TIGHTENED MULTI-LEVEL CONTINUOUS SAMPLING PLANS

By
C. Derman
S. Littauer
H. Solomon

TECHNICAL REPORT NO. 28
June 20, 1956

PREPARED UNDER CONTRACT N6onr-25126
(NR-042-002)
FOR
OFFICE OF NAVAL RESEARCH
TIGHTENED MULTI-LEVEL CONTINUOUS SAMPLING PLANS

BY

C. DERMAN, S. LITTAUER, H. SOLOMON

TECHNICAL REPORT NO. 28
JUNE 20, 1956

PREPARED UNDER CONTRACT N6onr-25126
(NR-042-002)

GERALD J. LIEBERMAN, PROJECT DIRECTOR
FOR
OFFICE OF NAVAL RESEARCH

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR
ANY PURPOSE OF THE UNITED STATES GOVERNMENT

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
TIGHTENED MULTI-LEVEL CONTINUOUS SAMPLING PLANS

By

1/
C. Derman, S. Littauer, H. Solomon

Columbia University and Stanford University

1. Introduction

Industrial needs have provoked some recent studies on continuous sampling. This procedure is especially of interest when the formation of inspection lots for lot-by-lot acceptance may be impractical or artificial as in conveyor line production or there is an important need for rectifying quality of product as it is manufactured.

These newer papers are best considered in the light of the earlier papers of Dodge [3] and Wald and Wolfowitz [11]. One point of departure from the Dodge type of plan has been the introduction of several levels of partial inspection with different rates of sampling in each level. Multi-level continuous sampling plans (which reduce to the Dodge plan when only one sampling level is tolerated) have been considered by Greenwood [8], Lieberman and Solomon [9], and Resnikoff [10]. A plan based on the Wald-Wolfowitz approach, a scheme essentially handled by the methodology of sequential analysis, was created and developed by Girshick about 1948 in connection with a Census Bureau problem and has only recently been reported [7]. The reader is referred to Bowker [1] for a more thorough account of continuous sampling plans.

This paper will generalize multi-level plans of the MLP type given in [9]. The MLP plan is:

0) At the outset inspect 100 percent of the units consecutively as produced and continue such inspection until i units in succession are found clear of defects.

1) When i units in succession are found clear of defects, discontinue 100 percent inspection and inspect only a fraction f of the units (i.e., one out of every 1/f where 1/f is an integer). If the next i inspected units are non-defective, proceed to the next level; if a defective occurs, revert immediately to 100 percent inspection.

2) When at rate f, i inspected units are found clear of defects, discontinue sampling at rate f and proceed to sampling at rate f^2. If the next i inspected units are non-defective, proceed to the next level; if a defective occurs, revert immediately to sampling at rate f.

3) When at rate f^2, i inspected units are found clear of defects, discontinue sampling at rate f^2 and proceed to sampling at rate f^3. If the next i inspected units are non-defective, proceed to the next level; if a defective occurs, revert immediately to sampling at rate f^2.

... ...

k-1) When at rate f^{k-2}, i inspected units are found clear of defects, discontinue sampling at rate f^{k-2} and proceed to sampling at rate f^{k-1}. If the next i inspected units are non-defective, proceed to the next level;
if a defective occurs, revert immediately to sampling at rate \(f^{k-2} \).

k) When at rate of \(f^{k-1} \), 1 inspected units are found clear of defects, discontinue sampling at rate \(f^{k-1} \) and proceed to sampling at rate \(f^k \). If a defective occurs, revert immediately to sampling at rate \(f^{k-1} \), otherwise, continue sampling at rate \(f^k \).

During both sampling inspection and 100 percent inspection all inspected items found defective are corrected or replaced with good items.

Three generalizations of MLP are now specifically defined and are seen to be tighter plans than MLP because they require a higher rate of sampling given the same quality history for the item produced.

a) The MLP - r x 1 Plan

We say we are in the \(j^{th} \) sampling level if every \((1/r)^j \) th item produced is systematically sampled. If \(i \) consecutively inspected items are found clear of defects when sampling at the \(j^{th} \) level, begin sampling at the \((j + 1) \) th level. On the other hand, if a defective item is found before this is accomplished, revert immediately to the \((j - r) \) th level, if \(j > r \), or to the zero level, that is, one hundred percent inspection if \(j \leq r \). Let inspection begin at the zero level.

b) The MLP - T Plan

This is exactly the same as the MLP - r x 1 Plan except that when a defective is encountered, we immediately revert to one hundred percent inspection. This is obviously the tightest of the three multi-level plans considered in this paper and thus bears the label MLP - T.

c) The MLP - r x s Plan

This plan follows exactly the same pattern as the MLP - r x 1 except
that when \(i \) consecutively inspected items are found non-defective while on the \(j^{th} \) sampling level, systematic sampling begins at level \((j+s)\). We shall consider the case \(r > s \) since we are concerned only with tightened multi-level plans.

