ASYMPTOTIC OPTIMAL POLICIES FOR THE STOCHASTIC
SEQUENTIAL ASSIGNMENT PROBLEM

by

Chris Albright & Cyrus Derman

Technical Report No. 137
June 28, 1971

Supported by the Army, Navy and Air Force
with the Office of Naval Research

Gerald J. Lieberman, Project Director

This research was supported in part by the Office of Naval
Research under Contract N00014-67-A-0112-0058 (NR-047-061)

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Distribution of this Document is Unlimited

DEPARTMENT OF OPERATIONS RESEARCH
AND
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Summary

In [1] the following sequential assignment problem is treated. We have \(n \) men with values, or efficiencies, \(p_1 \leq \ldots \leq p_n \), and these men must be paired with \(n \) jobs which come in sequentially. The values of the jobs are \(X_1, \ldots, X_n \), assumed to be independent, identically distributed random variables with a known distribution function \(F \). It is assumed that if a "p" man is assigned to an "x" job, a reward of \(px \) is obtained. The main result is that, with this special reward function, the optimal assignment is independent of the \(p_i \)'s. Namely, if there are \(n \) men left, there exist \(n-1 \) numbers, \(a_1,n \leq a_2,n \leq \ldots \leq a_{n-1},n' \) dividing the real line into \(n \) intervals, such that if the next job has a value \(x \) falling into the \(i \)th interval, it is best to assign the man with value \(p_i \) to this job. An interpretation of these \(a_{i,n} \)'s is also given. If there are \(n \) men left, \(a_{i,n+1} \) is the expected value of the job to which the man with value \(p_i \) is assigned. This allows a recursive formula for the \(a_{i,n} \)'s:

\[
(1) \quad a_{i,n+1} = \int_{a_{i-1,n}}^{a_{i,n}} xF(dx) + a_{i-1,n} F(a_{i-1,n}) + a_{i,n} (1 - F(a_{i,n}))
\]

for \(1 \leq i \leq n \), where \(a_{0,n} \) and \(a_{n,n} \) are defined appropriately in the next section.

The present paper is concerned with the limiting behavior of these \(a_{i,n} \)'s as \(n \) gets large. The first results are obtained trivially. If we fix \(i \) and look at \(a_{i,n} \) or \(a_{n-i,n'} \), these go to the upper and lower endpoints of support of the distribution function \(F \). A more interesting problem is to let \(i = [n\pi] \) for some \(0 < \pi < 1 \).
and find the limiting behavior of \(a_{[n\pi],n+1} \) as \(n \) gets large. Two results in this spirit are obtained under suitable restrictions on \(F \).

First it is shown that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lceil n\pi \rceil + 1}^{n} a_{i,n+1} = \int_{F^{-1}(\pi)}^{\infty} xF(dx).
\]

Then this result is used to show that

\[
\lim_{n \to \infty} a_{[n\pi],n+1} = F^{-1}(\pi)
\]

Limits of \(a_{i,n} \) **and** \(a_{n-i,n} \) **for fixed** \(i \).

Define the following numbers:

- \(\bar{R}_F = \inf \{ x : F(x) = 1 \} \), which may be \(+\infty \)
- \(R_F = \sup \{ x : F(x) = 0 \} \), which may be \(-\infty \)

Lemma 1. Suppose \(X_1, X_2, \ldots \) are independent, identically distributed random variables with distribution function \(F \). Suppose also that \(E|X_1| < \infty \) and that \(\bar{R}_F > \bar{R}_F \). Then

\[
a_{0,n} \leq a_{1,n} \leq a_{2,n} \leq \cdots \leq a_{n-1,n} < \bar{R}_F \leq a_{n,n}.
\]

