the resampling method allows for time series of arbitrary length to be generated).

Once \(X^*_1, \cdots, X^*_n \) has been generated, one can compute \(R_n(X^*_1, \cdots, X^*_n; T_n) \) for the pseudo time series. The conditional distribution of \(R_n(X^*_1, \cdots, X^*_n; T_n) \) given \(X_1, \cdots, X_n \) is the stationary bootstrap approximation to the true (unconditional) sampling distribution of \(R_n(X_1, \cdots, X_n, T(P_0)) \). By repeatedly resampling and simulating a large number \(B \) of pseudo time series in the exact same manner, the true distribution of \(R_n(X_1, \cdots, X_n; T(P_0)) \) can be approximated by the empirical distribution of the \(B \) numbers \(R_n(X^*_1, \cdots, X^*_n; T_n) \).

An alternative and perhaps simpler description of the resampling algorithm is the following. Let \(X^*_i \) be picked at random from the original \(n \) observations, so that \(X^*_i = X_{I_i} \). With probability \(p \), let \(X^*_2 \) be picked at random from the original \(n \) observations; with probability \(1 - p \), let \(X^*_2 = X_{I_i+1} \) so that \(X^*_2 \) would be the "next" observation in the original time series following \(X_{I_i} \). In general, given that \(X^*_i \) is determined by the \(J \)th observation \(X_J \) in the original time series, let \(X^*_{i+1} \) be equal to \(X_{J+1} \) with probability \(1 - p \) and picked at random from the original \(n \) observations with probability \(p \). This description makes it clear that, conditional on \(X_1, \cdots, X_n \), the new process \(X^*_1, \cdots, X^*_n \) is indeed stationary.

In anticipation of asymptotic results, the parameter \(p \) used in the above construction of the resampling scheme will depend on \(n \) and be denoted \(p_n \).

Denote by \(\hat{\alpha}_n(k) \) the mixing sequence associated with the series \(X^*_1, X^*_2, \cdots \) based on the parameter \(p_n \). Let us be clear that the probabilities required in calculating \(\hat{\alpha}_n(k) \) are conditional on \(X_1, \cdots, X_n \). Specifically,

\[
\hat{\alpha}_n(k) = \sup_{A,B} \left| P(AB|X_1, \cdots, X_n) - P(A|X_1, \cdots, X_n)P(B|X_1, \cdots, X_n) \right|,
\]

where \(A \) and \(B \) are events in the \(\sigma \)-fields generated by \(\{X^*_i, i \leq j\} \) and \(\{X^*_i, i \geq j + k\} \). The following proposition is fundamental. Note in particular that a bound for \(\hat{\alpha}_n(k) \) is obtained which does not depend on the actual sequence \(X_1, \cdots, X_n \).

Proposition 5.1. Conditional on \(X_1, \cdots, X_n \), the pseudo time series \(X^*_1, X^*_2, \cdots, X^*_n \) is stationary.
Moreover, \(\hat{a}_n(k) \leq 4(1 - p_n)^k \).

5.2. The bootstrap central limit theorem.

The main theorem of this paper is the following. In the theorem, it is assumed that the \(X_i \) are essentially bounded. As in Theorem 2.3, this can easily be weakened, but the case where the \(X_i \) are essentially bounded will suffice for our purposes. Indeed, in the statistical applications motivating the problem, the \(X_i \) actually represent empirical distribution functions.

Theorem 5.1. Let \(X_1, \ldots, X_n \) be a stationary sequence of \(H \)-valued random variables with mean \(m \) and mixing sequence \(\alpha_X(\cdot) \). Assume the \(X_i \) are essentially bounded and \(\sum_j \alpha_X(j) < \infty \). Let \(\bar{X}_n = n^{-1} \sum_{i=1}^n X_i \) and \(Z_n = n^{1/2}(\bar{X}_n - m) \); also, let \(L(Z_n) \) denote the law of \(Z_n \). Conditional on \(X_1, \ldots, X_n \), let \(X^*_1, \ldots, X^*_n \) be generated according to the stationary resampling scheme with \(p = p_n \) satisfying \(p_n \to 0 \) and \(np_n^2 \to \infty \) as \(n \to \infty \). The bootstrap approximation to \(L(Z_n) \) is the distribution, conditional on \(X_1, \ldots, X_n \), of \(Z^*_n \), where \(Z^*_n = n^{1/2}(\bar{X}^*_n - \bar{X}_n) \) and \(\bar{X}^*_n = n^{-1} \sum_{i=1}^n X^*_i \); denote this distribution by \(L(Z^*_n|X_1, \ldots, X_n) \). Then,