2. **Summary**
 Each of these generalizations can be appraised under the assumption of an infinite number of sampling levels or a finite number, \(k \), of sampling levels. Under the assumption of an infinite number of allowable sampling levels it is possible to obtain explicit relationships between the AOQL of a plan and the parameters of the plan. Thus it is possible to graph contours of equal AOQL for each of the plans under these conditions. This makes feasible the possibility of a catalogue of continuous sampling plans which contains all the plans having a prescribed AOQL and thus aids immeasurably in the choice of an appropriate plan. As is demonstrated in the next sections the following results are obtained:

 For the MLP - \(r \times 1 \) Plan:

 \[
 \text{(2.1)} \quad \text{AOQL} = 1 - \left(\frac{r - r^{r+1}}{1 - r^{r+1}} \right)^{1/1}
 \]

 When \(r = 1 \), this reduces to the result previously obtained in [9].

 For the MLP - \(T \) Plan:

 \[
 \text{(2.2)} \quad \text{AOQL} = 1 - r^{1/1}
 \]

 This result can also be obtained heuristically by letting \(r \) approach
infinity in MLP - r x 1.

For the MLP - r x s Plan (r > s) bounds and sometimes exact AOQL's can be obtained using the previous two results. For example, if r = 4 and s = 2 and f is given, the MLP - 2 x 1 Plan for f' = f^2 will be the same plan and hence have the same AOQL.

More generally for a given f we can write

\[(2.3) \quad \text{AOQL} \quad < \text{AOQL} \quad < \text{AOQL} \quad \]

\[r'' x s \quad r x s \quad r' x s \]

where \(r' = \) greatest number less than \(r \) that is a multiple of \(s' \) and \(r'' \) is the smallest number greater than \(r \) that is a multiple of \(s \).

Under the assumption of a finite number, \(k \), of allowable sampling levels, the AOQ function for MLP - T is obtained and it is seen that the use of digital computers may be expedient for the computation of AOQL contours.

This was exactly the situation, for finite levels, in [9]. The main results of the paper are obtained through the use of Markov chain techniques which are developed in Section 3. In these plans inspection is by systematic sampling. However, the AOQ and AOQL results also hold when inspection is accomplished by random sampling.

3. Markov Chain Result

Let \(\{X_n\} \quad (n = 0, 1, \ldots) \) denote an irreducible recurrent positive Markov chain with states \(\{E_j\} \quad (j = 0, 1, \ldots) \). Let \(\{p_{ij}\} \quad (i, j = 0, 1, \ldots) \) denote the probability of transition from states \(E_i \) to \(E_j \). It is known, see [5], that a unique sequence \(\{v_i\} \) exists such that
\[\sum_{i=0}^{\infty} v_i p_{ij} = v_j \quad (j = 0,1, \ldots) \]

(3.1) \[v_i > 0 \quad (i = 0,1, \ldots) \]

\[\sum_{i=0}^{\infty} v_i = 1. \]

The \(v_i \)'s are sometimes referred to as "steady state" probabilities.

Now let \(A = \{E_j\} \) be a subset of the states. Let \(Y_0, Y_1, \ldots \)
be successive members of \(\{X_n\} \) which take on values in \(A \). Since the
chain is recurrent, infinitely many such \(Y \)'s will exist with probability
one. It was shown by Derman [2] that \(\{Y_k\} (k = 0,1, \ldots) \) is also a
Markov chain; and if \(\{p'_{ij}\} (i, j \in A) \) are its transition probabilities,
then the solutions \(v'_i \) of

\[\sum_{i \in A} v'_i p'_{ij} = v'_j \quad (j \in A) \]

(3.2) \[v'_i > 0 \quad (i \in A) \]

\[\sum_{i \in A} v'_i = 1 \]

are given by

(3.3) \[v'_i = \frac{v_i}{\sum_{j \in A} v_j} \quad (i \in A). \]

Suppose \(A_1 = \{E_j\} (j = 1,2, \ldots); A_2 = \{E_j\} (j = 2,3, \ldots); \ldots \)
\(A_g = \{E_j\} (j = g, g + 1, \ldots) \ldots \) are subsets to be considered. Let
\{Y_k(g)\} denote the Markov chain defined over \(A_g\). Also let \(E_j(g)\) \((j = 0,1, \ldots)\), the states for the chain \(\{Y_k(g)\}\), be a relabeling of the states \(E_k\) \((k = g, \ldots)\) by letting \(j = k - g\). Finally let \(p_{ij}(g)\) denote the probability of transition from state \(E_i(g)\) to state \(E_j(g)\) in the chain \(\{Y_k(g)\}\). Our main tool is the following theorem.

