ON THE BIAS OF THE CHARACTERISTIC ROOTS OF A RANDOM SYMMETRIC MATRIX

BY
THEOPHILOS CACOULLOS AND INGRAM OLKIN

TECHNICAL REPORT NO. 7
July 19, 1963

PREPARED UNDER THE AUSPICES
OF
NATIONAL SCIENCE FOUNDATION GRANT 214

APPLIED MATHEMATICS AND STATISTICS LABORATORIES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
ON THE BIAS OF THE CHARACTERISTIC ROOTS OF A
RANDOM SYMMETRIC MATRIX

by

Theophilos Cacoullos and Ingram Olkin

TECHNICAL REPORT NO. 7

July 19, 1963

PREPARED UNDER THE AUSPICES

OF

NATIONAL SCIENCE FOUNDATION GRANT 214

Ingram Olkin, Project Director

APPLIED MATHEMATICS AND STATISTICS LABORATORIES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA
ON THE BIAS OF THE CHARACTERISTIC ROOTS OF A
RANDOM SYMMETRIC MATRIX

by

Theophilos Cacoullos and Ingram Olkin
Stanford University

1. Summary and Introduction.

Let Z be a random symmetric $p \times p$ matrix with $EZ = A$. An application to the theory of response surface estimation led van der Vaart [3] to consider the expectation-bias and median-bias of the characteristic roots of Z as estimators of the characteristic roots of A. Denote the (real) characteristic roots of a matrix X by $\lambda(X)$ with the ordering $\lambda_1(X) \geq \cdots \geq \lambda_p(X)$. Van der Vaart proves that if Z is symmetric, then $E\lambda_1(Z) \geq \lambda_1(A)$ and $E\lambda_p(Z) \leq \lambda_p(A)$. These inequalities become strict if absolute continuity is assumed. With the additional assumption that the distribution of Z is symmetric about A, i.e., $P[\sum c_{ij}(z_{ij} - a_{ij}) > 0] = \frac{1}{2}$, for all matrices $C = (c_{ij}) \neq 0$, similar inequalities hold for median-bias, namely, $P(\lambda_1(Z) \geq \lambda_1(A)) > \frac{1}{2}$ and $P(\lambda_p(Z) \leq \lambda_p(A)) > \frac{1}{2}$.

In this paper we show how to generate a wide class of inequalities as direct consequences of known results concerning the convexity of scalar or matrix functions of a matrix (Section 2). In particular, the results of [3] can be strengthened by a weakening of the assumption that

1/ Dedicated to Professor Charles Loewner on the occasion of his 70-th birthday.
Z be symmetric. When Z is symmetric, expectation-bias and median-bias may also be obtained for partial sums of the roots, and when Z is positive definite, the bias is obtained for more general functions of the roots. In Section 3 we consider the roots of the determinantal equation \(|Z_1 - \Theta Z_2| = 0\), as well as the canonical correlations. Inequalities for median-bias are developed in Section 4.

We first consider convex scalar and matrix functions with matrix argument (Section 2.1), then obtain inequalities when Z has real roots (Section 2.2), when Z is symmetric (Section 2.3), and when Z is positive definite (Section 2.4).

2.1 Convex Functions with Matrix Argument.

A scalar function, \(g(X)\) of a \(p \times n\) matrix \(X\), in some set \(\mathcal{X}\), is convex if for any two matrices \(X, Y \in \mathcal{X}\) and \(0 \leq \lambda \leq 1\),

\[
g(\lambda X + (1-\lambda) Y) \leq \lambda g(X) + (1-\lambda) g(Y)
\]

(2.1)

For example, \(g(X) = \text{tr} \ XX'\) is such a function.

If \(EX < \infty\) and \(g(X)\) is convex, we can assert by Jensen's inequality,

\[
g(Ex) \leq Exg(X)
\]

(2.2)

This development may be extended to matrix functions of a matrix if an ordering in (2.1) is properly defined. Such an ordering was considered
by Loewner [1, p. 86], namely, for any symmetric matrices X and Y, write $X \geq Y$ iff $X - Y$ is positive semi-definite. Consequently, if $G(X)$ is a real symmetric matrix function of a $p \times n$ matrix X defined on some set \mathcal{X}, such that for X and $Y \in \mathcal{X}$, $0 \leq \lambda \leq 1$,

$$G(\lambda X + (1-\lambda)Y) \leq \lambda G(X) + (1-\lambda) G(Y),$$

in the sense of Loewner, then $G(X)$ is called convex. We note that X need not be symmetric or positive definite, though the domain of X will be restricted in the usual applications. It is immediate that $G(X)$ is convex iff $g_u(X) = u G(X) u'$ is a scalar convex function of X for all $u \neq 0$.

