APPLIED MATHEMATICS AND STATISTICS LABORATORY

STANFORD UNIVERSITY
CALIFORNIA

SAMPLING INSPECTION BY VARIABLES
WITH NO CALCULATIONS

By
HERMAN CHERNOFF AND GERALD J. LIEBERMAN

TECHNICAL REPORT NO. 22
April 22, 1955

PREPARED UNDER CONTRACT N6onr-25126
(NR-042-002)
FOR
OFFICE OF NAVAL RESEARCH
SAMPLING INSPECTION BY VARIABLES WITH NO CALCULATIONS

BY

HERMAN CHERNOFF AND GERALD J. LIEBERMAN

TECHNICAL REPORT NO. 22

APRIL 22, 1955

PREPARED UNDER CONTRACT N6onr-25126
(NR-042-002)
GERALD J. LIEBERMAN, PROJECT DIRECTOR
FOR
OFFICE OF NAVAL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
SAMPLING INSPECTION BY VARIABLES WITH NO CALCULATIONS

By

Herman Chernoff and Gerald J. Lieberman

1. Introduction

Most industrial applications of acceptance sampling today are by attributes, and will probably continue in this way. Nevertheless, the increase in the use of modern statistical techniques in industry has resulted in the more widespread use of sampling inspection by variables. The advantages of sampling inspection by variables are well known. For example, for a given operating characteristic curve (O.C. curve), smaller samples may be used with variables than with attributes to insure this specified protection. On the other hand, the disadvantages of sampling inspection by variables are also well known. Perhaps the two most important of these are (1) the increased clerical costs of recording the data and making relatively (compared to attributes) difficult computations, and (2) the operating characteristic curves depend heavily on the assumption that the form of the underlying frequency distribution of the quality characteristic is normal. This assumption is often difficult to evaluate.

The purpose of this paper is to present a graphical procedure for sampling inspection by variables which involves no computations and which also gives a check on the assumption of normality. This procedure will be referred to as "No Calc." in the ensuing sections. The results are only approximate and should be considered to be a "quick and dirty" technique.
and used where such procedures are tolerable. Although the approximations are good, "No Calc." is not a replacement for the usual variable procedures when a contract between two parties exists and calls for inspection by variables.

Prepare a sheet of normal probability paper in the following manner: 1/
The abscissa (horizontal axis) represents a percentage, \(p \), between 0 and 100, and the ordinate (vertical axis) represents the observation scale. 2/
Draw a sample of \(n \) items and locate their values on the ordinate scale.
Denote the smallest value by \(u_1 \), the second smallest value by \(u_2 \), \ldots, and the largest value by \(u_n \). Locate the points \((p_1, u_1), (p_2, u_2), \ldots, (p_n, u_n)\) on the graphs and visually fit a straight line to these points. The values of \(p_1, p_2, \ldots, p_n \) are found in Table I for \(n \leq 20 \). For all other \(n \), let
\[p_i = \frac{2i-1}{2n}. \]
The straight line can be used to estimate the percentage of observations falling outside the specification limits.

If there is only an upper specification limit, \(U \), given, locate the value of \(U \) on the ordinate scale. 3/ The fraction of values falling below this limit is estimated by finding the abscissa where the fitted line

1/ Normal probability paper is available commercially, e.g., Keuffel & Esser Co., N.Y.
2/ The observations need not be ordered beforehand as the plotting will order them naturally.
3/ If the same sample size is to be used over and over, the \(p_i \) can be plotted on the normal probability paper beforehand.
4/ It is important to have \(L \) and/or \(U \) appear on the graph. This may entail using an enlarged piece of normal probability paper in order to get a good line.
intersects the line \(u = U \). Call this value \(1 - \hat{P}_U \). Determine \(\hat{P}_U \), and accept the lot if \(\hat{P}_U \leq p^* \). The value of \(p^* \) is found in Table II for a given AQL and sample size code letter.