Theorem:

If \(p_{ij} = p_{ij}(g)\) \((i, j = 0, \ldots ; g = 1, \ldots)\),

then

\[
(3.4) \quad v_j = v_o (1 - v_o)^j \quad (j = 1, \ldots).
\]

Proof: Let \(\{v_j(g)\}\) denote the solution of \((3.1)\) for the chain \(\{Y_k(g)\}\). Since the transition probabilities, by hypothesis, are the same regardless of which chain is under consideration \(v_i(g) = v_i\) \((i = 0,1, \ldots)\). However, from \((3.3)\) we have

\[
(3.5) \quad v_o = v_o(g) = \frac{v_g}{\sum_{j=g}^{\infty} v_j} = \frac{v_g}{\sum_{j=g}^{g-1} v_j} \quad (g = 1,2, \ldots).
\]

Thus by induction

\[
(3.6) \quad v_j = v_o (1 - v_o - \ldots - v_{j-1})
\]

\[
= v_o [1 - v_o - \sum_{i=1}^{j-1} v_o (1 - v_o)^i]
\]

\[
= v_o (1 - v_o)^j \quad (j = 1, \ldots)
\]

and the theorem is proved.
We shall apply the theorem in the following case. Suppose

\[p_{i,i+1} = \alpha > 0 \quad (i = 0, 1, \ldots) \]
\[p_{i,0} = 1 - \alpha \quad (i = 0, 1, \ldots, r) \]
\[p_{i,1-r} = 1 - \alpha \quad (i > r). \]

It is clear that the chain is irreducible. It also follows from a slightly modified theorem of Foster [6] that the chain is recurrent positive if \(\alpha < \frac{r}{r+1} \). Furthermore, it is easily seen that the conditions of the theorem are satisfied so that the \(v_j \) have the form (3.4). From (3.1), \(j = 0, v_0 \) is determined by the following equation

\[(3.7) \quad (1 - \alpha) \left\{ \frac{1 - (1 - v_0)^{r+1}}{v_0} \right\} = 1 \]

and thus any \(v_j \) can be obtained.

\[4. \textbf{Application to MLP - r x l Infinite Level Plan} \]

The multi-level plans can now be studied from the point of view of a Markov chain \(\{X_n\} \) and the results in Section 3 employed. We let \(E_{jm} \quad (j = 0, 1, \ldots; m = 0, \ldots, i - 1) \) denote the state of such a chain where we say that \(X_n \) is in state \(E_{jm} \) if just after the \(n^{th} \) item has been inspected the process is in the \(j^{th} \) sampling level (i.e., every \((r^{-j})^{th} \) item inspected) and \(m \) non-defectives have been observed successively while in the \(j^{th} \) level. Suppose the process in in a state of control such that \(p \) is the probability of a defective being produced. The transition probabilities are then given by
\[P(E_{jm} \rightarrow E_{j,m+1}) = 1 - p = q \quad (j = 0, 1, \ldots ; m = 0, 1, \ldots, l - 2) \]
\[P(E_{j,1-l} \rightarrow E_{j+1,0}) = q \quad (j = 0, 1, \ldots) \]
\[P(E_{jm} \rightarrow E_{j-r,0}) = p \quad (j = r, \ldots) \]
\[P(E_{jm} \rightarrow E_{\infty}) = p \quad (j = 1, \ldots, r - 1). \]

The chain is easily seen to be irreducible. From Foster’s theorem it is seen to be recurrent positive if \(q^1 < \frac{r}{r+1} \). We shall assume \(q^1 < \frac{r}{r+1} \) for the present. Now let \(A = \{E_{jo}\} \) be a subset of the states and let \(\{Y_k\} \) denote the chain defined over it. The chain is of the form of the special case considered in section 3 with \(\alpha = q^1 \). Let \(\{v_i'\} \) and \(\{v_{jm}\} \) denote the steady state probabilities of the chains \(\{Y_k\} \) and \(\{X_k\} \), respectively. Using (3.1), (3.5) and (4.1) it follows that

\[v_{jm} = \frac{1 - q}{1 - q^1} v'_j \cdot q^m \quad (m = 0, 1, \ldots, l - 1; j = 0, 1, \ldots) \]

For from (3.1)

\[v_{jm} = v_{jo} q^m \quad (m = 0, \ldots, l - 1; j = 0, 1, \ldots) \]

and from (3.5)

\[v'_j = \frac{v_{jo}}{\sum_{k=0}^{\infty} v_{ko}} \quad (j = 0, 1, \ldots) \]

Hence
\[v_{jm} = \sum_{k=0}^{\infty} v_{ko} v'_{j} q^{m} \quad (j = 0, 1, \ldots) ; \]

but summing over \(j \) and \(m \) we get, since \(\sum_{j,m} v_{jm} = 1 \),

\[\sum_{k=0}^{\infty} v_{ko} = \frac{1 - q}{1 - q} . \]

From (4.2) it is clear that \(v'_{j} \) is the sum of the steady state probabilities of being in the \(j \)th level of sampling. Also from (3.4)

\[(4.3) \quad v'_{j} = v'_{o} (1 - v'_{o})^j \quad (j = 1, 2, \ldots) \]

where \(v'_{o} \) is given by (3.7) with \(\alpha = q^{\frac{1}{2}} \); namely

\[(1 - q^{\frac{1}{2}}) \left[\frac{1 - (1 - v'_{o})^{r+1}}{v'_{o}} \right] = 1 \]

where as previously remarked \(v'_{o} \) is the probability of being in 100 per cent inspection.