\[\rho(L(Z_n), L(Z^*_n|X_1, \ldots, X_n)) \to 0 \]

in probability, where \(\rho \) is any metric metrizing weak convergence on \(H \).

Proof. Assume without loss of generality that \(m = 0 \). Observe that, conditional on \(X_1, X_2, \ldots \), the variables \(X^*_1, \ldots, X^*_n \) are really part of a triangular array of variables; as such, they should perhaps be called \(X^*_n, \ldots, X^*_n \) in keeping with the notation of Theorem 2.1. However, this notation is not used without risk of confusion.

By Theorem 2.3(ii), \(Z_n \) converges weakly to the law of \(Z \), denoted \(L(Z) \), where \(Z \) is a Gaussian \(H \)-valued random variable with mean 0 and \(E((Z,h))^2 = \sigma_h^2 \), where \(\sigma_h^2 \) is given by (2.5). Consider, for any \(h \in H \), the projection

\[\langle Z^*_n, h \rangle = n^{-1/2} \sum_{i=1}^n [(X^*_i, h) - (\bar{X}_n, h)], \]

a normalized sum of weakly dependent real-valued stationary random variables. In Politis and Romano (1991), the stationary bootstrap approximation for means is shown to be valid under our conditions. Specifically, the bootstrap approximation, \(L((Z^*_n, h)|X_1, \ldots, X_n) \), to the distribution of \(n^{-1/2}[(\bar{X}_n, h) - (m, h)] \) satisfies

\[\rho_1(L((Z^*_n, h)|X_1, \ldots, X_n), L((Z, h))) \to 0 \]
in probability, where \(\rho_1 \) is any metric metrizing weak convergence of probability measures on the real line.

We now consider the issue of tightness of the distribution of \(Z_n^* \) (conditional on \(X_1, \ldots, X_n \)) by appealing to Theorem 2.1. Of course, the variables in Theorem 2.1 are centered to have mean 0, so that the triangular array of variables we really consider is \(X_i^* - \bar{X}_n, \ldots, X_n^* - \bar{X}_n \). Note that \(\bar{X}_n \to 0 \) almost surely under the assumed mixing conditions. So, depending on the condition in Theorem 2.1 we need to verify, we may not need to worry about recentering.

First, note that for any fixed \(k \geq 1 \), the conditional distribution of \((X_1^*, \ldots, X_n^*) \) converges weakly to the distribution of \((X_1, \ldots, X_n) \) for almost all sample sequences \(X_1, X_2, \ldots \). To see why, let \(\hat{F}_{n,k} \) be the empirical distribution of the \((n - k + 1) H^k \)-valued random variables \(B \equiv (X_i^*, X_{i+1}, \ldots, X_{i+k-1}) \) for \(1 \leq i \leq n - k + 1 \). Then, it is easy to see that the conditional distribution of \((X_1^*, \ldots, X_k^*) \) is equal to \((1 - \epsilon_n) \hat{F}_{n,k} + \epsilon_n R_{n,k} \), where

\[
\epsilon_n = (1 - \frac{k - 1}{n})(1 - p_n)^{k-1}.
\]

To see why, \(X_i^* = X_I \) with probability \(1/n \), where \(I \) is chosen at random from \(1, \ldots, n \). Then, given \(I < n - k + 1 \) and \(X_i^* = X_I, (X_i^*, \ldots, X_k^*) = (X_I, X_{I+1}, \ldots, X_{I+k-1}) \) with probability \((1 - p_n)^{k-1} \).