If there is only a lower specification limit, \(L \), given, locate the value of \(L \) on the ordinate scale. The fraction of values falling below this limit is estimated by finding the abscissa where the fitted line intersects the line \(u = L \). Call this value \(\hat{P}_L \). Accept the lot if \(\hat{P}_L \leq p^* \). The value of \(p^* \) is found in Table II and is the same as that for the case of an upper specification limit.

For a double specification limit, both \(\hat{P}_U \) and \(\hat{P}_L \) are found in the manner described above. The lot is accepted if \(\hat{P}_U + \hat{P}_L \leq p^* \). The value of \(p^* \) is also given in Table II.

The operating characteristic curves for the plans presented in Table II can be found in [2].

It is important to caution the user, at this time, that the points \((p_1, u_1), (p_2, u_2), \ldots, (p_n, u_n) \) should appear to fall on a straight line. If this fails to happen, it may be an indication that the variable measured does not follow a normal distribution. In this case, existing variables techniques should not be used, and the lot should be accepted or rejected on the basis of attribute sampling.

Example: The specified minimum yield point for certain steel castings is 56500 psi. A 4% AQL plan is to be used with a sample size of 10. The yield points of the sample specimens are:

\[\text{1/} \text{ See 1/ on page 2.} \]
58380
60440
61520
57180
58880
57800
62480
60680
59700
59350

These points are plotted on the vertical axis as shown in Figure 1. Thus \(u_1 = 57180, u_2 = 57800, \ldots, u_n = 62986 \). The values of \(p_1 \) found in Table I for \(n = 10 \) are plotted on the horizontal axis. Thus \(p_1 = 4.419\%, p_2 = 16.422\%, \ldots, p_n = 95.581\% \). The points \((p_1, u_1) = (4.419\%, 57180); (p_2, u_2) = (16.426\%, 57800), \ldots, (p_n, u_n) = (95.581, 62480)\) are located on the graph, and a straight line fitted to the data. Corresponding to \(L = 56500 \) psi, \(\hat{P}_L \) is found to be 3.0%. From Table II, the value of \(p^* \) for a 4% AQL and a sample size of 10 is 10.23%. Hence, the lot is accepted since \(\hat{P}_L < p^* \).

3. **Theory**

It is well known that it is possible to transform the cumulative-normal-distribution curve to a straight line by means of a non-linear transformation of the horizontal scale. Graph paper possessing this property is known as normal probability paper. The abscissa scale represents a percentage, \(p \), between 0 and 100, whereas the ordinate scale corresponds to the values of a normally distributed chance variable. The straight line, then, presents the percentage of values from a normal distribution falling
below a specified value. For example, a normal distribution with mean 10 and standard deviation 3, plotted on normal probability paper, is shown in Figure 2. The mean of the normal distribution can be determined by finding the ordinate where the line intersects \(p = .5 \), and the standard deviation can be determined by taking the distance between the ordinates where the line intersects \(p = .8413 \) and \(p = .5 \). The fraction of these values falling below some upper specification limit can be determined by finding the abscissa where the line intersects \(u = U \). For example, in Figure 2, 90\% of the values fall below \(U \).

If a sample of \(n \) independent observations is to be plotted on normal probability paper, it is natural to arrange them in ascending order, i.e., \(u_1 \leq u_2 \leq \ldots \leq u_n \), and to plot a point corresponding to each observation. Once the points \((p_1, u_1), (p_2, u_2), \ldots, (p_n, u_n)\) are plotted and a straight line is visually fitted to the points, the mean can be estimated as the ordinate where the line intersects \(p = \frac{1}{2} \), and the standard deviation can be estimated as the distance between the ordinates where the line intersects \(p = .8413 \) and \(p = .5 \). The fraction of the values falling below \(U \) can be estimated by finding the abscissa where the line intersects \(u = U \).