Now that we have expressions for the steady state probabilities we proceed with the derivation of the AOQ functions and the AOQL. Let

\[h(X_n) = r^{-j} \text{ for } X_n = E_{jm} \].

It is easily verified that the reciprocal of the average fraction inspected after \(n \) inspections is

\[(4.4) \quad F_{\frac{1}{n}} = \frac{1}{n} \sum_{v=1}^{n} h(X_v) . \]

It follows from the Birkhoff ergodic theorem, applicable for stationary
Markov chains of the type considered here (see Doob [1] p. 460) that

\[(4.5) \quad F^{-1} = \lim_{n \to \infty} \frac{F^{-1}}{n} = \sum_{j=0}^{\infty} \sum_{m=j}^{1-1} \frac{f^{-j}}{v_{jm}} \]

exists with probability one. Now F^{-1} denotes the reciprocal of the average fraction inspected for all sequences (except for a set having probability 0). For let $n_k = \sum_{m=1}^{k} h(X_m) =$ number of items produced during the first k inspections. Formula (4.5) says that $k/n_k \to F$ as $k \to \infty$. Let $n_k < n < n_{k+1}$. Then since $k =$ number of items inspected in the first n items produced, the inequalities

$$\frac{k}{n_{k+1}} < \frac{k}{n} < \frac{k}{n_k}$$

imply that $\lim_{n \to \infty} k/n \to F$ with probability 1.

If $q^1 \geq \frac{r}{r+1}$ it can be shown more directly that $F^{-1} = \infty$ with probability 1. If v'_o exists and is positive, it follows from the theory of recurrent Markov chains that $q^1 \leq \frac{r}{r+1}$. Thus since $0 < f < 1$ we have from (4.2), (4.3), (4.5) and the last remark that

\[(4.6) \quad F^{-1} = v'_o \left(\frac{1}{1 - v'_o} \right) \quad \text{when} \quad (f > 1 - v'_o)\]

= ∞ otherwise.

Hence since it can easily be shown that $AOQ = p(1 - F)$ we have
(4.7) \[\text{AOQ} = (1 - q) \left(\frac{1 - f}{r} \right) \frac{l - v' o}{v' o} \quad \text{when} \quad (f > 1 - v' o) \]
\[= 1 - q \quad \text{otherwise.} \]

Now suppose it is true that the AOQ is an increasing function of \(q \) as long as \(f > 1 - v' o \). Then from (4.7) it would follow that

(4.8) \[\text{AOQL} = 1 - q_o \]

where \(q_o \) is the value of \(q \) such that \(f = 1 - v' o \). From (3.7) with \(\alpha = q \) it is easily established that

\[q_o = \left(\frac{f - f^{r+1}}{1 - f^{r+1}} \right)^{1/i} \]

so that

(4.9) \[\text{AOQL} = 1 - \left(\frac{f - f^{r+1}}{1 - f^{r+1}} \right)^{1/i} . \]

We now show that the AOQ is an increasing function of \(q \) as long as

\[q < \left(\frac{f - f^{r+1}}{1 - f^{r+1}} \right)^{1/i} \quad \text{(i.e.,} \quad f > 1 - v' o). \]

Let \(\phi(q) = \left(\frac{f}{l - f} \right) \) \[\text{AOQ} = (1 - q) \frac{l - v' o}{v' o} \]

and

\[V(q) = \frac{l - v' o}{v' o} . \]
Then

\[(4.10) \quad \frac{dp(q)}{dq} = - V(q) + (1 - q) \frac{dV(q)}{dq}.
\]

It is necessary to show that the right hand side of \((4.10)\) is positive or

\[(4.11) \quad \frac{V(q)}{(1 - q) \frac{dV(q)}{dq}} \leq 1.
\]

But, using \((3.7)\) with \(\alpha = q^i\)

\[(4.12) \quad \frac{dV(q)}{dq} = \left(- \frac{1}{v'_o^2} \right) \left(\frac{1}{(1 - q)^2} \left((r+1) (1 - v'_o)^r - \frac{1}{(1 - q)} \right) \right).
\]

Thus the left side of \((4.11)\) becomes

\[(4.13) \quad - (1 - q^i) \left[(r+1) (1 - v'_o)^{r+1} (1 - q^i) - (1 - v'_o) \right]
\frac{i q^{i-1} (1 - q)}{i q^{i-1} (1 - q^i)}.
\]

From \((3.7)\) it follows that \((1 - v'_o)^{r+1} = \frac{(1 - v'_o) - q^i}{1 - q^i} \).

Hence \((4.13)\) becomes

\[(4.14) \quad - q^i \left(\frac{1 - q^i}{1 - q} \right) \left[\frac{(1 - v'_o)^r}{q^i} - (r + 1) \right].
\]
But from (3.7)

\[q^1 = (1 - v'_o) \frac{1 - (1 - v'_o)^r}{1 - (1 - v'_o)^{r+1}} \leq 1 - v'_o. \]

Hence

\[\frac{(1 - v'_o)^r}{q^1} \geq r \]

and the smallest value over the range \(f > 1 - v'_o \) which the bracket factor in (4.14) can take is minus one. Thus the largest value that (4.14) can reach is

\[(4.15) \quad \frac{(1 - q^1)}{1 - q} \left(\frac{q^i}{i} \right). \]

But

\[\frac{1 - q^1}{1 - q} \left(\frac{q^i}{i} \right) = q + q^2 + \cdots + q^i < 1. \]

This proves (4.11).

