CONTINUOUS SAMPLING PROCEDURES WITHOUT CONTROL

BY

C. DERMAN, M. V. JOHNS JR.
AND G. J. LIEBERMAN

TECHNICAL REPORT NO. 39

Prepared for Army, Navy and Air Force under
Contract N6onr-25126 (NR 042-002)
with the Office of Naval Research

Gerald J. Lieberman, Project Director

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

OCTOBER 10, 1958
CONTINUOUS SAMPLING PROCEDURES WITHOUT CONTROL

by

C. Derman, M. V. Johns Jr.

and G. J. Lieberman

1. Summary

Several modifications of the Dodge CSP-1 procedure [1] are presented. Changes are made in the rule of action when a defective item is observed while on sampling. The Average Outgoing Quality Limit (AOQL) for these new procedures are derived without the assumption of control. These results are compared with the AOQL assuming control. Further, the AOQL for the CSP-1 procedure using probability sampling (looking at every item with probability $1/k$ when on sampling) is derived without the assumption of control.

2. Introduction and Results

Two continuous sampling procedures are considered. The first procedure is denoted by CSP-41/ and is as follows:

a) At the outset, inspect 100 per cent of the units consecutively as produced and continue such inspection until i units in succession are found clear of defects.

b) When i units in succession are found clear of defects, discontinue 100 per cent inspection, and inspect only a fraction $1/k$ of the units, choosing the item to be observed at random from a segment

1/ CSP-2 and CSP-3 have already been used to denote continuous sampling procedures.
of size \(k \) (this type of sampling will be called random sampling).

c) If a sample unit is found defective revert immediately to 100 per cent inspection, eliminating from the production process the remaining \((k-1)\) items in the segment, and commencing 100 per cent inspection with the next item following the eliminated segment. Continue 100 per cent inspection until again \(i \) units in succession are found clear of defects, as in paragraph (a).

d) Correct or replace with good units all defective units found.

It is important to discuss the implications of (c). These eliminated units can be considered as a source of good items for (d). Furthermore, under certain mathematical models for the production process such as "a state of statistical control" condition (c) is equivalent to the following:

If a sample unit is found defective revert immediately to 100 per cent inspection, commencing such inspection with the segment in which the defective item is observed. Continue 100 per cent inspection until again \(i \) units in succession are found clear of defects, as in paragraph (a).

The second continuous sampling procedure considered will be denoted by CSP-5 and is the same as CSP-4 except for condition (c) which is as follows:

c') If a sample unit is found defective screen the remaining \(k-1 \) items in the segment. Upon completion of this screening, commence
100 per cent inspection with the next item produced. Continue
100 per cent inspection until again \(i \) units in succession,
not including the \(k-1 \) screened items, are found clear of
defects, as in paragraph (a).

These procedures differ from the Dodge CSP-1 procedure only in paragraph
(c). For CSP-1 paragraph (c) would begin 100 per cent inspection with the
item following the segment in which the defective item was observed, allowing
the \(k-1 \) uninspected items to enter into the production stream. In his paper,
Dodge studied the properties of the CSP-1 procedure and presented equations
and charts for determining the Average Outgoing Quality Limit (AOQL) as
functions of the parameters \(k \) and \(i \), under the assumption that the process
is in a state of statistical control. A production process is said to be in
statistical control if there is a positive constant \(p \leq 1 \) such that, for
every item produced, the probability that it is defective is \(p \), and is
independent of the state (defective or non-defective) of all the other items
produced. Resnikoff [2] obtained the same results assuming control using
probability sampling, i.e., sampling every item with probability \(1/k \) while
on partial inspection.

Lieberman [3] later proved that the CSP-1 procedure guarantees an
AOQL whether or not the process is in a state of statistical control. In
fact \(\text{AOQL} = \frac{(k-1)}{(k+i)} \). This result was obtained using random
sampling while on partial inspection. The same result is obtained in this
paper using probability sampling while on partial inspection. For a given
k and \(i \), the above value of the AOQL is always higher than that obtained with Dodge's equations. However, it is achieved for the rather pathological situation when the process alternates between producing all defective items during partial inspection and producing all non-defective items during 100 per cent inspection.

It is the authors' contention that the assumption of control is not always justified. However, the result obtained by Lieberman seems somewhat severe, i.e., the extreme alternating behavior of the process which yields the AOQL is unrealistic. "Nature" is led to such a strategy because she is not penalized sufficiently for being "caught" while on sampling. Under the CSP-4 and CSP-5 procedures "nature" gains nothing by presenting all defective items while on sampling since they will not pass through. It is clear, then, that under CSP-4 and CSP-5 oscillating between perfectly good and perfectly bad quality is ruled out. In fact, it is shown that both of these procedures guarantee a non-trivial AOQL whether or not the process is in a state of statistical control. In fact, for CSP-4

\[
AOQL = \begin{cases}
\frac{(c_4+2) - 2\sqrt{c_4} + 1}{c_4^2}, & c_4 \neq 0 \\
\frac{1}{4}, & c_4 = 0
\end{cases}
\]

where \(c_4 = (i-k+1)/k \).

The AOQL is actually achieved when the process alternates between producing

\[
d_4 = \begin{cases}
\frac{k^2 \sqrt{(i+1)/k} - k^2}{i-k+1}, & i \neq k-1 \\
k/2, & i = k-1
\end{cases}
\]
defective items in a block of size \(k \) during partial inspection and producing all non-defective items during 100 per cent inspection. Similarly, for CSP-5

\[
AOQL = \frac{(c_5^2 + 2)}{c_5^2} - 2 \frac{\sqrt{c_5 + 1}}{c_5}, \quad \text{where} \quad c_5 = i/k.
\]

Note that the AOQL depends only on the ratio \(i/k \), and not on the individual values. This AOQL is achieved when the process alternates between producing

\[
d_5 = \frac{k^2 \sqrt{i/k + 1} - k^2}{i}
\]

defective items in a block of size \(k \) during partial inspection and producing all non-defective items during 100 per cent inspection.

Naturally, these results are always higher than those obtained assuming control. However, the values of \(d \) given are not so high as to be unrealistic. For example, if an operator knows that only 1 in \(k \) items is to be chosen at random and observed, he may be careless enough to produce \(d \) defective items in this block whereas if he knows every item is to be looked at (100 per cent inspection) he will be very careful and produce all good items. Hence, the AOQL values given above may not be unreasonably large.

Finally, the CSP-4 or CSP-5 procedures are used in practice because of a reluctance to pass a segment in which a defective item has already been observed. Usually, the equations for the AOQL of CSP-1 under the
assumption of control are used to find the necessary parameters \(i \) and \(k \) for the CSP-4 or CSP-5 procedures since this is a "conservative" approximation. However, its conservatism depends upon the realism of the assumption of control. It is interesting to point out that the CSP-5 procedure guarantees that the AOQL will never exceed 25% regardless of the choice of \(i \) and \(k \).

3. Theorems and Proof for the AOQL Without the Assumption of control for CSP-4 and CSP-5.

Define

\[
D_{st} = \text{number of defects produced in the } s^{\text{th}} \text{ block of the } t^{\text{th}} \text{ cycle}
\]

\((D_{st} = 0, 1, \ldots, k \text{ for all } s, t)\). A cycle is the period where partial inspection begins to the time a defective is observed. A block is a segment of \(k \) items produced while on partial inspection from which a single item is chosen at random for inspection.

\[
N_t = \text{number of blocks (of } k \text{ items) sampled in the } t^{\text{th}} \text{ cycle. It is pointed out that the cycle terminates when a defective is found and that for the procedures considered the block in which the defective is drawn is not put directly into the production stream. However, it will still be considered as part of the } t^{\text{th}} \text{ cycle. Under CSP-4, the block is eliminated and under CSP-5, the block is screened replacing all defective terms by good ones.}
\]
\(X_t = \text{total number of defects being passed in the } t^{th} \text{ cycle} \). \(X_t = \sum_{s=1}^{N_{t-1}} D_{st} \).