The above definition permits an extension of Jensen's inequality.

Theorem 2.1. If $X \in \mathcal{X}$ is a random matrix, $EX = A$, and $G(X)$ is a convex symmetric matrix function with $\lambda_1[Eg(X)] < \infty$, then

$$G(EX) \leq EG(X).$$

Proof. For every real vector u of unit length, $g_u(X) = u G(X) u'$ is a convex scalar function of X. The result then follows from (2.2). ||

Thus, for example, if $X : p \times n$, then $G(X) = XX'$ is convex, and $EXX' \geq (EX)(EX')$. A more interesting example is the inverse matrix function.

Lemma 2.2. If $\mathcal{X} = \{X : X > 0\}$, then $G(X) = X^{-1}$ is convex.

For convenience, we refer to [1] where most of the results needed and related references are given.
Proof. For any \(X, Y \in \mathcal{X}, 0 \leq \lambda \leq 1 \), we must show that

\[
(2.3) \quad (\lambda X + (1-\lambda)Y)^{-1} \leq \lambda X^{-1} + (1-\lambda)(Y^{-1}).
\]

There exists a non-singular matrix \(W \) such that \(X = WW', \ Y = WDW' \), where \(D = \text{diag}(d_1, \ldots, d_p) \). Hence, (2.3) is equivalent to

\[
[\lambda I + (1-\lambda)D]^{-1} \leq \lambda I + (1-\lambda)D^{-1}.
\]

But this is an inequality between diagonal matrices, so that the result follows from the scalar case. We note that (2.3) is strict for \(0 < \lambda < 1 \). \|

In some instances an alternative proof based on the following Lemma may be simpler.

Lemma 2.3. If \(g(X) \) is a scalar or matrix function of \(X \in \mathcal{X} \) and \(h(\alpha) = g(\alpha X + (1-\alpha) Y) \) for \(X, Y \in \mathcal{X}, 0 \leq \alpha \leq 1 \), then \(g(X) \) is convex in \(X \) if and only if \(h(\alpha) \) is convex in \(\alpha \).

Thus an alternative proof for Lemma 2.2 is to consider

\[
h(\lambda) = (\lambda X + (1-\lambda)Y)^{-1},
\]

from which \(\frac{dh}{d\lambda} = -h(\lambda)(X-Y)h(\lambda) \) and since \(h(\lambda) > 0 \),

\[
\frac{d^2h(\lambda)}{d\lambda^2} = 2h(\lambda)(X-Y)h(\lambda)(X-Y)h(\lambda) \geq 0.
\]

As a consequence, we have Jensen's inequality for the inverse matrix function, namely: If \(Z \) is a random \(p \times p \) symmetric matrix, \(Z > 0, \ EZ = A > 0 \), then

\[
(\text{EZ})^{-1} \leq \text{EZ}^{-1}.
\]
The inequality is strict unless \(P(Z = A) = 1 \).

An interesting example of a concave matrix function which arose in a time series regression problem was considered by Ylvisaker [4].

Lemma 2.4. If \(V: p \times p, M: k \times p, k \leq p \), are such that \(V > 0 \), \(M \) is of rank \(k \), then \(G(V) = (MV^{-1}M')^{-1} \) is a concave function of \(V \).

Proof. The present proof based on Lemma 2.3 offers an alternative to that of [4]. Define

\[
g(\alpha) = (M[\alpha V + (1-\alpha)W]^{-1}M')^{-1} = (M h(\alpha)M')^{-1},
\]

then

\[
\frac{dg}{d\alpha} = g(\alpha) M h(\alpha)(V-W) h(\alpha) M' g(\alpha),
\]

\[
\frac{d^2g}{d\alpha^2} = 2 g(\alpha) M h(\alpha)(V-W) \frac{1}{2} h^{\frac{1}{2}}(\alpha) [f(\alpha)-I] h^{\frac{1}{2}}(\alpha)(V-W) h(\alpha) M' g(\alpha),
\]

where

\[
f(\alpha) = h^{\frac{1}{2}}(\alpha) M' g(\alpha) M h^{\frac{1}{2}}(\alpha).
\]

It is easily checked that \(f^2(\alpha) = f(\alpha) \), so that \(f(\alpha) \) is idempotent, and hence \(I - f(\alpha) \geq 0 \).