5. The MLP - T Plan

We consider first an infinite number of sampling levels. Let \(E_{jm} \) be as in the previous section. The transition probabilities are now

\[P(E_{jm} \rightarrow E_{j,m+1}) = q \quad (j = 0, 1, \ldots ; 0 < m \leq i - 2) \]
\[P(E_{j, i-1} \rightarrow E_{j+1, 0}) = q \quad (j = 0, 1, \ldots) \]
\[P(E_{jm} \rightarrow E_{oo}) = 1 - q \quad \text{for all} \quad j,m. \]

Of course \(0 < q < 1. \)

It can be shown in this case that

\[v_{jm} = pq^{j+1+m} \quad (j = 0, 1, \ldots ; m = 0, \ldots , i - 1) \]
and as before that

\[F^{-1} = \sum_{jm} F^{-j} v_{jm} = \frac{1 - q_i}{1 - q_i f} (f < q_i^i) \]

\[= \infty \quad (f \leq q_i^i) ; \]

and

\[\text{AOQ} = \frac{(1 - q_i) q_i^i}{1 - q_i} \left(\frac{1 - f}{f} \right) (f > q_i^i) \]

\[= 1 - q_i \quad (f \leq q_i^i) . \]

It can easily be shown that AOQ is an increasing function of \(q_i \) for \(0 < q_i^i < f \). Hence

\[\text{AOQL} = 1 - \frac{f}{i} . \]

Now let the number of sampling levels, \(k \), be finite. For this case we need only modify the function \(h(X_n) \) such that

\[h(X_n) = f^{-j} \quad \text{when} \quad X_n = E_{jm} \quad (j \leq k) \]

\[= f^{-k} \quad \text{when} \quad X_n = E_{jm} \quad (j > k) \]

where here we persist with the notation \(E_{jm} \) as if the \(k = \infty \) plans are in effect. In similar fashion we have
\[F^{-1} = p \sum_{j=0}^{k-1} \sum_{m=0}^{i-1} f^{-j} q^{j+i+m} + p \sum_{j=k}^{\infty} \sum_{m=0}^{i-1} f^{-k} q^{j+i+m} \]

\[= (1 - q^i) \frac{1 - (q^i/f)^k}{1 - q^i/f} + (q^i/f)^k \]

For \(k = 1 \), we have the Dodge Plan, and get the following result as in [3]

\[F^{-1} = \frac{f}{f + q^i(1 - f)} \]

For \(k = 2 \)

\[F^{-1} = 1 + q^i \left(\frac{1 - f}{f} \right) + q^{2i} \left(\frac{1 - f}{f^2} \right) \]

In order to obtain AOQL contours for this situation, as for higher values of \(k \), the use of digital computers would be expedient.
REFERENCES

Head, Statistics Branch
Office of Naval Research
Washington 25, D. C. 2

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, N. Y.
Attn: Dr. J. Laderman 2

Commanding Officer
Office of Naval Research
Branch Office
Navy No. 100
Fleet Post Office
New York, N. Y. 2

Commanding Officer
Office of Naval Research
Branch Office
1000 Geary Street
San Francisco 9, Calif. 1

Chief of Naval Operations
Operations Evaluation Group
(Op-03EG)
The Pentagon
Washington 25, D. C. 1

Chief of Naval Materiel
Code M533, Room 2236
Main Navy Bldg.
Washington 25, D. C. 1

Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D. C.
Attn: Quality Control Division 1

Chief, Bureau of Ordnance
Quality Control Division, QCC
Department of the Navy
Washington 25, D. C.
Attn: Dr. W. R. Pabst 3

Chief, Bureau of Ships
Research and Dev. Division, Code 373
Department of the Navy
Washington 25, D. C. 6

Mr. Harry Weingarten
Bureau of Ships, Code 280
Department of the Navy
Washington 25, D. C. 1

Code M-400B, Materiel Division
Bureau of Yards and Docks
Department of the Navy
Y and D Bldg.
Washington 25, D. C. 1

Mr. Leo E. Morris
Quality Evaluation Laboratory
N.A.D. Bangor
Bremerton, Washington 1

Naval Inspector of Ordnance
400 S. Bieger Street
Mishawaka, Indiana
Attn: N. L. Lindemann 1

Naval Inspector of Ordnance
50 West Main Street
Rochester 4, N. Y. 1

Commander
U. S. Naval Ordnance Test Station
China Lake, Calif.
Attn: Technical Library 1

Mr. S. Gaspar
U. S. N.O.T.S.
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena 8, Calif. 1

Commander
U. S. N.O.T.S.
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena 8, Calif. 1
Dr. M. D. Springer
Head, Statistical Analysis Branch
U. S. Naval Ordnance Plant
Indianapolis, Indiana
1