Since, \(p_n \to 0 \) and \(k \) is fixed here, \(\epsilon_n \to 0 \) as \(n \to \infty \). So, it suffices to show \(\hat{F}_{n,k} \) converges weakly to the distribution of \((X_1, \ldots, X_k) \) for almost all sample sequences \(X_1, X_2, \ldots \). But, for fixed \(k, B_1, \ldots, B_{n-k+1} \) a stationary sequence of \(H^k \)-valued random variables with mixing sequence tending to 0. Hence (by applying the Ergodic theorem or the inequalities of Roussas and Ioannides (1987) which hold under the mixing assumptions of our theorem), if \(E \) is any (measurable) subset of \(H^k \),

\[
\hat{F}_{n,k}(E) = (n - k + 1)^{-1} \sum_{i=1}^{n-k+1} 1(B_i \in E) \to F_k(E) \equiv P((X_1, \ldots, X_k) \in E)
\]

almost surely. Of course, the exceptional set where this fails may depend on \(E \), but the above holds for all \(E \) in some countable collection of sets, and the set where it does not hold for all \(E \) in such a countable collection has probability zero. In particular, consider all sets \(E \) which are finite intersections of spheres centered at \(x \) and radius \(r \), where \(x \) varies over a sense subset of \(H^k \) and \(r \) is rational. By the separability of \(H^k \) and Corollary 1 of Billingsley (1968, p.29), this entails the weak convergence of \(\hat{F}_{n,k} \) to \(F_k \) for almost all sample sequences \(X_1, X_2, \ldots \).

Second, in order to invoke Theorem 2.1, we show

\[
E^*[(X_1^*, X_k^*)] \to E[\!(X_1, X_k)\!] \quad (5.2)
\]
with probability one, where the starred expectation denotes expectation conditional on \(X_1, \ldots, X_n\).

Now, recall \(L_1\) in the construction of the stationary resampling scheme. Also, with \(n\) fixed, let \(X_j\) for \(j > n\) be defined to be \(X_{j-n}\). Set

\[
\hat{R}_{n,k} = n^{-1} \sum_{j=1}^{n-k+1} (X_j - \bar{X}_n)(X_{j+k} - \bar{X}_n).
\]

Then,

\[
E^*((X_1^*, X_k^*)) = E^*((X_1^*, X_k^*)|L_1 \geq k)P(L_1 \geq k) + E^*((X_1^*, X_k^*)|L_1 < k)P(L_1 < k)
\]

\[
= n^{-1} \sum_{j=1}^{n} X_j X_{j+k-1}(1 - p_n)^{k-1} + \bar{X}_n^2[1 - (1 - p_n)^{k-1}].
\]

(5.3)

So,

\[
E^*((X_1^* - \bar{X}_n, X_k^* - \bar{X}_n)) = n^{-1}(1 - p_n)^{k-1} \sum_{j=1}^{n} (X_j - \bar{X}_n)(X_{j+k-1} - \bar{X}_n)
\]

\[
= (1 - p_n)^{k-1}(\hat{R}_{n,k-1} + \hat{R}_{n,n-k+1}).
\]

For fixed \(k\), \(|\hat{R}_{n,n-k+1}| \leq k/n \to 0\, \text{and} \, (1 - p_n)^{k-1} \to 1\). Also, \(\hat{R}_{n,k-1} \to R_{k-1} \equiv E((X_1, X_k))\) almost surely, because \(\langle X_1, X_k\rangle, \langle X_2, X_{k+2}\rangle, \ldots\) is a stationary strong mixing sequence. Therefore, the convergence (5.2) holds almost surely.