If the fraction defective is defined as the fraction falling above \(U \) (one minus the fraction falling below \(U \)), the above procedure leads to an estimate of the fraction defective. Denote this estimate by \(\hat{P}_U \). The lot is rejected if \(\hat{P}_U \) is too large. This statement can be made more

\[1/\] The plotting positions of the \(p_i \) are somewhat arbitrary. This point is discussed below when a set of values of \(p_i \) are presented.
precise if the lot is rejected when $\hat{p}_U > p^*$, where p^* is a fixed constant depending upon the O.C. curve chosen. The only problems remaining is to find an "optimal" estimate of \hat{p}_U and to present a set of p^* corresponding to a given set of O.C. curves.

The estimate of the fraction defective depends upon the method of plotting and the plotting positions of the observed values. The authors have shown [1] that if the method of least squares is used, an optimal method of estimating the mean, standard deviation, and the value ξ such that the fraction of observations below ξ is a fixed constant, determines a fixed set of abscissas (p_i). These abscissas lead to optimal estimates in the sense of having minimum mean square deviations from the parameters estimated. The values of p_i are presented in Table II for $n \leq 20$. Optimal values of p_i for $n > 20$ have not yet been computed. However, a glance at Table I reveals that an approximation is given by $p_i = \frac{2i-1}{2n}$.

Furthermore, it has been shown [1], [3] that this approximation leads to efficient estimates.

The distribution of the estimate, \hat{p}_U, is related to the distribution of the quantity $\frac{U\bar{u}}{\sigma}$, where \bar{u} is the sample mean (obtained graphically by the method described previously), and $\hat{\sigma}$ is the estimate of the population standard deviation (also obtained graphically by the method described previously). The distribution of $\frac{U\bar{u}}{s}$, where $(n-1)s^2$ is the

1/ In [1] the authors have shown that the optimal estimates of the mean and standard deviation lead to a fixed set of abscissas. Subsequently, they have also verified that these same abscissas will lead to a good estimate of ξ.
sum of squares of the deviations of the sample values around the mean, is well known [2]. Operating characteristic curves for procedures based on \(\frac{U - \overline{u}}{s} \leq k \), where \(k \) is a fixed constant, have been tabulated and presented in [2]. These curves are referenced according to AQL and sample size code letter.

The distribution of \(\frac{U - \overline{u}}{s} \) and \(\frac{\overline{U} - \overline{u}}{\overline{\sigma}} \) are asymptotically equivalent, and hence, the asymptotic distribution of \(\frac{U - \overline{u}}{\overline{\sigma}} \) is known. For small \(n \), a constant \(C \) is found such that the distributions of \(\frac{U - \overline{u}}{s} \) and \(\frac{\overline{U} - \overline{u}}{\overline{\sigma}} \) are approximately the same. This value of \(C \) has the property that the expected value of \(C \overline{\sigma} \) is equal to the expected value of \(s \), and the variance of \(C \overline{\sigma} \) is approximately equal to the variance of \(s \). The values of \(p^* \) presented in Table II are the probabilities corresponding to normal deviates of \(kC \).

It has been indicated, in [2], that the O.C. curve of the two-sided procedure depends almost entirely on the total percent defective (as opposed to the split between limits) when the optimal estimate of the percent defective presented in [2] is used. Since the estimates presented in this paper are good, the authors conjecture that the result holds for these estimates as well.

\(1/ \) The fact that the variance of \(C \overline{\sigma} \) is approximately equal to the variance of \(s \) follows from the empirical results given in [1].
TABLE I.