Proof: \(a_{1,2} = \int_{\bar{R}_F}^{\bar{R}_F} xF(dx) = EX_1 \) by (1), and \(E_F < EX_1 < \bar{R}_F \),

so (2) holds for \(n=2 \). Now assume (2) holds for \(n \). Then for \(n+1 \), we have

\[
a_{1,n+1} = \int_{\bar{R}_F}^{a_{1,n}} xF(dx) + a_{1,n}(1-F(a_{1,n})).
\]
Integrating by parts gives

\[a_{i,n+1} = a_{i,n} - \int_{a_{i-1,n}}^{a_{i,n}} F(x) \, dx > R_F. \]

since \(F(a_{i,n}) < 1 \). Similarly,

\[a_{n,n+1} = \int_{a_{n-1,n}}^{a_{n,n}} x F(x) \, dx + a_{n-1,n} F(a_{n-1,n}), \]

and integrating by parts gives

\[a_{n,n+1} = a_{n-1,n} + \int_{a_{n-1,n}}^{a_{n,n}} (1-F(x)) \, dx < R_F, \]

since \(1-F(a_{n-1,n}) < 1 \). Note that integrating by parts is allowed in both cases because \(E|X_1| < \infty \).

This completes the induction step, and thus the lemma is proved.

Theorem 1.

Under the same assumptions as in lemma 1, we have, for any fixed integer \(i \geq 1 \),

\[\lim_{n \to \infty} a_{i,n} = R_F, \quad \text{and} \quad \lim_{n \to \infty} a_{n-i,n} = R_F. \]

Proof: By convention we again set \(a_{0,n} = R_F, \quad a_{n,n} = R_F \) for all \(n \).

Then lemma 1 permits integration by parts of equation (1) to get:

\[a_{i,n+1} = a_{i,n} - \int_{a_{i-1,n}}^{a_{i,n}} F(x) \, dx \quad \text{for} \quad i \neq n, \]

since in this case we know \(a_{i,n} < R_F < \infty \), and
(4) \[a_{i,n+1} = a_{i-1,n} + \int_{a_{i-1,n}}^{a_{i,n}} (1-F(x))dx \quad \text{for } i \neq 1, \]

since in this case we know \(a_{i-1,n} > \frac{R_F}{2} > -\infty. \)

These imply the relations:

(i) \(a_{i-1,n} \leq a_{i,n+1} \leq a_{i,n} \) if \(1 < i < n, \)

(ii) \(\frac{R_F}{2} = a_{0,n} < a_{1,n+1} < a_{1,n} \) if \(i = 1 \)

(iii) \(a_{n-1,n} \leq a_{n,n+1} < a_{n,n} = \frac{R_F}{2} \) if \(i = n. \)

Now observe that \(a_{0,n} = \frac{R_F}{2} \) for all \(n, \) and assume that \(a_{i-1,n} \leq \frac{R_F}{2} \) as \(n \to \infty. \) Since \(a_{i,n} \) is monotone decreasing in \(n, \) it has a limit, say \(B > \frac{R_F}{2}. \) Then taking limits in (3) gives

\[B = B - \int_{\frac{R_F}{2}}^{B} F(x)dx < B, \]

a contradiction. So \(\lim_{n \to \infty} a_{i,n} = \frac{R_F}{2} \) also, and the induction step is completed.

Similarly we can use (4) to show that \(\lim_{n \to \infty} a_{n-1,n} = \frac{R_F}{2}. \) This completes the proof of theorem 1.

Limiting behavior of \(a_{[n\pi],n+1} \), \(0 < \pi < 1 \)

Suppose \(0 < \pi < 1 \) and that in the original problem, \(n-[n\pi] \) of the \(p_i \)'s are 1 and the rest of the \(p_i \)'s are 0. Then we know the optimal total expected reward is

\[\sum_{i=[n\pi]+1}^{n} a_{i,n+1}. \]
We use this fact to find the limiting behavior of the average expected reward per job,

\[
\frac{1}{n} \sum_{i=[n\theta]+1}^{n} a_{i,n+1}.
\]

In this section we use the following random variables. Let \(X_i \) be the value of the \(i \)th job, which comes from a distribution \(F \), has a finite mean, and which we now assume to be non-negative. Next, let

\[
Y_i(a) = X_i I_{\{X_i > a\}}, \quad \text{and} \quad Z_i(a) = I_{\{X_i > a\}},
\]

where \(I_{\{X_i > a\}} \) is the indicator random variable of the event \(\{X_i > a\} \).

First we establish the following lemma.