\(\delta_{st} \) are zero-one random variables and indicate whether the \(s^{th} \) item in the 100% inspection following the \((t-1)^{st}\) cycle of partial inspection are non-defective or defective. The quantities \(\delta_{so} \) refer to the initial period of 100% inspection.

\(M_t = \text{number of items inspected in the 100% inspection following the } (t-1)^{st} \text{ cycle of partial inspection to the beginning of the } t^{th} \text{ cycle} \). This is a sure function of \(\delta_{st} \). The quantities \(M_o \) refer to the initial period of 100% inspection.

A strategy of nature is characterized by a pair of doubly infinite sequences of possibly dependent random variables

\[
\left\{ \left\{ D_{st} \right\}, \left\{ \delta_{st} \right\} \right\}
\]

Define the number \(L_{j}, (j=4,5) \), as the smallest numbers with the property that for every process the probability is zero that

\[
(1) \quad \lim_{m \to \infty} \sup \frac{\sum_{t=1}^{m} X_t}{k \sum_{t=1}^{m} N_t - m \alpha_j + \sum_{t=1}^{m} M_t} > L_j ; \ (j=4,5)
\]
where

\[
\alpha_j = \begin{cases}
 k-1 & , \ j = 4 \\
 0 & , \ j = 5
\end{cases}
\]

The numbers \(L_4 \) and \(L_5 \) are called the AOQL for CSP-4 and CSP-5 respectively. It is evident that the ratio whose \(\text{lim sup} \) is taken in (1) is just the total number of defectives contributed to the outgoing product in the first \(m \) cycles divided by the total number of items contributed to the outgoing product in the \(m \) cycles.

It is clear that in order to determine \(L \) we may confine ourselves to consideration of strategies of nature for which the number of cycles is infinite with probability 1. Furthermore, if we choose \(\{ \delta_{st} \} = \{ 0, 0, \ldots, 0, \ldots \} \) with probability 1, independent of the past, we are assured that \(M_t = 1, (t = 1, 2, \ldots) \), with probability 1.

Hence, any strategy of nature for which the \(\delta_{st} \) are not of this form is dominated by a corresponding strategy for which they are. Similarly it is sufficient to consider the special class of strategies for which the number of defectives in every block on partial inspection is \(\geq 1 \). Hence, by confining ourselves to such strategies we may characterize nature's strategy by the single infinite sequence \(\{ D_{st} \} \), where the random variables \(D_{st} \) take on the values \(1, 2, \ldots, k \) , with probability 1. It then follows that
(2) $\limsup_{m \to \infty} \frac{\sum_{t=1}^{m} X_t}{k \sum_{t=1}^{m} N_t - m\alpha_j + \sum_{t=1}^{m} M_t} \leq \limsup_{m \to \infty} \frac{\sum_{t=1}^{m} X_t}{k \sum_{t=1}^{m} N_t - m\alpha_j + m\alpha_j}; \ (j = 4, 5) .$

Theorem 1.

For every strategy $\{ D_{st} \}$ of nature and for all m

(3) $\frac{\sum_{t=1}^{m} E(X_t | D_t)}{k \sum_{t=1}^{m} E(N_t | D_t) + m(1-\alpha_j)} \leq L(c_j) ; \ (j = 4, 5)$

where

(4) $L(c_j) = \begin{cases} \frac{(c_j + 2) - 2\sqrt{c_j + 1}}{c_j} , & c_j \neq 0 \\ \frac{1}{k} , & c_j = 0 \end{cases} ; \ (j = 4, 5)$

(5) $c_j = \frac{\alpha_j}{k}$

and

(6) $D_t = \{ D_{1t} , D_{2t} , \ldots \}$
Proof: We may write

\[X_t = \sum_{s=1}^{\infty} D_{st} U_{st}, \text{ where } U_{st} = \begin{cases} 1, & N_t > s \\ 0, & \text{otherwise} \end{cases} \]

Hence,

\[E(X_t | D_t) = \sum_{s=1}^{\infty} D_{st} E(U_{st} | D_t) \]

\[= D_{1t} \left(1 - \frac{D_{1t}}{k}\right) + D_{2t} \left(1 - \frac{D_{1t}}{k}\right) \left(1 - \frac{D_{2t}}{k}\right) + D_{3t} \left(1 - \frac{D_{1t}}{k}\right) \left(1 - \frac{D_{2t}}{k}\right) \left(1 - \frac{D_{3t}}{k}\right) + \ldots \]

This is a geometric series that is bounded uniformly by the convergent series \(k \sum_{s=1}^{\infty} (1 - \frac{1}{k})^s \).

Similarly,

\[N_t = 1 + \sum_{s=1}^{\infty} U_{st}, \]

so that

\[E(N_t | D_t) = 1 + \left(1 - \frac{D_{1t}}{k}\right) + \left(1 - \frac{D_{1t}}{k}\right) \left(1 - \frac{D_{2t}}{k}\right) + \left(1 - \frac{D_{1t}}{k}\right) \left(1 - \frac{D_{2t}}{k}\right) \left(1 - \frac{D_{3t}}{k}\right) + \ldots \]

Again, this is uniformly bounded by a convergent geometric series.

From (8) it follows that
\[
\sum_{t=1}^{m} E(X_t | D_t) = \sum_{t=1}^{m} [D_{1t}(1 - \frac{D_{1t}}{k}) + D_{2t}(1 - \frac{D_{1t}}{k})(1 - \frac{D_{2t}}{k}) + \ldots]
\]

\[
= \sum_{t=1}^{m} \left[\left(\frac{D_{1t}(1 - \frac{D_{1t}}{k})}{k + (i - \alpha_j) \frac{D_{1t}}{k}} \right) \left(k + (i - \alpha_j) \frac{D_{1t}}{k} \right) + \left(\frac{D_{2t}(1 - \frac{D_{2t}}{k})}{k + (i - \alpha_j) \frac{D_{2t}}{k}} \right) \left(k + (i - \alpha_j) \frac{D_{2t}}{k} \right) \right] \left(1 - \frac{D_{1t}}{k} \right) \left(1 - \frac{D_{2t}}{k} \right) + \ldots \right]
\]

\[\text{(11)}\]

From (10) it follows that

\[
\sum_{t=1}^{m} E(N_t | D_t) + m(i - \alpha_j) = \sum_{t=1}^{m} [k + k(1 - \frac{D_{1t}}{k}) + k(1 - \frac{D_{1t}}{k})(1 - \frac{D_{2t}}{k}) + \ldots + (i - \alpha_j)].
\]

(12) \[
k \sum_{t=1}^{m} E(N_t | D_t) + m(i - \alpha_j) = \sum_{t=1}^{m} [k + k(1 - \frac{D_{1t}}{k}) + k(1 - \frac{D_{1t}}{k})(1 - \frac{D_{2t}}{k}) + \ldots + (i - \alpha_j)].
\]

Noting that \(\frac{D_{1t}}{k} + \frac{D_{2t}}{k}(1 - \frac{D_{1t}}{k}) + \frac{D_{3t}}{k}(1 - \frac{D_{1t}}{k})(1 - \frac{D_{2t}}{k}) + \ldots = 1 \) since the left hand side is just the probability of ultimately achieving a success when performing successive Bernoulli trials with success probabilities bounded away from zero, we see that expression (12) can be written as