Finally, to show tightness of \(Z_n^*\) for almost all sample sequences, it would suffice to show

\[
\lim_{n \to \infty} \sum_{k=1}^{n} E^*((X_1^* - \bar{X}_n, X_k^* - \bar{X}_n)) \to \sum_{k=1}^{\infty} R_{k-1}
\]

(5.4)

almost surely. We now show this convergence at least holds in probability. First, note that

\[
\sum_{k=1}^{n} (1 - p_n)^{k-1} \bar{X}_n^2 \to 0
\]

in probability, because \(n\bar{X}_n^2\) is tight and

\[
n^{-1} \sum_{k=1}^{n} (1 - p_n)^{k-1} \leq (np_n)^{-1} \to 0
\]

by assumption on \(p\). This observation, in conjunction with (5.3), shows that (5.4) holds in probability provided

\[
\sum_{k=1}^{n} (1 - p_n)^{k-1}(C_{n,k-1} + C_{n,n-k+1}) \to \sum_{k=1}^{\infty} R_{k-1},
\]

(5.5)
where $C_{n,k} = n^{-1} \sum_{j=1}^{n-k+1} (X_j, X_{j+k-1})$. The left side of (5.5) has mean

$$
\sum_{k=1}^{n} (1 - p_n)^{k-1}[(1 - \frac{k}{n}) R_{k-1} + \frac{k}{n} R_{n-k+1}].
$$

(5.6)

It is easy to see the first term in (5.6) tends to $\sum_{k} R_{k-1}$, so it suffices to show the second term is negligible. But, the second term can be rewritten (by letting $j = n - k + 1$) as

$$
\sum_{j=1}^{n} (1 - p_n)^{n-j} (n - j + 1) R_j/n \leq \sum_{j=1}^{n} (1 - p_n)^{n-j} R_j/n.
$$

This, in turn can be rewritten as

$$
\sum_{j=1}^{J} (1 - p_n)^{n-j} R_j/n + \sum_{j=J+1}^{n} R_j/n.
$$

For fixed ϵ, J could be chosen to make the second term less than ϵ. Then, for fixed J, the first term tends to zero because $(1 - p_n)^{n-j} \leq (1 - p_n)^{n-J} \to 0$ if $n p_n \to \infty$, which holds under the assumptions. So, to show (5.4) holds in probability, it suffices to show the variance of the left hand side of (5.5) tends to 0; that is, we must show

$$
\text{var}(\sum_{k=0}^{n-1} b_{n,k} C_{n,k}) \to 0,
$$

where $b_{n,k} = (1 - p_n^k) + (1 - p_n)^{n-k}$. Now,

$$
\text{var}(\sum_{k=0}^{n-1} b_{n,k} C_{n,k}) = \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} b_{n,k} b_{n,j} \text{cov}(C_{n,k}, C_{n,j})
$$

(5.7)

and

$$
n^2 \text{var}(C_{n,j}) = \sum_{i=1}^{n-j} \text{var}(X_i, X_{i+j}) + 2 \sum_{i=1}^{n-j} \sum_{l=i+1}^{n-j} \text{cov}(X_i, X_{i+j}, X_l, X_{l+j}) + 2 \sum_{i=1}^{n-j} \sum_{l=i+j+1}^{n-j} \text{cov}(X_i, X_{i+j}, X_l, X_{l+j}).
$$

(5.8)

But, for $i < l \leq i + j$,

$$
|\text{cov}(X_i, X_{i+j}, X_l, X_{l+j})| = |E((X_i, X_{i+j}, X_l, X_{l+j})) - E^2((X_i, X_{i+j}))| \leq 10 \alpha_X (l-i) + 100 \alpha_X^2 (j)
$$

by repeated use of Dehling’s inequality. Similarly, if $l > i + j$,

$$
|\text{cov}(X_i, X_{i+j}, X_l, X_{l+j})| \leq 10 \alpha_X (l-j) + 100 \alpha_X^2 (j).
$$
Substituting into (5.8) and calling \(B = \sum_i \alpha_X(i) \) yields

\[
\text{var}(C_{n,j}) \leq n^{-1}(1 + 40B + 400j \alpha_X^2(j)).
\]