Values of percentages (p_i) to be used in plotting on Normal Probability Paper for the "No Calc." Procedure

<table>
<thead>
<tr>
<th>n</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
<th>p_7</th>
<th>p_8</th>
<th>p_9</th>
<th>p_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18.775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14.020</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.982</td>
<td>38.288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.940</td>
<td>31.271</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.490</td>
<td>26.485</td>
<td>42.231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.416</td>
<td>22.979</td>
<td>36.620</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.592</td>
<td>20.290</td>
<td>32.350</td>
<td>44.140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.942</td>
<td>18.159</td>
<td>28.979</td>
<td>39.537</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.419</td>
<td>16.426</td>
<td>26.245</td>
<td>35.816</td>
<td>45.282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.988</td>
<td>14.990</td>
<td>23.980</td>
<td>32.740</td>
<td>41.392</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.629</td>
<td>13.779</td>
<td>22.073</td>
<td>30.151</td>
<td>38.123</td>
<td>46.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.326</td>
<td>12.746</td>
<td>20.444</td>
<td>27.941</td>
<td>35.339</td>
<td>42.682</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.841</td>
<td>11.075</td>
<td>17.807</td>
<td>24.365</td>
<td>30.834</td>
<td>37.248</td>
<td>43.631</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.645</td>
<td>10.390</td>
<td>16.724</td>
<td>22.897</td>
<td>28.985</td>
<td>35.021</td>
<td>41.024</td>
<td>47.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.473</td>
<td>9.783</td>
<td>15.764</td>
<td>21.595</td>
<td>27.345</td>
<td>33.045</td>
<td>38.712</td>
<td>44.361</td>
<td>50.000</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.185</td>
<td>8.7545</td>
<td>14.136</td>
<td>19.384</td>
<td>24.561</td>
<td>29.692</td>
<td>34.793</td>
<td>39.872</td>
<td>44.939</td>
<td>50.000</td>
</tr>
<tr>
<td>20</td>
<td>2.063</td>
<td>8.3158</td>
<td>13.439</td>
<td>18.438</td>
<td>23.370</td>
<td>28.258</td>
<td>33.110</td>
<td>37.962</td>
<td>42.779</td>
<td>47.589</td>
</tr>
</tbody>
</table>

Note: When $i > n/2$ use $p_i = 100 - p_{n-i+1}$

For $n > 20$ use $p_i = \frac{2i-1}{2n}$
<table>
<thead>
<tr>
<th>Code Letter</th>
<th>Sample Size</th>
<th>.40</th>
<th>.65</th>
<th>1.00</th>
<th>1.50</th>
<th>2.50</th>
<th>4.00</th>
<th>6.50</th>
<th>10.00</th>
<th>15.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>150</td>
<td>.97</td>
<td>1.45</td>
<td>2.07</td>
<td>2.89</td>
<td>4.42</td>
<td>6.54</td>
<td>9.82</td>
<td>14.11</td>
<td>19.92</td>
</tr>
<tr>
<td>Q</td>
<td>200</td>
<td>.96</td>
<td>1.43</td>
<td>2.05</td>
<td>2.87</td>
<td>4.38</td>
<td>6.49</td>
<td>9.76</td>
<td>14.04</td>
<td>19.84</td>
</tr>
</tbody>
</table>

TABLE II.

Values of maximum estimated percentage defective allowing acceptance of the Lot (p*).
"No Calc" Procedure for Sampling Inspection by Variables

Plot of Percentage of Yield Points Falling Below a Specific Value

Figure 1.
A Cumulative Normal Distribution with Mean 10 and Standard Deviation 3

Figure 2.
BIBLIOGRAPHY

Ames Aeronautical Lab.
Moffett Field, California
Attn: Technical Librarian 1

ASTIA, Western Regional Office
5504 Hollywood Blvd.
Los Angeles 28, California 1

Armed Services Technical
Information Agency
Documents Service Center
Knott Building
Dayton 2, Ohio 5

Asst. Chief of Staff, G-4
United States Army
Procurement Division
Standards Branch
Washington, D. C. 15

Asst. Chief of Staff, G-4
for Research & Development
U. S. Army
Washington 25, D. C. 1

Asst. for Operations Analysis
Headquarters, U. S. Air Force
Washington 25, D. C. 1

Ballistics Section
Tests Branch, A & A Division
Yuma Test Station
Yuma, Arizona
Attn: A. Kaufman 1