(13) \[
k \sum_{t=1}^{m} E(N_t | D_t) + m(i - \alpha_j) = \sum_{t=1}^{m} \left[\left(k + (i - \alpha_j) \frac{D_{1t}}{k} \right) + \left(k + (i - \alpha_j) \frac{D_{2t}}{k} \right) \left(1 - \frac{D_{1t}}{k} \right) \right.
\]

\[
+ \left(k + (i - \alpha_j) \frac{D_{3t}}{k} \right) \left(1 - \frac{D_{1t}}{k} \right) \left(1 - \frac{D_{2t}}{k} \right) + \ldots \right].
\]
Hence,

\[\sum_{t=1}^{m} \frac{E(X_t | D_t)}{k \sum_{t=1}^{m} E(N_t | D_t) + m(i-\alpha_j)} \]

is merely a non-negatively weighted average of quantities of the form

\[f(D_{st}; i, k) = \frac{D_{st} \left(1 - \frac{D_{st}}{k} \right)}{k + (i-\alpha_j)\frac{D_{st}}{k}} \]

\[, \quad (j = 4, 5; s = 1, 2, \ldots) \]

and has an upper bound obtained by maximizing each of these expressions independently. Taking the derivative of (14) with respect to the value \(d_{st} \) of \(D_{st} \) (treated as a continuous variable) we obtain

\[f'(d_{st}, i, k) = \begin{cases}
\frac{k - 2 d_{st}}{k^2 + (i-\alpha_j)d_{st}} - \frac{(k d_{st} - d_{st}^2)(i-\alpha_j)}{[k^2 + (i-\alpha_j)d_{st}]^2} , & i \neq \alpha_j \\
\frac{1}{k} - \frac{2 d_{st}}{k^2} , & i = \alpha_j
\end{cases} \]

The quantity \(f(d_{st}, i, k) \) is clearly maximized by setting (15) equal to zero. Denoting the maximizing value of \(d_{st} \) by \(d_j \) since it is independent of \(s \) and \(t \) we obtain

\[d_j = \begin{cases}
\frac{k^2 \sqrt{(i-\alpha_j)/k + 1} - k^2}{(i-\alpha_j)} , & i \neq \alpha_j \\
k/2 , & i = \alpha_j
\end{cases} \]

\[; \quad (j = 4, 5) \]
It then follows that

\[
\frac{\sum_{t=1}^{m} E(X_t | D_t)}{k \sum_{t=1}^{m} E(N_t | D_t) + m(i - \alpha_j)} \leq \frac{d_j (1 - \frac{d_j}{k})}{k + (i - \alpha_j) \frac{d_j}{k}} \begin{cases}
\frac{(c_j + 2) - 2\sqrt{c_j + 1}}{c_j} , & c_j \neq 0 \\
\frac{c_j^2}{j} & 1/4 , & c_j = 0
\end{cases} = L(c_j); (j=4,5)
\]

where \(c_j = (i - \alpha_j)/k \).

Q.E.D.

Theorem 2.

For any strategy \(\{D_{st}\} \) of nature, for either CSP-4 or CSP-5

\[
\lim_{m \to \infty} \left[\frac{1}{m} \sum_{t=1}^{m} X_t - \frac{1}{m} \sum_{t=1}^{m} E(X_t | D_t) \right] = 0 ,
\]

with probability 1, and

\[
\lim_{m \to \infty} \left[\frac{1}{m} \sum_{t=1}^{m} N_t - \frac{1}{m} \sum_{t=1}^{m} E(N_t | D_t) \right] = 0 ,
\]

with probability 1.

Proof: For \(t = 1,2, \ldots \), let

\[
Z_t = X_t - E(X_t | D_t) .
\]
Then

\(E(Z_t | D_t) = E[X_t - E(X_t | D_t) | D_t] = 0 \)

so that \(E(Z_t) = 0 \). Furthermore, for \(t > s \), \(Z_t \) and \(Z_s \) are conditionally independent given \(D_t \) so that

\(E(Z_s Z_t) = E[E(Z_s Z_t | D_t)] = E[E(Z_t | D_t) E(Z_s | D_t)] = 0. \)

Now

\(E(Z_t^2) = E(X_t^2) - E[E^2(X_t | D_t)] \leq E(X_t^2) < K^2 E(N_t^2) \)

\[= K^2 E[N_t^2 | D_t] \leq K^2 \sum_{s=1}^{\infty} s^2 (1 - \frac{1}{k})^{s-1} < \infty, \]

since \(D_{st} \geq 1 \) with probability 1. Now by a well known Law of Large Numbers for sums of orthogonal random variables ([4] Chapter IV, Theorem 5.2) equation (22) together with the uniform boundedness of \(E(Z_t^2) \) shown by (23) implies that

\(\lim_{m \to \infty} \frac{1}{m} \sum_{t=1}^{\infty} Z_t = 0, \)

with probability 1,
so that (18) is established. Letting \(Z_t^* = N_t - E(N_t | D_t) \), the proof of (19) is similar.

Q.E.D.

Theorem 3.

For any strategy \(\{ D_{st} \} \) of nature

\[
L_j \leq L(c_j) \quad ; \quad (j = 4, 5)
\]

Proof: By Theorem 1 we have

\[
\frac{1}{m} \sum_{t=1}^{m} E(X_t | D_t) - L(c_j) \left[\frac{k}{m} \sum_{t=1}^{m} E(N_t | D_t) + (1 - \alpha_j) \right] \leq 0 ,
\]

for all \(m \). If for each \(m \) we let

\[
V_m = \frac{1}{m} \sum_{t=1}^{m} X_t - \frac{1}{m} \sum_{t=1}^{m} E(X_t | D_t)
\]

and

\[
V'_m = \frac{1}{m} \sum_{t=1}^{m} N_t - \frac{1}{m} \sum_{t=1}^{m} E(N_t | D_t)
\]

then by Theorem 2, \(\lim_{m \to \infty} V_m = \lim_{m \to \infty} V'_m = 0 \) with probability 1. But from (26) we have
\[
\frac{\sum_{t=1}^{m} x_t}{k \sum_{t=1}^{m} n_t + m(i-\alpha_j)} \leq L(c_j) + \frac{V_m - k L(c_j) V_m}{k \sum_{t=1}^{m} n_t + (i-\alpha_j)} \n,
\]

and (25) follows upon taking the \(\lim \sup \) of both sides of (29).

\[m \to \infty \]

Q.E.D.

If we now let

\[
\sigma_j^* = \begin{cases}
\frac{k^2 \sqrt{(i-\alpha_j)/k + 1} - k^2}{i-\alpha_j}, & i \neq \alpha_j \\
k/2, & i = \alpha_j \quad (j = 4, 5)
\end{cases}
\]

then we have

Theorem 4.

If the production process alternates between producing \(\sigma_4^* [\sigma_5^*] \) defective items in blocks of size \(k \) during partial inspection and all non-defective items during 100 per cent inspection, then for CSP-4 [CSP-5]

\[
\limsup_{m \to \infty} \frac{\sum_{t=1}^{m} x_t}{k \sum_{t=1}^{m} n_t + m(i-\alpha_j)}
\]

equals \(L_4(c) [L_5(c)] \) (approximately due to the discreteness of \(\sigma_4^* \) and \(\sigma_5^* \)) and hence the AOQL is given by \(L_4(c) [L_5(c)] \).
Proof: This result follows immediately from (16) and Theorems 2 and 3.

Q.E.D.

We remark that it is easily verified by differentiation that

$L(c_j^{c_5}) \leq \lim_{{c \to 0}} L(c_j^{c_5}) = 1/4$, so that the AOQL $\leq 1/4$ for CSP-5 for any choice of i and k. We further remark that if defective items found when on 100 percent inspection are not replaced by good items but are discarded, the previously derived results are still applicable, i.e., the AOQL is still given approximately by $L(c_j^{c_5})$. If, under the CSP-4 procedure, a unit found defective while on sampling is also discarded together with the remaining $(k-1)$ items and not replaced, the previously derived results are also applicable provided that α_j is set equal to k.

4. CSP-4 and CSP-5 Under Control

This section will be devoted to determining the Average Outgoing Quality (AOQ) function and the AOQL for the CSP-4 and CSP-5 procedures under the assumption of the existence of a state of statistical control.