But, the summability assumption and monotonicity of the \(\alpha_X(\cdot) \) sequence implies \(j \alpha_X(j) \to 0 \) as \(j \to \infty \). (To appreciate why, think of the \(\alpha_X(\cdot) \) sequence as tail probabilities \(P(X \geq j) \) for some nonnegative, integrable random variable \(Z \); then, a variant of Chebychev's inequality implies \(jP(Z \geq j) \to 0 \) as \(j \to \infty \).) Hence, there is a constant \(D \) independent of \(n \) and \(j \) (which depends only on the \(\alpha_X(\cdot) \) sequence) such that \(\text{var}(C_{n,j}) \leq D/n \). Hence, applying Cauchy-Schwarz to (5.7) results in

\[
\text{var}\left(\sum_{k=0}^{n-1} b_{n,k} C_{n,k}\right) \leq D n^{-1} \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} b_{n,k} b_{n,j} = O((np_n^2)^{-1}) \to 0
\]

as \(n \to \infty \).

Now, because the convergence (5.4) has been shown to hold in probability and not almost surely, we cannot deduce tightness of \(Z_n^* \) for almost all sample sequences. However, given any subsequence \(n_{j,i} \), there exists a further subsequence \(n_{j,k} \) such that the convergence in (5.4) holds almost surely along this subsequence. This implies \(Z_{n_{j,k}}^* \) is tight for almost all sample sequences.

Now, to show \(\rho(L(Z_n^*|X_1, \ldots, X_n), Z) \to 0 \) in probability, it suffices to show that given any subsequence \(n_j \), there exists a further subsequence where this convergence holds almost surely. But, by the above, there exists a further subsequence such that \(Z_{n_{j,k}}^* \) is tight with probability one. Moreover, if necessary, we could extract yet a further subsequence \(n_{j,k} \), satisfying

\[
\rho_1(L(\langle Z_{n_{j,k}}, h \rangle|X_1, \ldots, X_{n_{j,k}}), L(\langle Z, h \rangle)) \to 0
\]

almost surely. In fact, the exceptional set can be taken so this holds for all \(h \) in a countable dense subset of \(H \). But, tightness and convergence of a dense subset of projections entails weak convergence. Thus,

\[
\rho(L(Z_{n_{j,k}}^*|X_1, \ldots, X_n), L(Z)) \to 0
\]

almost surely, and the result now follows.

5.3. Confidence limits for stationary time series.

By assuming the \(X_t \) take values in \(H = \mathbb{R}^k \), the previous results imply a bootstrap central limit theorem for a multivariate mean. Using standard delta method arguments, this implies a
bootstrap central limit theorem for estimators that are smooth functions of means; see Section 4.2 of Politis and Romano (1991). Hence, immediate applications lie in the construction of joint confidence bands for the first k autocorrelations of the time series. Below, we focus on differentiable functionals.

Let ξ_1, \ldots, ξ_n be real-valued observations from a stationary time series with mixing sequence $\alpha_\xi(\cdot)$. Let F be the marginal cumulative distribution function (cdf) of ξ_1. Interest now focuses on some functional $T(\cdot)$ of F, as F varies in some class \mathcal{F}. (The case where interest focuses on some functional of (ξ_1, \ldots, ξ_m) with m fixed can be handled similarly.) Let \hat{F}_n be the empirical distribution of ξ_1, \ldots, ξ_n. Let ξ_1^*, \ldots, ξ_n^* be generated according to the stationary bootstrap resampling scheme, with empirical cdf \hat{F}_n^*.

We will regard $\hat{F}_n - F$ and $\hat{F}_n^* - \hat{F}_n$ as elements of a certain Hilbert space, namely $H = L^2(\nu)$, where ν is a sigma finite measure on the real line. The case where ν is only assumed sigma finite can be handled as long as a further assumption on the tails of these distributions is made as in (2.9) of Millar (1981). Specifically, the added assumption is that, for all $F \in \mathcal{F}$, $\int F(1-F) d\nu < \infty$. (To see why, $E[\|\hat{F}_n - F\|^2] < \infty$ implies $\hat{F}_n - F$ is square integrable against ν with probability one.) Assume T is Fréchet differentiable in the sense that, for fixed F, and as G varies in \mathcal{F},

$$T(G) - T(F) = \langle \psi, G - F \rangle + o(\|G - F\|)$$

as $\|G - F\| \to 0$, where $\langle \cdot, \cdot \rangle$ is the $L^2(\nu)$ inner product and $\psi \in L^2(\nu)$.