Mr. F. Frishman
Research and Development Dept.
U. S. Naval Powder Factory
Indianhead, Maryland
1

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
Attn: Technical Library
1

Technical Information Officer
Naval Research Laboratory
Washington 25, D. C.
6

Commanding Officer
U. S. Naval Underwater Ordnance Sta.
Newport, Rhode Island
Attn: Technical Library
1

Commanding Officer
Naval Ammunition and Net Depot
Seal Beach, California
Attn: QE Laboratory
(Technical Library)
1

Office of Naval Research, Code 200
Washington 25, D. C.
Attn: Mr. John D. Wilkes
1

Ames Aeronautical Laboratory
Moffett Field, California
Attn: Technical Librarian
1

Inspection and Quality Control Division
Office, Assistant Secretary of Defense (S&L)
Washington 25, D. C.
Attn: Mr. Irving B. Altman
1

Inspection and Quality Control Division
Office, Assistant Secretary of Defense (S&L)
Washington 25, D. C.
Attn: Mr. John J. Riordan
1

Technical Library
Office, Assistant Secretary of Defense (Research & Dev.)
Room 3 E 1065, The Pentagon
Washington 25, D. C.
1

Chief of Ordnance
U. S. Army
Research and Development Division
Washington 25, D. C.
Attn: Brig. General L. E. Simon
1
Attn: Mr. Charles Bicking
1

Chief, Statistical Engineering Lab.
National Bureau of Standards
Washington 25, D. C.
1

C. O., S. C. Supply Agency
225 South 18th St.
Philadelphia 3, Pa.
Attn: Chief, SIGSU-H5d
2

Commanding Officer
Diamond Ordnance Fuze Laboratories
Attn: Mr. N. S. Leibman
Room 100, Bldg. 52
Connecticut Ave. and Van Ness St.
Washington 25, D. C.
1

Commanding General
Air Materiel Command
Quality Control Division MCPLXP
Wright-Patterson Air Force Base
Ohio
15

Commander
Air Technical Intelligence Center
Attn: Myron A. Etengoff (AF0IN-4C1)
Wright-Patterson Air Force Base
Ohio
1

Engineering Statistics Group
Research Division
New York University
New York 53, N. Y.
1

Quality Evaluation Laboratory
U. S. Naval Magazine
Port Chicago, Calif.
1
Statistical Laboratory
University of California
Berkeley 4, California

Librarian
Numerical Analysis Research
University of California
Los Angeles 24, California

Ordnance Corps
Industrial Engineering Division
Diamond Ordnance Fuze Laboratory
Washington 25, D. C.

Office of Operations Analysis
DCS/Operations
Hq. Air Proving Ground Command
Eglin Air Force Base
Florida

Dr. Paul R. Rider
Chief Statistician
Aeronautical Research Laboratory
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio

Boston Air Procurement District
Army Base (MAHBQ)
Boston 10, Mass.

Chicago Air Procurement District
(OCHCQA)
5555 S. Archer Ave.
Chicago 38, Ill.
Attn: Peter K. Kuffner

Cleveland Air Procurement District
1279 West Third Street
Cleveland 13, Ohio
Attn: Quality Analysis Section

Detroit Air Procurement District
W. Warren Avenue & Lonyo Blvd.
Detroit 32, Michigan
Attn: MOHQFPQ

Computation Division
Directorate of Management Analysis
DCS/Comptroller, Hq. U.S. Air Force
Washington 25, D. C.

Commander
Middletown Air Materiel Area
Olmsted Air Force Base
Middletown, Pa.
Attn: MAPQC

Hq. Mobile Air Materiel Area
Materiel Quality Division (MOSQA)
Brookley Air Force Base
Alabama

AF Plant Representative Office
Oklahoma City Air Materiel Area
General Electric Company
P. O. Box 91
Cincinnati 15, Ohio

Mr. Silas Williams, Jr.
Standards Branch
Procurement Division
DCS/Logistics, U. S. Army
Washington 25, D. C.

Mr. T. M. Vining, Chief
Engineering Statistics Unit
Chemical Corps Engineering Agency
Army Chemical Center, Maryland

Commanding General
Chemical Corps Material Command
200 West Baltimore St.
Baltimore 1, Md.
Attn: Quality Assurance Division

Commanding General
Chemical Corps Material Command
200 West Baltimore St.
Baltimore 1, Maryland
Attn: Quality Evaluation Branch

Dr. Clifford J. Maloney
Chief, Statistics Branch
Allied Sciences Division
Camp Detrick
Frederick, Maryland

Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
Attn: Library, Room 211, Bldg. 92
Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
Attn: Mr. Selig Starr
Branch 62.0

Mr. Joseph Weinstein
Physical Research Branch
Evans Signal Laboratory, SCEI
Belmar, New Jersey

Chief, Procurement-Maintenance
Engineering Division
Fort Monmouth, New Jersey
Attn: Procurement Data Branch
SIGEL-PFM-1

Chief, Quality Control Branch
Artillery Ammunition Dept.
Inspection Engineering Division
Frankford Arsenal
Philadelphia 37, Pa.