The AOQ function is defined as

\[
AOQ_j = \lim_{{m \to \infty}} \sup \frac{\sum_{t=1}^{m} X_t}{m} = \lim_{{m \to \infty}} \sup \frac{\sum_{t=1}^{m} X_t/m}{m}
\]

\[
(j=4,5)
\]
where

\[
\alpha_j = \begin{cases}
 k-1, & j = 4 \\
 0, & j = 5
\end{cases}
\]

Under the assumption of the existence of a state of statistical control at level \(p \), the law of large numbers becomes applicable so that the AOQ function can be expressed as

\[
(32) \quad \text{AOQ}_j = \frac{E(X_t)}{k \ E(N_t) - \alpha_j + E(M_t)} \quad (j = 4, 5)
\]

It is easily verified that

\[
(33) \quad E(M_t) = \frac{1-q^i}{pq^i}
\]

\[
(34) \quad E(N) = \frac{1}{p}
\]

and

\[
(35) \quad E(X_t) = (k-1)q
\]

where \(q = 1 - p \).
Hence,

\[(36) \quad \text{AOQL}_4 = \frac{(k-1)(q^{i+1} - q^{i+2})}{1 + q^{i+1}(k-1)}.\]

The maximizing value of \(q \) for a fixed \(i \) and \(k \) is given by solving for \(q \) the expression

\[(37) \quad (k-1)q^{i+2} + (i+2)q = (i+1).\]

Denote this value by \(q_{\text{max-4}} \). The AOQL can then be written as

\[(38) \quad \text{AOQL}_4 = 1 - q_{\text{max-4}} \frac{(i+2)}{(i+1)}.\]

or, solving for \(q_{\text{max-4}} \), the expression

\[(39) \quad q_{\text{max-4}} = (1 - \text{AOQL}_4) \frac{(i+1)}{(i+2)}.\]

is obtained. Substituting this expression for \(q_{\text{max-4}} \) into (37) and solving for \(k \), the relationship between \(k \) and \(i \) for a fixed AOQL is obtained, i.e.,

\[(40) \quad k = 1 + \frac{(i+2)}{i+1} 1^{i+2} \frac{(i+1) \text{AOQL}_4}{(1-\text{AOQL}_4)^{i+2}}.\]
For fixed k and i, the expression for the AOQL for CSP-4 procedure assuming control never exceeds the AOQL which is obtained without making any assumptions about the behavior of the process. However, the differences are much smaller for this procedure than for the CSP-1 procedure.

Similarly, for CSP-5, the AOQ function can be written as

\[
AOQ_5 = \frac{[q^{i+1} - q^{i+2}]}{1+q} (k-1)
\]

The maximizing value of q for a fixed i and k is given by solving for q, the expression

\[
2(k-1)q^{i+1} - (k-1)q^i + (i+2)q = i+1
\]

Denote this value by $q_{\text{max-5}}$. The AOQL can then be written as

\[
AOQL_5 = \frac{(i+1)q_{\text{max-5}} - (i+2)q_{\text{max-5}}^2}{i}
\]

or, solving for $q_{\text{max-5}}$, the expression

\[
q_{\text{max-5}} = \frac{(i+1)\sqrt{(i+1)^2 - 4i(i+2)AOQL_5}}{2(i+2)}
\]

is obtained.

Substituting this expression for $q_{\text{max-5}}$ into (42) and solving for k, the relationship between k and i for a fixed AOQL is obtained, i.e.,
(45) \[k = 1 + \frac{(i+1) - (i+2)q_{\text{max}-5}}{2q_{\text{max}-5} - q_{\text{max}-5}}. \]

Curves of constant AOQL derived from expressions (40), (44), and (45) are given in Figure 1.
Figure 1. Curves for determining values of k and i for a given value of AOQL for CSP-4 and CSP-5.

The curves for AOQL = 3, 2, 1% are applicable for both CSP-4 and CSP-5.

In Percent

AOQL CSP-4 CSP-5

k

2 3 4 6 8 10

i

NUMBER OF UNITS

100 90 80 70 60 50 40 30 20 10

-22-
5. CSP-1 Without Assuming Control and Using Probability Sampling.

In this section, CSP-1 will be studied without assuming control but using a sampling procedure such that while on partial inspection, every item will be inspected with probability \(1/k\), or passed without inspection with probability \((1-1/k)\). The notation of Section 2 and 3 will be used, but for this problem \(k\) need not be an integer but may be any number \(> 1\).

If we let \(N_t^*\) denote the number of items contributed to the production stream during the \(t^{th}\) partial inspection cycle, then the AOQL is defined, as before, as the smallest number \(L\) with the property that for every strategy of nature the probability is zero that

\[
\limsup_{m \to \infty} \frac{\sum_{t=1}^{m} X_t}{\sum_{t=1}^{m} N_t^* + \sum_{t=1}^{m} M_t} > L
\]

(46)

To obtain the AOQL it is again sufficient to consider the special class of strategies of nature such that \(M_t = 1\) for all \(t\), and we must investigate the quantity

\[
\limsup_{m \to \infty} \frac{\sum_{t=1}^{m} X_t}{\sum_{t=1}^{m} N_t^* + m1}
\]

(47)

for such strategies. For this problem a (randomized) strategy of nature may
be characterized by a double sequence of possibly dependent random variables \(\{P_{st}\} \) where \(0 \leq P_{st} \leq 1 \) with probability 1 for all \(s, t \) and where \(P_{st} \) is interpreted as the probability that the \(s^{th} \) item in the \(t^{th} \) partial inspection cycle is defective. As before we restrict our attention to strategies for which an infinite number of partial inspection cycles will occur with probability 1.

Let \(R_t \) be the number of items passed until (and including) the first item inspected during the \(t^{th} \) cycle of partial inspection. Then the \(R_t \)'s are independently and identically distributed random variables with \(E(R_t) = k \) and, furthermore, \(N_t^* \geq R_t \) for each \(t \). Hence, by the Strong Law of Large Numbers

\[
\liminf_{m \to \infty} \frac{1}{m} \sum_{t=1}^{m} N_t^* \geq \lim_{m \to \infty} \frac{1}{m} \sum_{t=1}^{m} R_t = k, \text{ with probability 1},
\]

for any strategy \(\{P_{st}\} \) of nature.

We now prove two theorems which enable us to characterize the behavior of the numerator of (47).

Theorem 5.

For any strategy of nature \(\{P_{st}\} \)

\[
E(X_t | P_t) = k - 1,
\]

with probability 1 for all \(t \), where \(P_t = \{P_{1t}, P_{2t}, \ldots\} \).
Proof:

If for all \(s, t \) we define

\[
Z_{st} = \begin{cases}
1, & \text{if the } s^{th} \text{ item in the } t^{th} \text{ cycle contributes a defective to the output,} \\
0, & \text{otherwise,}
\end{cases}
\]

then for all \(t \) we may represent \(X_t \) by

\[
X_t = \sum_{s=1}^{\infty} Z_{st}.
\]

Furthermore, since the probability that the \(s^{th} \) item reached during the \(t^{th} \) partial inspection cycle is either not inspected or inspected and found non-defective is given by \((1 - \frac{P_{st}}{k}) \), we have for all \(s, t \)

\[
E(Z_{st} | P_t) = (1 - \frac{1}{k}) P_{st} \prod_{j=1}^{s-1} (1 - \frac{P_{jt}}{k}),
\]

where the empty product is interpreted as 1. Hence,

\[
E(X_t | P_t) = (1 - \frac{1}{k}) \sum_{s=1}^{\infty} P_{st} \prod_{j=1}^{s-1} (1 - \frac{P_{jt}}{k}).
\]

We now establish the following equation for all \(r \geq 1 \) by induction:

\[
\sum_{s=1}^{r} P_{st} \prod_{j=1}^{s-1} (1 - \frac{P_{jt}}{k}) = k(1 - \prod_{j=1}^{r} (1 - \frac{P_{jt}}{k})).
\]
The equation clearly holds for \(r = 1 \), and if it is assumed true for \(r = n \)
then for \(r = n + 1 \) the left hand side becomes

\[
(55) \quad k(1 - \prod_{j=1}^{n} (1 - \frac{P_j}{k})) + P_{n+1,t} \prod_{j=1}^{n} (1 - \frac{P_j}{k}) = k(1 - \prod_{j=1}^{n+1} (1 - \frac{P_j}{k})),
\]

and the proof by induction is complete.