Corollary 5.1. Under the above setup, assume $\sum_k \alpha_\xi(k) < \infty$, $np_n^2 \to \infty$, and $p_n \to 0$. Let L_n be the (true) distribution function of $n^{1/2}(T(\hat{F}_n) - T(F))$, and let \hat{L}_n be the distribution function (conditional on ξ_1, \ldots, ξ_n) of $n^{1/2}(T(\hat{F}_n^*) - T(\hat{F}_n))$. Then, $\rho_1(L_n, \hat{L}_n) \to 0$ in probability, where ρ_1 is any metric metrizing weak convergence of distribution functions on the real line. Moreover, L_n converges weakly to a Gaussian distribution with mean 0 and variance σ_ψ^2, where σ_ψ^2 is given by (2.5) with $X_i(\cdot) = 1(\xi_i \leq \cdot)$. Let

$$\hat{c}_n(1 - \alpha) = \inf \{ t : \hat{L}_n(t) \geq 1 - \alpha \}.$$

Then,

$$\text{Prob}\{n^{1/2}[T(\hat{F}_n) - T(F)] \leq \hat{c}_n(1 - \alpha) \} \to 1 - \alpha$$

as $n \to \infty$; in other words, the asymptotic coverage of the interval $(T(\hat{F}_n) - n^{-1/2}\hat{c}_n(1 - \alpha), \infty)$ is $1 - \alpha$.

Proof. Apply Theorem 5.1 with \(X_i(t) = 1(\xi_i \leq t) \). The rest of the argument is then routine.

5.4. Minimum distance estimation. An important class of estimators that satisfy the assumptions imposed in subsection 5.3 is the class of minimum distance estimators, where the distance is defined by a Hilbertian norm. To define the estimators, let \(\{F_\theta, \theta \in \Theta\} \) be a parametric family of distribution functions on the line, indexed by \(\Theta \), an open subset of \(\mathbb{R}^d \). Given data \(\xi_1, \ldots, \xi_n \) with empirical cdf \(\hat{F}_n \), let \(\hat{\theta}_n \) satisfy

\[
\inf_{\theta} \|F_\theta - \hat{F}_n\| = \|F_{\hat{\theta}_n} - \hat{F}_n\|;
\]

here, \(\| \cdot \| \) is a certain Hilbertian norm. For now, we do not dwell on issues of existence or uniqueness of \(\hat{\theta}_n \). The statistical problem is to estimate \(\theta \) based on some assumed parametric model for the distribution of the \(\xi_i \). Of course, if the true distribution \(F \) is not in the parametric family, we are led to estimating a certain minimum distance functional \(\theta(F) \). The properties of these estimators have been systematically developed in Millar (1981, 1984). By taking an appropriate decision theoretic point of view, Millar has established desirable robustness properties of such minimum distance estimators. In short, the efficiency of minimum distance estimators does not break down if the model is not correctly specified.

While the kinds of contamination of the data considered by Millar is quite large (and is described in terms of Hilbertian neighborhoods of the parametric family), the assumption of independence is not questioned. The goal here then is to show that confidence intervals resulting from minimum distance estimators have a certain robustness of validity. That is, confidence intervals constructed by the stationary resampling scheme are asymptotically valid when the data are stationary and weakly dependent. In summary, a statistician using such minimum distance estimators has guarded against both a misspecified model and a certain lack of independence in the data.

Rather than repeat the asymptotic arguments presented in Millar for the i.i.d. case, we summarize the key assumptions needed to reduce the problem to one of studying the empirical process. In this way, it is clear that the key mathematical results needed to extend the distributional results of Millar's to the stationary case are already developed in Theorem 5.1 and Corollary 5.1.