Commanding Officer
New York Chemical Procurement
District
180 Varick Street
New York 14, N. Y.
Attn: Quality Surety Division

Commanding General
Ordnance, Ammunition Center
Joliet, Illinois
Attn: ORDLY AR-V

Hq. Inspection Service Command
Philadelphia QM Depot
U. S. Army
2800 South 20th. St.
Philadelphia 45, Pa.
Attn: Herbert Jaffe
Operations Analysis

Commanding Officer
Rock Island Arsenal
Rock Island, Illinois
Attn: R&D Division

Scranton Ordnance Plant
156 Cedar Avenue
Scranton, Pa.
Attn: Mr. Carl D. Larson
Chief Inspector

Ballistics Section
Tests Branch, A & A Division
Yuma Test Station
Yuma, Arizona
Attn: J. M. Anderson

Director, Development Division
Field Command
Armed Forces Special Weapons Project
Albuquerque, New Mexico

Field Inspection Section
DEG Division
Armed Services Medical Procurement
Agency
84 Sands Street
Brooklyn 1, New York

ASTIA Documents Service Center
Knott Building
Dayton 2, Ohio

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Mr. Leon Gilford, ADSS
U. S. Census Bureau
Washington 25, D. C.

Mr. J. P. Kearney
Inspection Branch Standards Div.
General Services Adm.
Room 4118, G.S.A. Bldg
Washington 25, D. C.

N.A.C.A.
1512 H Street, N.W.
Washington 25, D. C.
Attn: Div. of Research Information

Dr. Adam Abruzzi
Dept. of Economics of Engineering
Stevens Inst. of Technology
Hoboken, New Jersey
ADEL
1077 Van Owen St.
Burbank, Calif.
Attn: E. P. Martin

Prof. Stephen G. Allen
244 Laurel St.
San Francisco, Calif.

Prof. T. W. Anderson
Dept. of Statistics
Columbia University
New York 27, N. Y.

Prof. Fred C. Andrews
Mathematics Dept.
University of Nebraska
Lincoln 8, Nebr.

Prof. Max Astrachan
Institute of Technology, USAF
Air University
Wright-Patterson Air Force Base
Ohio

Prof. Robert Bechhofer
Dept. of Mechanical Engineering
Cornell University
Ithaca, N. Y.

Mr. J. R. Beck
Kodak Processing Laboratory
925 Page Mill Road
Palo Alto, Calif.

Prof. R. E. Beckwith
Statistical Laboratory
Purdue University
Lafayette, Ind.

Prof. Maurice H. Belz
University of Melbourne
Carlton N. 3
Victoria, Australia

Prof. J. N. Berrettoni
Western Reserve University
Cleveland, Ohio

Mr. P. M. Blunk
Box 532
Fair Oaks, Calif.

Mr. Milton N. Bradley
2431 Davidson Ave.
New York, N. Y.

Prof. Russell Bradt
Dept. of Mathematics
University of Kansas
Lawrence, Kansas

Prof. Irving W. Burr
Dept. of Mathematics
Purdue University
Lafayette, Ind.

Prof. A. Charnes
Statistical Laboratory
Purdue University
Lafayette, Ind.

Prof. Paul Clifford
New Jersey State Teachers College
Montclair, New Jersey

Prof. Edward P. Coleman
Engineering Dept.
University of California
Los Angeles 24, Calif.

Mr. A. F. Cone, Manager
Quality Assurance, Dept. 5510
Sandia Corporation
Albuquerque, New Mexico

Dr. Louis Court
Division 17
National Bureau of Standards
Washington 25, D. C.

Mrs. J. Henley Croslan
Director of Libraries
Georgia Inst. of Technology
Atlanta, Ga.

Dr. Joseph Daly
Bureau of the Census
Washington 25, D. C.

Prof. Cyrus Derman
Dept. of Industrial Engineering
Columbia University
New York 27, N. Y.
Mr. Sidney Dickman, E-2
Sperry Gyroscope Co.
Great Neck, New York

Mr. H. F. Dodge
Bell Telephone Labs., Inc.
463 West St.
New York, N. Y.

Mr. B. F. Doetsch
1519 E. Fox St.
South Bend 14, Indiana

Dr. Francis Dresch
Stanford Research Institute
1915 University Ave.
Palo Alto, Calif.

Prof. Acheson J. Duncan
Dept. of Industrial Engineering
The Johns Hopkins University
Baltimore 18, Maryland

Mr. F. Frishman, R & D
U. S. Naval Powder Factory
Indianhead, Md.
Attn: Library

Mr. Ora E. Gaines
Hayes Aircraft Corp.
P. O. Box 2287
Birmingham, Alabama

Logistics Research Project
George Washington University
707 22nd St., N.W.
Washington 7, D. C.

Mr. Bernard P. Goldsmith
Quality Control Engineer
Raytheon Mfg. Co.
55 Chapel St.
Newton 58, Mass.