We now remark that if the number of partial inspection cycles occurring
is to be infinite with probability 1, then we must have \(\lim_{m \to \infty} P_{t} \{ N^*_t > r \} = 0 \)
for each \(t \), which implies that

\[
(56) \quad \lim_{r \to \infty} P_{t} \{ N^*_t > r | P_t \} = \lim_{r \to \infty} \prod_{j=1}^{r} (1 - \frac{P_j}{k}) = 0,
\]

with probability 1 for all strategies \(\{P_{st}\} \) under consideration. The
desired result (49) now follows from (53), (54) and (56).

Theorem 6.

For any strategy of nature \(\{P_{st}\} \)

\[
(57) \quad \mathbb{E}(X^2_t) \leq 2(k-1)^2 + (k-1)
\]

for all \(t \).

Proof: As in Theorem 5 we have
\begin{align*}
(59) \quad E(Z_{vt} Z_{wt} | P_t) &= \prod_{s=1}^{v-1} (1 - \frac{P_{st}}{k}) \left[P_{vt}(1 - \frac{1}{k}) \prod_{s=w+1}^{v-1} (1 - \frac{P_{st}}{k}) \right] P_{vt}(1 - \frac{1}{k}) \\
&= (1 - \frac{1}{k})^2 P_{vt} P_{wt} \prod_{s \neq w}^{v-1} (1 - \frac{P_{st}}{k}) \\
&= k(1 - \frac{1}{k})^2 \frac{P_{vt} P_{wt}}{k - P_{vt}} \prod_{s=1}^{v-1} (1 - \frac{P_{st}}{k}) .
\end{align*}

Hence noting (49) of Theorem 5 we may write (58) as
\begin{align*}
(60) \quad E(X_t^2 | P_t) &= 2k(1 - \frac{1}{k})^2 \sum_{v=2}^{\infty} P_{vt} \prod_{s=1}^{v-1} (1 - \frac{P_{st}}{k}) \sum_{w=1}^{v-1} \frac{P_{wt}}{k - P_{wt}} + (k-1) .
\end{align*}

We now establish the following equation for all \(r \geq 2 \) by induction:
\begin{align*}
(61) \quad \sum_{v=2}^{r} P_{vt} \prod_{s=1}^{v-1} (1 - \frac{P_{st}}{k}) \sum_{w=1}^{v-1} \frac{P_{wt}}{k - P_{wt}} = k[1 - (1 + \sum_{w=1}^{r} \frac{P_{wt}}{k - P_{wt}}) \prod_{s=1}^{r} (1 - \frac{P_{st}}{k})] .
\end{align*}

It is easily verified that for \(r=2 \) both sides of (61) are equal to \(P_{lt} P_{2t}/k \). If (61) is assumed to be true for \(r=n \) then for \(r=n+1 \) the left hand side may be written as
\begin{align*}
(62) \quad k[1 - (1 + \sum_{w=1}^{n} \frac{P_{wt}}{k - P_{wt}}) \prod_{s=1}^{n} (1 - \frac{P_{st}}{k}) + \frac{P_{n+1,t}}{k - P_{wt}} \prod_{s=1}^{n} (1 - \frac{P_{st}}{k}) \sum_{w=1}^{n} \frac{P_{wt}}{k - P_{wt}}] \\
&= k[1 - (1 - \frac{P_{n+1,t}}{k}) \sum_{w=1}^{n} \frac{P_{wt}}{k + P_{wt}} \prod_{s=1}^{n} (1 - \frac{P_{st}}{k})] .
\end{align*}
\[= k[1 - \left(\frac{k}{k-P_{n+1,t}}\right) + \sum_{w=1}^{n} \frac{P_{wt}}{k+P_{wt}} \sum_{s=1}^{n+1} (1 - \frac{P_{st}}{k})] \]

\[= k[1 - (1 + \sum_{w=1}^{n+1} \frac{P_{wt}}{k+P_{wt}} \sum_{s=1}^{n+1} (1 - \frac{P_{st}}{k})] , \]

which is the right hand side of (61) with \(r=n+1 \), so that the proof by induction is complete.

Now (60) and (61) imply that

\[(63) \quad E(X_t^2|P_t) \leq 2k^2\left(\frac{1}{k}\right)^2 + (k-1) = 2(k-1)^2 + (k-1) , \]

and the desired result (57) follows. An examination of (61) shows that if the \(P_{st} \)'s are (for example) bounded away from zero then equality holds in (57).

We now prove the main result of this section.

Theorem 7.

For CSP-1 with probability sampling the AQL is given by

\[(64) \quad L = \frac{k-1}{k+i} , \]

and this value of \(L \) is achieved by (47) when nature's strategy is to produce all defective items during partial sampling and all non-defective items during 100% sampling.
Proof: The results of Theorems 5 and 6 together with the argument used in Theorem 2 imply that

\[
\lim_{m \to \infty} \frac{1}{m} \sum_{t=1}^{m} X_t = k-1, \quad \text{with probability } 1,
\]

for any strategy \(\{P_{st}\} \) of nature. This result together with (48) implies that

\[
L \leq \frac{k-1}{k+1}.
\]

The fact that equality holds in (66) follows by applying the Strong Law of Large Numbers to the quantities

\[
\frac{1}{m} \sum_{t=1}^{m} N_t^* \quad \text{and} \quad \frac{1}{m} \sum_{t=1}^{m} X_t
\]

for the case where nature uses the strategy described in the Theorem above.
REFERENCES

<table>
<thead>
<tr>
<th>Address</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Telephone and Radio Co. 100 Kingsland Rd. Clifton, New Jersey</td>
<td>1</td>
</tr>
<tr>
<td>AF Plant Representative Office Oklahoma City Air Materiel Area General Electric Company P. O. Box 91 Cincinnati 15, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>Ames Aeronautical Laboratory Moffett Field, California Attn: Technical Librarian</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia</td>
<td>5</td>
</tr>
<tr>
<td>Astronautics Library, 521-5 Convair - Astronautics Division of General Dynamics Corp. P.O. Box 1128 San Diego 12, California</td>
<td>1</td>
</tr>
<tr>
<td>Ballistics Section Tests Branch, A & A Division Yuma Test Station Yuma, Arizona Attn: J. M. Anderson</td>
<td>1</td>
</tr>
<tr>
<td>Boston Air Procurement District Army Base (MAHBQ) Boston 10, Mass.</td>
<td>1</td>
</tr>
<tr>
<td>Chicago Air Procurement District (OCHCQA) 5555 S. Archer Avenue Chicago 38, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Chief Arizona Air Procurement District San Bernardino Air Materiel Area Attn: Quality Control Division P.O. Box 5555 Helen Street Annex Tucson, Arizona</td>
<td>1</td>
</tr>
<tr>
<td>Chief Atlanta Air Procurement District Warner Robins Air Materiel Area Attn: Quality Control Division 441 West Peachtree Street N. E. Atlanta, Georgia</td>
<td>1</td>
</tr>
<tr>
<td>Chief Boston Air Procurement District Middletown Air Materiel Area Attn: Quality Control Division Boston Army Terminal Boston 10, Massachusetts</td>
<td>1</td>
</tr>
<tr>
<td>Chief Chicago Air Procurement District Oklahoma City Air Materiel Area Attn: Quality Control Division 5555 South Archer Avenue Chicago 38, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Chief Cleveland Air Procurement District Mobile Air Materiel Area Attn: Quality Control Division 1279 W. Third Street Cleveland 13, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>Chief Dallas Air Procurement District San Antonio Air Materiel Area Attn: Quality Control Division Wilson Building - Room 338 Dallas 1, Texas</td>
<td>1</td>
</tr>
<tr>
<td>Chief Dayton Air Procurement District Mobile Air Materiel Area Attn: Quality Control Division Building 70 - Area "G" Wright-Patterson Air Force Base Ohio</td>
<td>1</td>
</tr>
</tbody>
</table>
Chief
Detroit Air Procurement District
Mobile Air Materiel Area
Attn: Quality Control Division
W. Warren Ave. & Lonyo Blvd.
Detroit 32, Michigan