2.2 **Inequalities for Matrices with Real Roots.**

We obtain two inequalities by first exhibiting convexity and then using Jensen's inequality.

Theorem 2.5. (Lax [1, p. 85]). If \(\mathcal{X} \) is a linear space of \(p \)-dimensional real matrices such that every \(X \) has only real roots, then \(\lambda_1(X) \) is a convex function, \(\lambda_p(X) \) is a concave function, of \(X \).
Corollary 2.6. If \(Z \) is a real random matrix with only real roots, \(\mathbb{E} Z = A \), then

\[
\mathbb{E} \lambda_1(Z) \geq \lambda_1(A), \quad \mathbb{E} \lambda_p(Z) \leq \lambda_p(A).
\]

Remark. If the distribution of \(Z \) is absolutely continuous with respect to \(\mathbb{P} \)-dimensional (the dimensionality of \(Z \)) Lebesgue measure, an argument similar to that in [3] shows that the inequalities become strict.

2.3 Inequalities for Symmetric Matrices.

Let \(X : p \times p \) be a symmetric matrix, and define for \(k = 1, \ldots, p \),

\[
(i) \quad S_k(X) = \lambda_p(X) + \lambda_{p-1}(X) + \cdots + \lambda_{p-k+1}(X), \\
(ii) \quad T_k(X) = \lambda_1(X) + \lambda_2(X) + \cdots + \lambda_k(X).
\]

For symmetric matrices, one can assert the convexity or concavity of \(S_k(X) \) and \(T_k(X) \), which is a stronger result than Theorem 2.5.

Theorem 2.7 (Fan [1, p. 75]). If \(X \) is a symmetric matrix, then \(S_k(X) \) is a concave function, \(T_k(X) \) is a convex function of \(X \), \(k = 1, 2, \ldots, p \).

Using Jensen's inequality, we have

Corollary 2.8. If \(Z \) is a \(p \times p \) random symmetric matrix, \(\mathbb{E} Z = A \), then

\[
\mathbb{E} S_k(Z) \leq S_k(A), \quad \mathbb{E} T_k(Z) \geq T_k(A), \quad k = 1, \ldots, p.
\]
Remark. Absolute continuity with respect to \(p(p+1)/2 \) dimensional Lebesgue measure yields strict inequalities. The results of [3] are contained in the case \(k = 1 \).

We note that when \(k = p \), \(S_p(X) = T_p(X) = \text{tr } X \), and hence

\[
\sum_{j=1}^{p} \lambda_j(Z) = \sum_{j=1}^{p} \lambda_j(A).
\]

This suggests the use of the Muirhead condition [2, p. 44]: If

\[
\begin{align*}
 u_1 &\geq u_2 \geq \cdots \geq u_p, \\
 v_1 &\geq v_2 \geq \cdots \geq v_p,
\end{align*}
\]

we say that \(u = (u_1, \ldots, u_p) \) majorizes \(v = (v_1, \ldots, v_p) \), and write \(u \triangleright v \).

Another characterization of (2.4) is given by the Schur transformation [1, p. 31], namely: A necessary and sufficient condition that \(u \triangleright v \) is that there exist a doubly-stochastic matrix \(Q = (q_{ij}) \), i.e., \(q_{ij} \geq 0 \), \(\sum_{j} q_{ij} = \sum_{i} q_{ij} = 1 \), \(i, j = 1, \ldots, p \), such that

\[
(2.5) \quad v = uQ.
\]

Moreover, if \(F(t_1, \ldots, t_p) \) satisfies \(\frac{\partial F}{\partial t_i} \geq \frac{\partial F}{\partial t_j} \) whenever \(t_i \geq t_j \), and \(u \triangleright v \), then \(F(u) \geq F(v) \) (Ostrowski, [1, p. 32]). A special case is Karamata’s result [1, p. 30], that if \(u \triangleright v \), and \(g(t) \) is a convex scalar function, then
\[\sum_{1}^{P} g(u_i) \geq \sum_{1}^{P} g(v_i) . \]