Lemma 2. Let \(U_r \) be a pascal random variable with parameters \(r \) and \(\rho \). That is,

\[
\mathbb{P}(U_r = k) = \binom{k-1}{r-1} \rho^{r} (1-\rho)^{k-r}, \quad k \geq r,
\]

and \(\mathbb{E}U_r = r/\rho, \mathbb{V}ar\ U_r = r(1-\rho)/\rho^2 \). Let \(n > r \) be any integer, and truncate \(U_r \) to get \(N_r \) as follows:

\[
N_r = \begin{cases}
U_r & \text{if } r \leq U_r \leq n \\
n & \text{if } U_r > n.
\end{cases}
\]

Finally, let \(r = [n\theta] \), where \(0 < \theta < \rho < 1 \) and \([\cdot]\) denotes greatest integer. Then we have
\[
\lim_{n \to \infty} \frac{E_N}{n} \geq \frac{\theta}{\rho}
\]

Proof: By definition we have

\[
E_N_r = \sum_{k=r}^{n} kP(U_r = k) + nP(U_r > n) \\
\geq \sum_{k=r}^{\infty} kP(U_r = k) - \sum_{k=n+1}^{\infty} kP(U_r = k) \\
= \frac{r}{\rho} - \sum_{k=n+1}^{\infty} kP(U_r = k)
\]

Consider the second term:

\[
\sum_{k=n+1}^{\infty} kP(U_r = k) = \sum_{k=n+1}^{\infty} \frac{k(k-1)!}{(k-1)!(k-r)!} \rho^{r(1-\rho)^{k-r}} \\
= \frac{r}{\rho} \sum_{k=n+1}^{\infty} \binom{k}{r} \rho^{r+1(1-\rho)^{k-r}} \\
= \frac{r}{\rho} P(U_{r+1} > n+1) \\
= \frac{r}{\rho} P(U_{r+1} - \bar{E}U_{r+1} > n+1 - (r+1)/\rho).
\]

Now, if \(n+1 - (r+1)/\rho > 0 \), we have by Chebyshev's inequality that the above expression is

\[
\leq \frac{r}{\rho} \frac{\Var U_{r+1}/(n+1 - (r+1)/\rho)^2}{(n+1-(r+1)/\rho)^2} \\
= \frac{r}{\rho} \cdot \frac{(r+1)(1-\rho)/\rho^2}{(n+1-(r+1)/\rho)^2} \\
= \frac{r}{\rho} \cdot \frac{(r+1)(1-\rho)/(\rho(n+1) - (r+1))^2}{(n+1-(r+1)/\rho)^2}
\]
Since \(r = [n\theta] = n\theta + \tau \), for some \(0 \leq \tau < 1 \),

\[
\frac{n+1 - (r+1)}{\rho} = \frac{n+1 - (n\theta + \tau + 1)}{\rho} = \frac{n(1-\theta/\rho) + 1-(\tau+1)}{\rho} > 0
\]

for large enough \(n \), since \(\theta < \rho \). Then we have

\[
\frac{1}{n} \mathbb{E}_r \leq \frac{r}{n\rho} \left[1-(r+1)(1-\rho)/(\rho(n+1)-(r+1)) \right]^2
\]

\[
= \theta/\rho \cdot (1-A) + \tau/n\rho \cdot (1-A),
\]

where

\[
A = (n\theta + \tau + 1)(1-\rho)/(\rho(n+1)-(n\theta + \tau + 1))^2 + 0
\]

as \(n \to \infty \). Hence, letting \(n \to \infty \) in the above inequality gives

\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E}_r \geq \frac{\theta}{\rho}.
\]

Now we compare the optimal assignment policy with a non-optimal policy to get a lower bound on

\[
\frac{1}{n} \sum_{i=\lceil n\pi \rceil + 1}^{n} a_{i,n+1}.
\]

Lemma 3. Assuming that \(F \) is continuous, we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lceil n\pi \rceil + 1}^{n} a_{i,n+1} \geq \int_{F^{-1}(\pi)}^{\infty} x F(dx)
\]

Proof: Let \(\varepsilon > 0 \) be arbitrary. Compare the optimal assignment of the \(n-[n\pi] \) \(p_i \)'s which are 1 with a policy which assigns to the \(n \) jobs at most \(n-[n\pi]-1 \) \(p_i \)'s equal to 1, and assigns a 1 to every job with a value \(x > F^{-1}(\pi-\varepsilon) \). This policy is not even feasible
since the \(n-[n\pi]-1 \) \(p_i \)'s equal to 1 may not all be assigned. However, since \(X_i \geq 0 \) for each \(i \), this policy is worse than the feasible policy which assigns a 1 to a job if \(x > F^{-1}(\pi-\varepsilon) \) until there are as many \(p_i \)'s equal to 1 left as there are jobs remaining, at which point it assigns a 1 to every remaining job.