Chief
Indianapolis Air Procurement District
Mobile Air Materiel Area
Attn: Quality Control Division
54 Monument Circle
Indianapolis 6, Indiana

Chief
Los Angeles Air Procurement District
San Bernardino Air Materiel Area
Attn: Quality Control Division
Bendix Building
1206 S. Maple Street
Los Angeles, California

Chief
Milwaukee Air Procurement District
Oklahoma City Air Materiel Area
Attn: Quality Control Division
770 N. Plankinton Avenue
Milwaukee, Wisconsin

Chief
Newark Air Procurement District
Middletown Air Materiel Area
Attn: Quality Control Division
218 Market Street
Newark, New Jersey

Chief
New York Air Procurement District
Middletown Air Materiel Area
Attn: Quality Control Division
111 East 16th Street
New York 3, New York

Chief
Philadelphia Air Procurement District
Middletown Air Materiel Area
Attn: Quality Control Division
1411 Walnut Street
Philadelphia 2, Pennsylvania

Chief
Rochester Air Procurement District
Middletown Air Materiel Area
Attn: Quality Control Division
20 Symington Place, P. O. Box 1669
Rochester 3, New York

Chief
St. Louis Air Procurement District
Oklahoma City Air Materiel Area
Attn: Quality Control Division
1114 Market Street
St. Louis 1, Missouri

Chief
San Diego Air Procurement District
San Bernardino Air Materiel Area
Attn: Quality Control Division
P.O. Box 1548
Old San Diego Station
4325 Pacific Highway
San Diego 10, California

Chief
San Francisco Air Procurement District
Sacramento Air Materiel Area
Attn: Quality Control Division
1515 Clay Street
Oakland 12, California

Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D. C.
Attn: Quality Control Division

Chief, Bureau of Ordnance
Quality Control Division, QCC
Department of the Navy
Washington 25, D. C.
Attn: Dr. W. R. Pabst
Mr. H. M. Rosenblatt

Chief, Bureau of Ships
Research and Dev. Division,
Code 373
Department of the Navy
Washington 25, D.C.
Chief of Naval Materiel
Code M533, Room 2236
Main Navy Bldg.
Washington 25, D. C.

Chief of Naval Operations
Operations Evaluation Group
(Op-03EG)
The Pentagon
Washington 25, D. C.

Chief of Ordnance
U. S. Army
Research and Development Division
Washington 25, D. C.
Attn: Brig. General L. E. Simon
Mr. Charles Bicking

Headquarters
U. S. Army Signal Equipment Support Agency
Fort Monmouth, New Jersey
Attn: SIGFM/ES-PPE

Chief, Quality Control Branch
Artillery Ammunition Dept.
Inspection Engineering Division
Frankford Arsenal
Philadelphia 37, Pa.

Chief, Statistical Engineering Lab.
National Bureau of Standards
Washington 25, D. C.

Cleveland Air Procurement District
1279 West Third Street
Cleveland 13, Ohio
Attn: Quality Analysis Section

Chief, Bureau of Yards and Docks
Materiel Division
Dept. of the Navy
Washington 25, D. C.
Attn: Mr. W. Wolman

Commander
Air Technical Intelligence Center
Attn: Myron A. Etengoff (APIOIN-4CL)
Wright-Patterson Air Force Base
Ohio

Commander
Middletown Air Materiel Area
Olmsted Air Force Base
Middletown, Pa.
Attn: MAPQC

Commander
U. S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Library

Commander
U. S. N.O.T.S.
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena 8, California

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
Attn: Technical Library

Commander
Middletown Air Materiel Area
Attn: Quality Control Office
Olmsted Air Force Base
Middletown, Pennsylvania

Commander
Middletown Air Materiel Area
Attn: Quality Control Division-
Directorate of Procurement & Production
Olmsted Air Force Base
Middletown, Pennsylvania

Commander
Middletown Air Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance Engineering
Olmsted Air Force Base
Middletown, Pennsylvania

Commander
Middletown Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply and Services
Olmsted Air Force Base
Middletown, Pennsylvania

Commander
Mobile Air Materiel Area
Attn: Quality Control Office
Brookley Air Force Base
Alabama

Commander
Mobile Air Materiel Area
Attn: Quality Control Division
Directorate of Procurement and Production
Brookley Air Force Base
Alabama

Commander
Mobile Air Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance Engineering
Brookley Air Force Base
Alabama

Commander
Mobile Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply and Services
Brookley Air Force Base
Alabama

Commander
Oklahoma City Air Materiel Area
Attn: Material Quality Division
Directorate of Supply and Services
Tinker Air Force Base
Oklahoma City, Oklahoma

Commander
Ogden Air Materiel Area
Attn: Quality Control Office
Hill Air Force Base
Utah

Commander
Ogden Air Materiel Area
Attn: Quality Control Division
Directorate of Procurement & Production
Hill Air Force Base
Utah

Commander
Ogden Air Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance Engineering
Hill Air Force Base, Utah

Commander
Oklahoma City Air Materiel Area
Attn: Quality Control Division
Directorate of Procurement & Production
Tinker Air Force Base
Oklahoma City, Oklahoma

Commander
Oklahoma City Air Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance Engineering
Tinker Air Force Base
Oklahoma City, Oklahoma

Commander
San Antonio Air Materiel Area
Attn: Quality Control Office
Kelly Air Force Base, Texas

Commander
San Antonio Air Materiel Area
Attn: Quality Control Division
Directorate of Procurement and Production
Kelly Air Force Base, Texas
Commander
San Antonio Air Materiel Area
Attn: Assistant for Quality
 Directorate of Maintenance
 Engineering
Kelly Air Force Base, Texas

Commander
San Antonio Air Materiel Area
Attn: Materiel Quality Division
 Directorate of Supply and Services
Kelly Air Force Base, Texas

Commander
San Bernardino Air Materiel Area
Attn: Quality Control Office
Norton Air Force Base
California

Commander
San Bernardino Air Materiel Area
Attn: Quality Control Division
 Directorate of Procurement and Production
Norton Air Force Base
California

Commander
San Bernardino Air Materiel Area
Attn: Assistant for Quality
 Directorate of Maintenance Engineering
Norton Air Force Base
California

Commander
San Bernardino Air Materiel Area
Attn: Materiel Quality Division
 Directorate of Supply and Services
Norton Air Force Base
California

Commander
Sacramento Air Materiel Area
Attn: Quality Control Division
 Directorate of Procurement and Production
McClellan Air Force Base
California

Commander
Sacramento Air Materiel Area
Attn: Assistant for Quality
 Directorate of Maintenance Engineering
McClellan Air Force Base
California

Commander
Sacramento Air Materiel Area
Attn: Materiel Quality Division
 Directorate of Supply and Services
McClellan Air Force Base
California

Commander
Warner Robins Air Materiel Area
Attn: Quality Control Office
Robins Air Force Base
Georgia

Commander
Warner Robins Air Materiel Area
Attn: Quality Control Division
 Directorate of Procurement & Production
Robins Air Force Base
Georgia