Prof. Leo A. Goodman
Statistical Research Center
University of Chicago
1126 E. 59th St.
Chicago 37, Ill.

Prof. Eugene L. Grant
Civil Engineering Dept.
Stanford University
Stanford, Calif.

Prof. Frank M. Gryna, Jr.
Quality Control Consultant
Signal Corps Engineering Lab.
Fort Monmouth, New Jersey

R. C. Hain
Quality Control Engineer
Cleveland Forge Plant
Aluminum Co. of America
2210 Harvard Ave.
Cleveland 5, Ohio

Mr. Douglass Hawks, Jr.
Chief, Quality Standards & Analysis
Hughes Aircraft Company
P. O. Box 5555
Tucson, Arizona

Mr. Walter W. Hoy
Vought Aircraft, Inc.
Dallas, Texas

Dr. James R. Jackson
Management Sciences Research Project
65 Administration Bldg.
University of California
Los Angeles 24, Calif.

Mr. Brent C. Jacob, Jr.
Chief Industrial Engineer
Chrysler Division-Chrysler Corp.
12200 E. Jefferson Ave.
Detroit 14, Michigan

Mr. Martin W. Joseph
1121 Main St.
Evanston, Ill.

Prof. Tosio Kitagawa
Mathematical Institute
Faculty of Science
Kyusyu University
Fukuoka, Japan

1
Mr. Howard Laitin
2134 Homecrest Ave.
Brooklyn 29, N.Y. 1

Mr. Neil M. Leary
30-50 Thirtyeth Street
Long Island City, New York 1

Mr. H. L. Lindgren
Joy Manufacturing Company
54 Main Street
Claremont, New Hampshire 1

Prof. Sebastian Littauer
Dept. of Industrial Engineering
Columbia University
New York, N.Y. 1

Dr. Eugene Lukacs
Department of Mathematics
Catholic University
Washington 17, D.C. 1

Prof. G. W. McElrath
Dept. of Mechanical Engineering
University of Minnesota
Minneapolis 14, Minn. 1

Dr. Paul Meyer
9200 5th Ave., N.E.
Seattle 15, Wash. 1

Dean Paul E. Mohn
School of Engineering
University of Buffalo
Buffalo, N.Y. 1

Mr. Monroe Norden
Research Division
College of Engineering
New York University
New York 53, N.Y. 1

Prof. E. G. Olds
Dept. of Mathematics
Carnegie Inst. of Technology
Pittsburgh, Pa. 1

The RAND Corporation
1700 Main Street
Santa Monica, Calif.
Attn: Library 1

Dr. Harry G. Romig
351 Alma Real Drive
Pacific Palisades, Calif. 1

Dr. Alan J. Rowe
Management Sciences Research Project
University of California
Los Angeles 24, Calif. 1

Prof. Herman Rubin
Dept. of Mathematics
University of Oregon
Eugene, Oregon 1

Prof. Norman Rudy
Statistics Department
Sacramento State College
Sacramento, Calif. 1

Prof. Henry Scheffé
Statistical Laboratory
University of California
Berkeley 4, Calif. 1

Prof. Robert Schlaifer
Graduate School of Business Adm.
Harvard University
Boston 63, Mass. 1

Mr. R. H. Shaw
General Dry Batteries, Inc.
13000 Athens Ave.
Cleveland 7, Ohio 1

Prof. Seymour Sherman
Moore School of Electrical Eng.
University of Pennsylvania
Philadelphia 4, Pa. 1

Mr. Walter Shewhart
Bell Telephone Labs., Inc.
Murray Hill, New Jersey 1

Dr. Rosedith Sitgreaves
Teachers College
Columbia University
New York 27, N.Y. 1

Mr. J. Gordon Siddons
Quality Control Supervisor
Boeing Airplane Company
Seattle 14, Wash. 1
Dr. Milton Sobel
Bell Telephone Labs.
555 Union Blvd.
Allentown, Pa. 1

Prof. Herbert Solomon
Teachers College
Columbia University
New York 27, N. Y. 1

Mr. M. D. Springer
U. S. Naval Ordnance Plant
Indianapolis, Indiana 1

Mr. Arthur Stein
Cornell Aeronautical Laboratory, Inc.
P. O. Box 235
Buffalo, N. Y. 1

Dr. Dan Teichroew
National Cash Register Co.
Dayton, Ohio 1

Miss Elizabeth Vaughan
2325 7th St.
Bremerton, Washington 1

Prof. W. Allen Wallis
Committee on Statistics
University of Chicago
Chicago 37, Ill. 1

Mr. P. F. Wade, Statistician
Aluminum Company of Canada, Ltd.
Kingston, Ontario, Canada 1

Prof. A. Walther
Technische Hochschule
Darmstadt, Germany 1

Dr. M. A. Woodbury
4608 Butterworth, N. W.
Washington 16, D. C. 1

Prof. Georges Darmois
Director, Institute de Statistique
11 Rue Pierre Curie
Paris 5, France
c/o Office of Naval Research
London Branch
Navy No. 100, Fleet Post Office
New York, N. Y. 1