Stanford University
Department of Statistics

DEPARTMENTAL SEMINAR

4:15pm, Tuesday, November 12, 2013

*** Note Special Location ***
McCullough Building (04-490) Room 115
Cookies served at 3:45pm, 1st floor Lounge.

Speaker: Jonathan Taylor, Stanford University

Title: Inference for the LAR path, or 2013: A Spacings Odyssey

Abstract:

We take a new look at Least Angle Regression (LAR), a version of forward stepwise regression proposed by Efron et al. (2004). The algorithm sequentially adds variables to a set of active variables until a least squares solution is found. We consider the problem of exact inference after selection by the LAR algorithm, assuming the regression model $y|X \sim N(\mu, \Sigma)$ with $\Sigma = \Sigma(X)$ assumed known and $\mu = \mu(X)$ not necessarily linear in X.

We describe an exact version of the covariance test proposed in Lockhart et al. (2013) for each step of the LAR algorithm. Each test is based on an exact pivot for a linear function of μ. We describe how to use these pivots to form exact intervals after selection by LAR.

Throughout, we make almost no assumptions on the design matrix X. In asymptotic setting, with additional assumptions on (X, μ) we describe the limiting behavior of the spacings of the edge of the “noise” events in the LAR path. With an explicitly computable normalization, these spacings converge to a sequence of independent Exp(1) random variables.

This is joint work with Robert Tibshirani, Ryan Tibshirani, and Richard Lockhart.