Commander
Warner Robins Air Materiel Area
Attn: Assistant for Quality
 Directorate of Maintenance Engineering
Robins Air Force Base
Georgia
Commander
Gadsden Air Force Depot
Gadsden Air Force Station
Attn: Directorate of Supply and Services
Gadsden, Alabama 1

Commander
Maywood Air Force Depot
Cheli Air Force Station
P.O. Box 310
Maywood, L.A. County
California 1

Commander
Maywood Air Force Depot
Cheli Air Force Station
Attn: Directorate of Supply and Services
P.O. Box 310
Maywood, L.A. County
California 1

Commander
Air Materiel Force, European Area
Attn: Quality Control Office
APO 633, New York, New York 1

Commander
Northern Air Materiel Area, Europe
Attn: Quality Control Office
APO 124, New York, New York 1

Commander
Central Air Materiel Area, Europe
Attn: Quality Control Office
APO 10, New York, New York 1

Commander
Southern Air Materiel Area, Europe
Attn: Quality Control Office
APO 30, New York, New York 1

Commander
Air Materiel Force, Pacific Area
Attn: Quality Control Office
FEAMCOM Air Base
APO 323
San Francisco, California 1

Commander
Northern Air Materiel Area, Pacific
Attn: Quality Control Office
FEAMCOM Air Base
APO 323
San Francisco, California 1

Commander
Southern Air Materiel Area, Pacific
Attn: Quality Control Office
Clark Air Force Base
APO 74
San Francisco, California 1

Commander
Spain Air Materiel Area
Attn: Quality Control Office
APO 285
New York, New York 1

Commander
Air Materiel Command
Attn: Quality Control Office, MCQ
Wright-Patterson Air Force Base
Ohio 10

Commander
San Antonio Air Materiel Area
Attn: Quality Control Division
Directorate Special Weapons
Kelly Air Force Base, Texas 1

Chief, Bureau of Ordnance
Attn: A. Rothstein, Code REVg
Department of Navy
Washington 25, D. C. 1

Commanding General
Chemical Corps Materiel Command
200 West Baltimore Street
Baltimore 1, Md.
Attn: Quality Assurance Division 1

Commanding General
Chemical Corps Materiel Command
200 West Baltimore Street
Baltimore 1, Maryland
Attn: Quality Evaluation Branch 1
Commanding General
Ordnance, Ammunition Center
Joliet, Illinois
Attn: ORDLY AR-V 1

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, New York
Attn: Dr. J. Laderman 2

Commanding Officer
Office of Naval Research
Branch Office
1000 Geary Street
San Francisco 9, California 1

Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D.C.
Attn: Library, Room 211, Bldg. 92 1

Commanding Officer
Diamond Ordnance Fuze Laboratories
Attn: H. Walter Price
Chief Branch 62.0
Washington 25, D.C. 1

Office, Chief of Engineers
Attn: Procurement Division,
Military Supply
Dept. of Army
Washington 25, D.C. 2

Commanding Officer
Diamond Ordnance Fuze Laboratories
Attn: Mr. N. S. Leibman
Room 100, Bldg. 52
Connecticut Ave. and Van Ness St.
Washington 25, D.C. 1

Commanding Officer
Naval Ammunition and NET Depot
Seal Beach, California
Attn: QE Laboratory
(Technical Library) 1

Commanding Officer
Office of Naval Research
Branch Office
Navy No. 100
Fleet Post Office
New York, N.Y. 2

Commanding Officer
U.S. Army Chemical Procurement
District
290 Broadway
New York 7, N.Y.
Attn: Quality Surety Division 1
Quality Assurance Section 1

Commanding Officer
Rock Island Arsenal
Rock Island, Illinois
Attn: R & D Division 1

Commanding Officer
S. C. Supply Agency
225 South 18th Street
Philadelphia 3, Pa.
Attn: Chief, SIGSU-H6d 2

Commanding Officer
U.S. Naval Underwater Ordnance
Station
Newport, Rhode Island
Attn: Technical Library 1

Computation Division
Directorate of Management
Analysis
DCS/Comptroller, Hq. U.S. Air Force
Washington 25, D.C. 3

Detroit Air Procurement District
W. Warren Avenue & Lonyo Blvd.
Detroit 32, Michigan
Attn: MOHDQPQ 1

Director, Development Division
Field Command
Armed Forces Special Weapons
Project
Albuquerque, New Mexico 1
Scranton Ordnance Plant
156 Cedar Avenue
Scranton, Pa.
Attn: Mr. Carl D. Larson
Chief Inspector

Statistical Laboratory
University of California
Berkeley 4, California

Technical Information Officer
Naval Research Laboratory
Washington 25, D. C.

Technical Library
Office, Assistant Secretary of
Defense (Research & Dev.)
Room 3 E 1065, The Pentagon
Washington 25, D. C.

Technical Library
Quality Evaluation Laboratory
U.S. Naval Torpedo Station
Keyport, Washington

Technical Operation, Inc.
and C.O.R.G.
Hq. Continental Army Command
Ft. Monroe, Virginia

U.S. Naval Avionics Facility
Attn: Library
Indianapolis 18, Indiana

Logistics Research Division
Wright-Patterson Air Force Base
Ohio
Attn: MCFR

Dr. Adam Abruzzi
Dept. of Economics of Engineering
Stevens Inst. of Technology
Hoboken, New Jersey

Prof. Stephen G. Allen
Stanford Research Institute
Menlo Park, California

Prof. T. W. Anderson
Center for Advanced Study of
Behavioral Sciences
Stanford, California

Prof. Fred C. Andrews
Mathematics Dept.
University of Oregon
Eugene, Oregon

Prof. Max Astrachan
Institute of Technology, USAF
Air University
Wright- Patterson Air Force Base
Ohio

Mr. Charles L. Barron
Minneapolis-Honeywell Regulator Co.
Ordnance Division
600 Second St. North
Hopkins, Minn.

Prof. Robert Bechhofer
Dept. of Mechanical Engineering
Cornell University
Ithaca, N. Y.

Mr. J. R. Beck
Kodak Processing Laboratory
925 Page Mill Road
Palo Alto, California

Professor R.E. Beckwith
Computer Section
Jet Propulsion Laboratory
California Inst. of Tech.
4800 Oak Grove Drive
Pasadena 3, Calif.

Prof. Maurice H. Beltz
University of Melbourne
Carlton N. 3
Victoria, Australia

Prof. J. N. Berrettoni
Western Reserve University
Cleveland, Ohio

Mr. Carlton M. Beyer
Office of Guided Missiles
Office, Asst. Secretary of
Defense (R & E)
Washington 25, D. C.

Mr. P. M. Blunk
Box 532
Fair Oaks, California
Prof. Acheson J. Duncan
Dept. of Industrial Engineering
The Johns Hopkins University
Baltimore 18, Maryland

1

Mr. Leon Gilford, ADSS
U.S. Census Bureau
Washington 25, D. C.

1

Mr. Bernard P. Goldsmith
Quality Control Engineer
Raytheon Mfg. Co.
55 Chapel Street
Newton 58, Mass.

1

Prof. M. A. Etengoff
Staff Project Engineer
Melpar, Inc.
3000 Arlington Blvd.
Falls Church, Va.

1

Prof. Leo A. Goodman
Statistical Research Center
University of Chicago
1126 E. 59th Street
Chicago 37, Illinois

1

Mr. George J. Peeney
Marketing Services Research Service
General Electric Company
570 Lexington Ave.
New York 22, N.Y.

1

Prof. Eugene L. Grant
Civil Engineering Dept.
Stanford University
Stanford, California

1

Mr. F. Frishman
Research and Development Dept.
U. S. Naval Powder Factory
Indianhead, Maryland

1

Mr. Geoffrey Gregory
4, Osborne Grove
Gatley, Cheadle
Cheshire, England
c/o Office of Naval Research
London Branch
Navy No. 100, Fleet Post Office
New York, N.Y.