Here, we only consider the case \(d = 1 \) for simplicity, though our Corollary 5.1 is strong enough to handle more general situations. Assume the identifiability hypothesis: if \(\|F_{\theta_n} - F_\theta\| \rightarrow 0 \), then \(\theta_n \rightarrow \theta \). Assume the differentiability hypothesis: there exists a real-valued function \(\eta \) of a real
variable such that $\eta \in L^2(\nu)$ and
\[\|F_\theta - F_{\theta_0} - (\theta - \theta_0)\eta\| = o(|\theta|) \]
as $\theta \to \theta_0$. As before, let $Z_n(\cdot) = n^{1/2}[\hat{F}_n(\cdot) - F(\cdot)]$, where F is the true marginal distribution function of ξ_1. Then, the asymptotic arguments presented in Millar show that
\[n^{1/2}(\hat{\theta}_n - \theta) = \langle Z_n, \eta \rangle / \|\eta\|^2 + o_P(1); \tag{5.9} \]
see (2.8) of Millar (1981) or (2.11) of Millar (1984). Similarly, one can argue that
\[n^{1/2}(\hat{\theta}_n - \hat{\theta}_n^*) \approx \langle Z_n^*, \eta \rangle / \|\eta\|^2, \]
where Z_n^* is the corresponding stationary bootstrap process. By Corollary 5.1, both Z_n and Z_n^* behave asymptotically like Z, an $L^2(\nu)$-valued mean 0, Gaussian random variable with the same covariance structure. It follows that the stationary bootstrap approximation to the sampling distribution of $n^{1/2}(\hat{\theta}_n - \theta)$ is asymptotically valid and confidence intervals based on this approximation are asymptotically of the nominal level. (In actuality, a slight generalization of Theorem 5.1 and Corollary 5.1 is required to handle the case that F falls outside of the parametric model; in particular, one should prove the analogous results when the underlying distribution is perhaps changing with n. This would require no major change in the proofs of these results. In our robustness problem here, it would enable us to consider the behavior of the estimator and bootstrap counterpart when the underlying distribution falls in some shrinking neighborhood of the fixed model.)

The expansion (5.9) allows us to identify the so-called influence function of the estimator. First, specialize further to the case of a location model where $F_\theta(t) = F_0(t - \theta)$, the most well-studied model in the robustness literature. Assume F_0 has a density f with respect to Lebesgue measure. Under weak conditions, $\eta(t) = -f(t)$. Then (see section (3B) of Millar (1981)), $\hat{\theta}_n = n^{-1} \sum IC(\xi_i)$, where
\[IC(t) = b[G(t) - c], \quad \int G(t) = \int_{-\infty}^t f(s) \nu(ds), \quad c = \int G(t) F_0(dt) \quad \text{and} \quad b^{-1} = \int f^2(t) \nu(dt). \]
Thus, if ν is a finite measure, the influence curve $IC(\cdot)$ is monotone and bounded. If ν is nonatomic, then $IC(\cdot)$ is continuous. Also, if ν and f are symmetric about 0, then $IC(\cdot)$ is odd. By varying the choice of ν, Millar (1981) has shown that one can recover the influence curves of famous estimators, such as the class of trimmed means or the Hodges-Lehmann estimator. Thus, even in this specialized model, our asymptotic justification of the stationary bootstrap method applies to a broad range of estimators.

In summary, in order to deduce asymptotic distributional properties of minimum distance estimators defined by a Hilbertian norm, it is necessary to develop limit theorems for the empirical
process. This has been accomplished in Theorem 5.1 for general \(H \). Hence, for other choices of Hilbertian norm considered in Millar (1984), the asymptotic distribution of the resulting estimators can be deduced even when the data are stationary. In the abstract setup considered by Millar (1984), we have verified his convergence hypothesis (2.5) under the assumption the data are stationary and weakly dependent for a large class of estimation problems. Thus, very similar considerations allow us to deduce analogous results for other minimum distance procedures, such as minimum chi-squared methods, minimum Hellinger methods, and other Hilbertian distances.
References