Chief, Bureau of Aeronautics
Attn: Quality Control Division
Department of the Navy
Washington 25, D. C. 2

Chief, Bureau of Ordnance QCC
Department of the Navy
Quality Control Division
Washington 25, D. C. 1
Attn: Dr. W. R. Pabst 1

Chief, Bureau of Ordnance QCD
Department of the Navy
Quality Control Division
Washington 25, D. C. 1

Chief, Bureau of Ordnance QC5
Department of the Navy
Quality Control Division
Washington 25, D. C. 2

Chief, Bureau of Ships
Research & Development Division
Department of the Navy
Washington 25, D. C.
Attn: Code 373 6

Chief, Bureau of Ships
Dept. of the Navy
Washington 25, D. C.
Attn: H. Weingarten,
Code 223 1

Chief, Inspection Division
Office of Standardization
Defense Supply Management Agency
The Pentagon
Washington 25, D. C. 2

Chief of Naval Materiel
Code M553
Department of the Navy
Washington 25, D. C. 1

Chief of Naval Operations
Operations Evaluation Group—OP342E
The Pentagon
Washington 25, D. C. 1

Chief of Naval Research
Office of Naval Research
Washington 25, D. C.
Attn: Code 432
(Mathematics Branch) 1
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief of Naval Research</td>
<td>Office of Naval Research</td>
<td>Commanding Officer</td>
<td>Ballistics Research Lab.</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td></td>
<td>U. S. Proving Grounds</td>
</tr>
<tr>
<td>Attn: Code 433</td>
<td></td>
<td>Attn: Mr. R. H. Kent</td>
<td></td>
</tr>
<tr>
<td>(Statistics Branch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief of Ordnance</td>
<td>United States Army</td>
<td>Commanding Officer</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Research & Development Division</td>
<td></td>
<td>Branch Office</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td></td>
<td>1000 Geary Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Francisco 9, California</td>
</tr>
<tr>
<td>Attn: Brig. General L. E. Simon</td>
<td></td>
<td>Attn: Mr. Charles Bicking</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Procurement Maintenance</td>
<td>Engineering Division</td>
<td>Commanding Officer</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, New Jersey</td>
<td></td>
<td>Branch Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Navy No. 100</td>
</tr>
<tr>
<td>Attn: Procurement Data Branch</td>
<td></td>
<td></td>
<td>Fleet Post Office</td>
</tr>
<tr>
<td></td>
<td>SIGEL-PMP-1</td>
<td></td>
<td>New York, N. Y.</td>
</tr>
<tr>
<td>Chief, Thermionics Branch</td>
<td>Evans Signal Laboratory</td>
<td>Commanding Officer</td>
<td>Signal Corps Supply Agency</td>
</tr>
<tr>
<td></td>
<td>Belmar, New Jersey</td>
<td></td>
<td>225 South 18th St.</td>
</tr>
<tr>
<td>Chief, Statistical Engineering Laboratory</td>
<td>National Bureau of Standards</td>
<td>Attn: Chief, Quality Control Branch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td>SIGSU-H6d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspection Engineering Division</td>
<td></td>
</tr>
<tr>
<td>Chairman</td>
<td>Research & Development Board</td>
<td>Commanding General</td>
<td>New York Quartermaster</td>
</tr>
<tr>
<td></td>
<td>The Pentagon</td>
<td></td>
<td>Procurement Agency</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td></td>
<td>Inspection Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111 East 16th St.</td>
</tr>
<tr>
<td>Commander</td>
<td>U. S. Naval Ordnance Test Station</td>
<td>Commanding Officer</td>
<td>9926 Technical Service Unit</td>
</tr>
<tr>
<td></td>
<td>China Lake, Calif.</td>
<td></td>
<td>Armed Services Medical</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
<td>Procurement Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspection Division</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Chemical Corps Material Command</td>
<td>Commanding Officer</td>
<td>84 Sands Street</td>
</tr>
<tr>
<td></td>
<td>200 West Baltimore St.</td>
<td></td>
<td>Brooklyn, N. Y.</td>
</tr>
<tr>
<td></td>
<td>Baltimore 1, Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Quality Assurance Div.</td>
<td></td>
<td>Commanding Officer</td>
<td>Central Air Procurement District</td>
</tr>
<tr>
<td></td>
<td>Quality Evaluation Branch</td>
<td></td>
<td>West Warren Ave. and Longo Blvd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Detroit 32, Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Director, Quality Control</td>
<td></td>
</tr>
</tbody>
</table>
Director
Office of Naval Research
Branch Office
346 Broadway
New York 13, N. Y.