1

Mr. C. Gadzinski
Special Defense Project Dept.
General Electric Company
3198 Chestnut St.
Philadelphia 4, Pa.

1

Professor Frank M. Gryna, Jr.
Assurance Engineer
The Martin Company, Mail No. 2000
Baltimore 3, Maryland

1

Mr. D. A. S. Fraser
Dept. of Mathematics
University of Toronto
Toronto 5, Canada

1

Dr. H. C. Hamaker
Philips Research Labs.
Eindhoven, The Netherlands

1

Mr. Donald Guthrie
Dept. of Mathematics
U.S. Naval Postgraduate School
Monterey, California

1

Mr. Douglass Hawks, Jr.
Administrative Ass’t.
American Bosch Arma Corp.
5555 So. Archer Avenue
Chicago 38, Illinois

1

Mr. S. Caspar
U.S. N. O. T. S.
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena 8, California

1

Dr. Leon H. Herbach
Dept. of Mathematics
New York University
New York 53, N.Y.

1
Mr. Walter W. Hoy
Vought Aircraft, Inc.
Dallas, Texas

Dr. Rudolph Husser
Numerical Analysis Research
University of California
Los Angeles 24, California

Dr. James R. Jackson
Management Sciences Res. Project
65 Administration Bldg.
University of California
Los Angeles 24, California

Mr. Brent C. Jacob, Jr.
Chief Industrial Engineer
Chrysler Division-Chrysler Corp.
12200 E. Jefferson Avenue
Detroit 14, Michigan

Mr. J. P. Kearney
Quality Control Division
General Services Adm.
Room 6316 Region 3 Bldg.
Washington 25, D. C.

Prof. Tosio Kitagawa
Mathematical Institute
Faculty of Science
Kyusyu University
Fukuoka, Japan

Mr. Howard Laitin
2134 Homecrest Ave.
Brooklyn 29, N. Y.

Mr. Neil M. Leary
30-50 Thirtieth Street
Long Island City, New York

Mr. George J. Levenbach
Bell Telephone Labs
Murray Hill, New Jersey

Mr. E. L. Lindgren
Joy Manufacturing Company
54 Main Street
Claremont, New Hampshire

Prof. Sebastian Littauer
Dept. of Industrial Engineering
Columbia University
New York, N. Y.

Mr. Seymour Lorber
Industrial Division
Office, Chief of Ordnance
Dept. of the Army
Washington 25, D. C.

Dr. Eugene Lukacs
Department of Mathematics
Catholic University
Washington 17, D. C.

Dr. Clifford J. Maloney
Chief, Statistics Branch
Allied Sciences Division
Camp Detrick
Frederick, Maryland

Mr. C. L. Matz, Senior Engineer
Commonwealth Edison Co.
72 West Adams St.
Chicago 90, Illinois

Prof. G. W. McElrath
Dept. of Mechanical Engineering
University of Minnesota
Minneapolis 14, Minn.

Dr. Paul Meyer
Department of Mathematics
Washington State College
Pullman, Washington

Dean Paul E. Mohn
School of Engineering
University of Buffalo
Buffalo, N. Y.

Mr. Leo E. Morris
340 Dora Street
Bremerton, Washington

Dr. R. B. Murphy
c/o Bell Telephone Labs., Inc.
463 West St.
New York 14, N. Y.
Mr. David M. Natelson
Precision Components Division
Norden-Ketay Corporation
Commack, L. I., N. Y.

Mr. Monroe Norden
Engineering Statistical Group
Research Division
College of Engineering
New York University
401 West 205th Street
New York 34, N. Y.

Prof. E. G. Olds
Dept. of Mathematics
Carnegie Institute of Technology
Pittsburgh, Pa.

Mr. Cyril Peckman
Project Globe
University of Dayton
Dayton, Ohio

Prof. F. H. Randolph
Dept. of Industrial Engineering
Purdue University
Lafayette, Indiana

Prof. George J. Resnikoff
Dept. of Industrial Engineering
Illinois Inst. of Technology
Chicago 16, Ill.

Dr. Paul R. Rider
Chief Statistician
Aeronautical Research Laboratory
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio

Dr. Harry G. Romig
351 Alma Real Drive
Pacific Palisades, California

Dr. Alan J. Rowe
General Electric Co.
Production Control Service, Rm. 2401
570 Lexington Avenue
New York 22, N. Y.

Prof. Herman Rubin
Dept. of Mathematics
University of Oregon
Eugene, Oregon

Prof. Norman Rudy
Statistics Department
Sacramento State College
Sacramento, California

Prof. Henry Scheffe
Statistical Laboratory
University of California
Berkeley 4, California

Prof. Robert Schlaifer
Graduate School of Business Adm.
Harvard University
Boston 63, Mass.

Mr. R. H. Shaw
General Dry Batteries, Inc.
13000 Athens Avenue
Cleveland 7, Ohio

Prof. Seymour Sherman
Moore School of Electrical Eng.
University of Pennsylvania
Philadelphia 4, Pa.

Mr. Walter Shewhart
Bell Telephone Labs., Inc.
Murray Hill, New Jersey

Mr. R. L. Shuey, Manager
Information Studies Section
Research Laboratory
General Electric Co.
P.O. Box 1088
Schenectady, N. Y.

Mr. J. Gordon Siddons
Quality Control Supervisor
Boeing Airplane Company
Seattle 14, Washington

Dr. Rosedith Sitgreaves
Teachers College
Columbia University
New York 27, N. Y.
Dr. Milton Sobel
Bell Telephone Labs.
555 Union Blvd.
Allentown, Pa. 1

Prof. Herbert Solomon
Teachers College
Columbia University
New York 27, N. Y. 1

Dr. M. D. Springer
Head, Statistical Analysis Branch
U. S. Naval Ordnance Plant
Indianapolis, Indiana 1

Mr. Selig Starr
Research & Development Dept.
U. S. Naval Powder Factory
Indianhead, Md. 1

Mr. Arthur Stein
Cornell Aeronautical Lab., Inc.
P. O. Box 235
Buffalo, N. Y. 1

Mr. M. P. Straubel
Lear, Inc.
110 Ionia Ave., N. W.
Grand Rapids 2, Michigan 1

Miss. Elizabeth Vaughan
2325 7th Street
Bremerton, Washington 1

Mr. Cesareo Villegas
Inst. de Matematica y Estadistica
Av. J. Herrera y Reissig
Montevideo, Uruguay 1

Mr. T. M. Vining, Chief
Engineering Statistics Unit
Chemical Corps Engineering Agency
Army Chemical Center, Maryland 1

Mr. P. F. Wade, Statistician
Aluminum Company of Canada, Ltd.
Kingston, Ontario, Canada 1

Prof. W. Allen Wallis
Committee on Statistics
University of Chicago
Chicago 37, Illinois 1

Prof. A. Walther
Technische Hochschule
Darmstadt, Germany 1

Mr. Harry Weingarten
Special Project Office
Bureau of Ordnance
Dept. of the Navy
Washington 25, D. C. 1

Mr. Joseph Weinstein
Physical Research Branch
Evans Signal Laboratory, SCEL
Belmar, New Jersey 1

Dr. Irving Weiss
Bell Telephone Labs
North Andover, Mass. 1

Mr. Silas Williams, Jr.
Standards Branch
Procurement Division
DCS/Logistics, U. S. Army
Washington 25, D. C. 1

Dr. M. A. Woodbury
Dept. of Mathematics
College of Engineering
New York University
New York 53, N. Y. 1

Mr. J. W. Young
Quality Control
North American Aviation, Inc.
International Airport
Los Angeles 45, California 1

Mr. R. P. Zieke
Sr. Manufacturing Methods Engineer
Dept. 22200-Tool Project Eng.
Chance Vought Aircraft, Inc.
P.O. Box 5907
Dallas, Texas 1

Additional copies for project
leader and assistants, office
file, and reserve for future
requirements 70