Now we notice that the reward from \(n \) jobs under the infeasible policy is simply

\[
\sum_{i=1}^{r} Y_i(F^{-1}(\pi-\varepsilon)),
\]

where \(r = \lfloor n\theta \rfloor \), with \(\theta = 1-\pi \), and

\[N_r = \begin{cases}
\min \{k \leq n : \sum_{i=1}^{k} Z_i(F^{-1}(\pi-\varepsilon)) = r \} & \text{if } \sum_{i=1}^{n} Z_i(F^{-1}(\pi-\varepsilon)) \geq r \\
n & \text{if } \sum_{i=1}^{n} Z_i(F^{-1}(\pi-\varepsilon)) < r
\end{cases}
\]

Notice also that this \(N_r \) is the same as in lemma 2, with \(r = \lfloor n-\lfloor n\pi \rfloor \rfloor - 1 \) and \(\rho = 1-\pi+\varepsilon \). Since \(N_r \) is a finite stopping rule for the \(Y_i \)'s, we have by Wald's equation,

\[
E\left(\sum_{i=1}^{N_r} Y_i \right) = (EN_f)(EY_1) = (EN_f) \int_{F^{-1}(\pi-\varepsilon)}^{\infty} xF(dx).
\]

Now we use the fact that the reward from the optimal policy is better than the reward from the infeasible policy, and lemma 2, to get

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lfloor n\pi \rfloor+1}^{n} a_i, n+1 \geq \lim_{n \to \infty} \left(\frac{EN_r}{n} \right) \int_{F^{-1}(\pi-\varepsilon)}^{\infty} xF(dx)
\]

8
\[\geq \frac{1-\pi}{1-\pi+\varepsilon} \int_{F^{-1}(\pi-\varepsilon)}^{\infty} x F(dx). \]

Since this is true for each \(\varepsilon > 0 \), we may let \(\varepsilon \to 0 \) and use continuity of \(F \) to get the result of the lemma.

We now compare the optimal policy with an infeasible, but certainly better-than-optimal, policy in order to get an upper bound.

Lemma 4. Under the same assumptions as in lemma 3, we have

\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lceil n\pi \rceil + 1}^{n} a_{i,n+1} \leq \int_{F^{-1}(\pi)}^{\infty} x F(dx). \]

Proof: Let \(X_{(1)} \leq \ldots \leq X_{(n)} \) be the order statistics associated with \(X_1, \ldots, X_n \). Then certainly we have

\[\frac{1}{n} \sum_{i=\lceil n\pi \rceil + 1}^{n} a_{i,n+1} \leq \frac{1}{n} \mathbb{E} \left(\sum_{i=\lceil n\pi \rceil + 1}^{n} X_{(i)} \right). \]

since no sequential assignment can do better than assigning the \(p_i \)'s equal to 1 to the highest order statistics. But now we show that

\[\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left(\sum_{i=\lceil n\pi \rceil + 1}^{n} X_{(i)} \right) \leq \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left(\sum_{i=1}^{n} Y_i (F^{-1}(\pi)) \right). \]

To do this, first define

\[T_n = \sum_{i=1}^{n} Z_i (F^{-1}(\pi)). \]

Then we have
\begin{align}
1/n & \ E \left(\sum_{i=[n\pi]+1}^{n} X(i) - \sum_{i=1}^{n} Y_i \right) \\
& = 1/n \ \left[\int_{\{T_n < n - [n\pi]\}} \left(\sum_{i=[n\pi]+1}^{n} X(i) - \sum_{i=1}^{n} Y_i \right) \ dP \right] \\
& \quad + \int_{\{T_n > n - [n\pi]\}} \left(\sum_{i=[n\pi]+1}^{n} X(i) - \sum_{i=1}^{n} Y_i \right) \ dP \\
& = 1/n \ \left[\int_{\{T_n < n - [n\pi]\}} \left(X([n\pi]+1) + \cdots + X_{(n-T_n)} \right) \ dP \right] \\
& \quad - \int_{\{T_n > n - [n\pi]\}} \left(X_{(n-T_n+1)} + \cdots + X_{([n\pi])} \right) \ dP \\
\end{align}