Director
Office of Naval Research
Branch Office
1030 E. Green St.
Pasadena 1, California

Director, Naval Research Lab.
Washington 25, D. C.
Attn: Technical Information Officer

Director of Research
Operation Research Office
U. S. Army
Fort McNair
Washington 25, D. C.

Director of Research & Development
AFDRD-RE-3
Washington 25, D. C.

Frankford Arsenal
VT Fuze Department
Inspection Division
Philadelphia 37, Pa.
Attn: ORDIA-VK

Frankford Arsenal
Artillery Ammunition Dept.
Inspection Engineering Division
Philadelphia 37, Pa.

Inspection Division
Supply and Logistics
Office of the Assistant Secretary of Defense
Washington 25, D. C.
Attn: Mr. Irving B. Altman
Mr. John J. Riordan
Kimberly Corporation
8476 Warner Drive
Culver City, California
Attn: Miss Lucille M. Leis
Office Manager

Logistics Research Project
George Washington University
707 22nd Street, N. W.
Washington 7, D. C.

Los Angeles Engineering
Field Office
Air Research and Development Command
5504 Hollywood Blvd.
Los Angeles 28, California
Attn: Mr. Chester Pierce

Midcentral Air Procurement District
Attn: MIQC
165 North Canal Street
Chicago 6, Illinois

N.A.C.A.
1724 F Street, N. W.
Washington 25, D. C.
Attn: Chief, Office of Aeronautical Intelligence

Naval Inspector of Ordnance
50 W. Main Street
Rochester 4, N. Y.
Attn: Mr. Wollman

Northeastern Air Procurement District
Attn: NEQC
14 Court Square
Boston 8, Massachusetts

Office of Naval Research
Logistics Branch
Code 436
T-3 Building
Washington, D. C.

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Planning Research Division
Deputy Chief of Staff
Comptroller, U. S. Air Force
The Pentagon
Washington 25, D. C.

Q. E. Laboratory
U. S. Naval Ammunition Depot
Crane, Indiana

RAND Corporation
1500 Fourth St.
Santa Monica, California

Scranton Ordnance Plant
156 Cedar Avenue
Scranton, Pa.
Attn: Mr. Carl D. Larson
Chief Inspector

Mr. A. F. Cone, Manager
Quality Evaluation, Dept. 5510
Sandia Corporation
Albuquerque, New Mexico

Test and Evaluation Laboratory
U. S. N. Underwater Ordnance Station
Newport, Rhode Island

U. S. Naval Ordnance Plant
Department of the Navy
Indianapolis 18, Indiana

U. S. Naval Ordnance Test Station
125 South Grand Ave.
Mail Station 54
Pasadena, California

Western Air Procurement District
Attn: WEQC
155 W. Washington Blvd.
P. O. Box 3849, Terminal Annex
Los Angeles 54, California
Air Force Plant Representative
Office
Central Air Procurement District
General Electric Company
Lockland 15, Ohio

Statistical Laboratory
Department of Mathematics
University of California
Berkeley 4, California

Dr. Adam Abruzzi
Dept. of Economics of Engineering
Stevens Inst. of Technology
Hoboken, New Jersey

Prof. Stephen G. Allen
1915 University Ave.
Stanford Research Institute
Palo Alto, California

Prof. T. W. Anderson
Dept. of Statistics
Columbia University
New York 27, N. Y.

Prof. Fred C. Andrews
Mathematics Department
University of Nebraska
Lincoln 8, Nebraska

Prof. Robert Bechhafar
Dept. of Mechanical Engineering
Cornell University
Ithaca, New York

Prof. Maurice H. Belz
University of Melbourne
Carlton N. J
Victoria, Australia

Prof. J. N. Berrettoni
Western Reserve University
Cleveland, Ohio

Mr. P. M. Blunk
Quality Evaluation Laboratory
U. S. Naval Magazine
Port Chicago, California

Mr. Milton N. Bradley
Box 68
2481 Davidson Ave.
New York, N. Y.

Prof. Russell Bradt
Dept. of Mathematics
University of Kansas
Lawrence, Kansas

Prof. Irving W. Burr
Dept. of Mathematics
Purdue University
Lafayette, Indiana

Prof. Edward P. Coleman
Engineering Dept.
University of California
Los Angeles 24, California

Dr. Louis Court
Division 17
National Bureau of Standards
Washington 25, D. C.

Mrs. J. Henley Crosland
Director of Libraries
Georgia Inst. of Technology
Atlanta, Ga.

Mr. H. F. Dodge
Bell Telephone Labs., Inc.
463 West Street
New York, N. Y.

Prof. Acheson J. Duncan
School of Business
The Johns Hopkins University
Baltimore 18, Md.

Dr. Benjamin Epstein
Dept. of Mathematics
Wayne University
Detroit, Michigan

Mr. F. Frishman, R & D
U. S. Naval Powder Factory
Indian Head, Md.
Attn: Library
Dr. Harry G. Romig
351 Alma Real Dr.
Pacific Palisades, Calif.

Prof. Norman Rudy
Statistics Dept.
Sacramento State College
Sacramento, California

Prof. Henry Scheffe
Statistical Laboratory
University of California
Berkeley 4, California

Mr. R. H. Shaw
U. S. Naval Ordnance Plant
Indianapolis, Indiana

Prof. Seymour Sherman
Moore School of Electrical Eng.
University of Pennsylvania
Philadelphia 4, Penna.

Mr. Walter Shewhart
Bell Telephone Labs., Inc.
Murray Hill, New Jersey

Dr. Milton Sobel
Bell Telephone Labs.
555 Union Blvd.
Allentown, Penna.

Prof. Herbert Solomon
Teachers College
Columbia University
New York 27, N. Y.

Mr. M. D. Springer
U. S. Naval Ordnance Plant
Indianapolis, Indiana

Mr. Arthur Stein
Ordnance Ammunition Center
Joliet, Illinois

Dr. Dan Teichroew
Numerical Analysis Research
405 Hilgard
Los Angeles 24, California

Miss Elizabeth Vaughan
2325 7th St.
Bremerton, Washington

Mr. T. M. Vining
Chief, Test Projects Branch
Products Division
Chemical Corps Engineering Agency
Army Chemical Center
Maryland

Prof. W. Allen Wallis
Committee on Statistics
University of Chicago
Chicago 37, Illinois

Prof. A. Walther
Technische Hochschule
Darmstadt, Germany

Mr. Joseph Weinstein
Evans Signal Laboratory
Belmar, New Jersey

Mr. Silas Williams, Jr.
Standards Branch
Procurement Division
U. S. Army AC/S G4
Washington 25, D. C.

Prof. M. A. Woodbury
Logistics Research Project
George Washington University
707 - 22nd Street
Washington 7, D. C.

ADEL
10777 Van Owen St.
Burbank, California
Attn. H. L. Parks

Chief, Development Division
Field Command
Armed Forces Special Weapons Project
Albuquerque, New Mexico

Chief, Logistics Division
Field Command
Armed Forces Special Weapons
Project
Albuquerque, New Mexico

Additional copies for project leader and assistants, office file, and reserve for future requirements.