In the first integral there are \(n-T_n-[n\pi] \) terms, all \(\leq F^{-1}(\pi) \). In the second integral there are \(-n-T_n-[n\pi]\) terms, all \(\geq F^{-1}(\pi) \). Thus continuing (6), the left side is

\begin{align}
\leq F^{-1}(\pi)/n & \left[\int_{\{T_n < n - [n\pi]\}} (n-T_n-[n\pi]) \ dP \right] \\
& \quad - \int_{\{T_n > n - [n\pi]\}} -(n-T_n-[n\pi]) \ dP \\
& = F^{-1}(\pi)/n \ E(n-T_n-[n\pi]) \to 0 \ as \ n \to \infty ,
\end{align}

since \(ET_n = n(1-\pi) \).

However, for each \(n \),

\[1/n \ E \left(\sum_{i=1}^{n} Y_i \left(F^{-1}(\pi) \right) \right) = \int_{F^{-1}(\pi)}^{\infty} xF(dx). \]
Hence, from (5) and (6), we have

\[
\lim_{n \to \infty} \sum_{i=[n\pi]+1}^{n} a_{i,n+1} \leq \lim_{n \to \infty} \frac{1}{n} \sum_{i=[n\pi]+1}^{n} X(i) \\
\leq \int_{F^{-1}(\pi)}^{\infty} xF(dx).
\]

Theorem 2. If the \(X_i \)'s are non-negative, have a finite mean, and have a continuous distribution function \(F \), then for each \(0 < \pi < 1 \), we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=[n\pi]+1}^{n} a_{i,n+1} = \int_{F^{-1}(\pi)}^{\infty} xF(dx).
\]

Proof: The proof follows directly from lemmas 3 and 4.

Corollary 1. Under the same assumptions as in theorem 2, we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{[n\pi]} a_{i,n+1} = \int_{0}^{F^{-1}(\pi)} xF(dx).
\]

Proof: In the original assignment problem, if we let \(p_1 = \ldots = p_n = 1 \), we see trivially that the total expected reward is \(nEX_1 \), that is,

\[
\frac{1}{n} \sum_{i=1}^{n} a_{i,n+1} = EX_1.
\]

Thus from theorem 2,

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{[n\pi]} a_{i,n+1} = EX_1 - \int_{F^{-1}(\pi)}^{\infty} xF(dx) \\
= \int_{0}^{F^{-1}(\pi)} xF(dx).
\]
Corollary 2. Under the same assumptions as in theorem 2, we have

\[\lim_{n \to \infty} \frac{1}{n} E \left(\sum_{i=1}^{\lfloor n \pi \rfloor+1} X(i) \right) = \int_{F^{-1}(\pi)}^{\infty} xF(dx) \]

and

\[\lim_{n \to \infty} \frac{1}{n} E \left(\sum_{i=1}^{\lfloor n \pi \rfloor} X(i) \right) = \int_{0}^{F^{-1}(\pi)} xF(dx) \]

Proof: Lemma 4 shows that

\[\lim_{n \to \infty} \frac{1}{n} E \left(\sum_{i=1}^{\lfloor n \pi \rfloor+1} X(i) \right) \leq \int_{F^{-1}(\pi)}^{\infty} xF(dx). \]

The opposite inequality follows by using theorem 2 and the fact that

\[\sum_{i=1}^{\lfloor n \pi \rfloor+1} a_{i,n+1} \leq E \left(\sum_{i=1}^{\lfloor n \pi \rfloor+1} X(i) \right). \]

Finally, (8) follows by using (7) and the fact that

\[E \left(\sum_{i=1}^{n} X(i) \right) = n E X_{1}. \]

We are now in a position to determine the limiting behavior of \(a_{\lfloor n \pi \rfloor, n+1} \).

1. The authors do not mean to imply that this is a new result.
Theorem 3. In addition to the assumptions of theorem 2, assume that F is absolutely continuous with density f. Then for each $0 < \pi < 1$,

$$\lim_{n \to \infty} a_{[n\pi]}, n+1 = F^{-1}(\pi).$$

Proof: Suppose $0 < \pi' < \pi < 1$. Then from theorem 2,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lceil n\pi' \rceil + 1}^{\lfloor n\pi \rfloor} a_{i,n+1} \geq \int_{F^{-1}(\pi')}^{F^{-1}(\pi)} xF(dx).$$

Since we have $a_{1,n+1} \leq \ldots \leq a_{n,n+1}$ for each n, it follows that

$$\frac{1}{n} ([n\pi]-[n\pi']) a_{[n\pi],n+1} \geq \frac{1}{n} \sum_{i=\lceil n\pi' \rceil + 1}^{\lfloor n\pi \rfloor} a_{i,n+1}$$

for large enough n such that $[n\pi] \geq [n\pi'] + 1$.

Now let $n \to \infty$ to obtain

$$(\pi - \pi') \lim_{n \to \infty} a_{[n\pi],n+1} \geq \int_{F^{-1}(\pi')}^{F^{-1}(\pi)} xF(dx),$$

or, dividing by $\pi - \pi'$,

$$\lim_{n \to \infty} a_{[n\pi],n+1} \geq \frac{1}{\pi - \pi'} \int_{F^{-1}(\pi')}^{F^{-1}(\pi)} xF(dx).$$

Finally, let $\pi' \succ \pi$:

$$\lim_{\pi' \to \pi} \frac{1}{\pi - \pi'} \int_{F^{-1}(\pi')}^{F^{-1}(\pi)} xF(dx) = d/d\pi \int_{0}^{\pi} xF(dx).$$
\[
= (d/d\pi \ F^{-1}(\pi))F^{-1}(\pi) \ f(F^{-1}(\pi))
\]
\[
= F^{-1}(\pi),
\]
so that
\[
\lim_{n \to \infty} a_{\lfloor n\pi \rfloor, n+1} \geq F^{-1}(\pi).
\]

Similarly, letting \(0 < \pi < \pi' < 1 \) and going through the same argument, we obtain
\[
\lim_{n \to \infty} a_{\lfloor n\pi \rfloor, n+1} \leq F^{-1}(\pi).
\]

Combining these inequalities yields the desired result.
REFERENCES

Asymptotic Optimal Policies for the Stochastic Sequential Assignment Problem

6. REPORT DATE
June 28th, 1971

7a. TOTAL NO. OF PAGES
16

7b. NO. OF REPS
1

8a. CONTRACT OR GRANT NO.
N00014-67-A-0112-0052

8b. ORIGINATOR'S REPORT NUMBER(S)
Technical Report No. 137

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
#25 ONR N00014-67-A-0112-0058

10. AVAILABILITY/LIMITATION NOTICES
Distribution of this Document is Unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
Office of Naval Research
Logistics & Mathematical Statistics Branch
Washington, D.C.

13. ABSTRACT
Suppose we have \(n \) men available to do \(n \) jobs. The men have values \(p_1 \leq \ldots \leq p_n \) and the jobs come in sequentially and take on values \(x_1, \ldots, x_n \) are independent, identically distributed random variables with CDF \(F \). The reward from assigning a "p" man to an "x=x" job is assumed to be \(p x \). The optimal assignment is as follows. There exist numbers \(a_{1:n} \leq \ldots \leq a_{n-1,n} \), independent of the \(p_i \)'s, dividing the real line into \(n \) intervals, such that if the first job falls into the \(i \)th interval, it is best to assign man \(p_i \) to this job.

Limiting results for these \(a_{1:n} \)'s are found. First we fix \(i \) and find
\[
\lim_{n \to \infty} a_{i,n} \quad \text{and} \quad \lim_{n \to \infty} a_{n-i,n}.
\]
Then we let \(0 < \pi < 1 \) and find
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lceil \pi n \rceil+1}^{n} a_{i,n+1} \quad \text{and} \quad \lim_{n \to \infty} a_{\lceil \pi n \rceil,n} \quad \text{in terms of the CDF} \ F.\]
Security Classification

KEY WORDS

- Asymptotic
- Sequential
- Assignment Problem

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 8525.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTION NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHORS:** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate project number, subproject number, system number, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "All U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "
 5. "All distribution of this report is controlled. Qualified DDC users shall request through "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TF), (F), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

DD FORM JAN 4 1473 (BACK)

Unclassified

Security Classification