The main point is that Corollary 2.8 asserts that

\[E\lambda(Z) \equiv (E\lambda_1(Z), \ldots, E\lambda_p(Z)) \geq (\lambda_1(Z), \ldots, \lambda_p(A)) \equiv \lambda(A) . \]

Consequently, there exists a doubly-stochastic matrix \(Q \) such that

\[(\lambda_1(A), \ldots, \lambda_p(A)) = (E\lambda_1(Z), \ldots, E\lambda_p(Z)) Q \ , \]

and if \(g(t) \) is any convex function, then

\[\sum_{1}^{P} g(E\lambda_1(Z)) \geq \sum_{1}^{P} g(\lambda_1(A)) . \]

Another situation in which the majorization condition arises naturally is the following. Let \(R = (r_{ij}) \) be a correlation matrix, i.e., \(R > 0, \ r_{ii} = 1, \) and let \(\rho_1 \geq \cdots \geq \rho_p \) denote the characteristic roots of \(R \). Then \((\rho_1, \ldots, \rho_p) \geq (1, \ldots, 1) \). This is a consequence of the fact that \(\text{tr} R = p = \sum_{1}^{P} \rho_1 \). Suppose \(\rho_1 < 1 \), then \(\sum_{1}^{P} \rho_1 < p \), which is a contradiction. Hence \(\rho_1 \geq 1 \). Suppose \(\rho_1 + \rho_2 < 2 \), then \(\rho_2 < 1 \), so that again \(\sum_{1}^{P} \rho_1 < p \), and hence \(\rho_1 + \rho_2 \geq 2 \). The argument is then repeated.

Thus from (2.5) we obtain the curious result that if \(\rho_1, \ldots, \rho_p \) are the characteristic roots of a correlation matrix, then there exists a doubly stochastic matrix \(Q \) such that

\[(\rho_1, \ldots, \rho_p) Q = (1, \ldots, 1) . \]
A more general result follows from a theorem of Fan [1, p. 77], namely that if A is a real symmetric matrix, then

$$(\lambda_1(A), \lambda_2(A), \ldots, \lambda_p(A)) \succ (a_{11}, a_{22}, \ldots, a_{pp})$$

As a consequence, if Z is a real random symmetric matrix with $EZ = A$, then

$$E(\lambda_1(Z) + \cdots + \lambda_k(Z)) \geq E(Z_{11} + \cdots + Z_{kk}) = a_{11} + \cdots + a_{kk},$$

$k = 1, 2, \ldots, p - 1$; equality holds for $k = p$.

2.4 Inequalities for Positive Definite Matrices.

Let $s_r(a)$ denote the r-th elementary symmetric function of the set $a = \{a_1, \ldots, a_p\}$. For any matrix X define $\text{tr}_j X$ to be the sum of the principal minors of order j. It is well known that $s_j(\lambda(X)) = \text{tr}_j X$.

Theorem 2.9. (Marcus and Lopes [1, p. 33]). If $X > 0$, then for $1 \leq r \leq j \leq p$,

$$\frac{1}{s_r(\lambda_p(X), \ldots, \lambda_{p-j+1}(X))},$$

and

$$\frac{s_r(\lambda_p(X), \ldots, \lambda_{p-j+1}(X))}{s_{r-1}(\lambda_p(X), \ldots, \lambda_{p-j+1}(X))}$$

are concave functions of X.

9
Theorem 2.10. (Oppenheim [1, p. 71]). If $X > 0$,

\[
\left[\prod_{l}^{r} \lambda_{p-l+1}(X) \right]^{1/r}, \quad r = 1, \ldots, p
\]

is a concave function of X.

The inequalities using expectations are then immediate.

Corollary 2.11. Let Z be a random positive definite matrix, $EZ = A$. Then

\[
E s_r^r(\lambda_p(Z), \ldots, \lambda_{p-j+1}(Z)) \leq s_r^r(\lambda_p(A), \ldots, \lambda_{p-j+1}(A)),
\]

$r \leq j \leq p$;

\[
E \left[\prod_{l}^{r} \lambda_{p-j+1}(Z) \right]^{1/r} \leq \left[\prod_{l}^{r} \lambda_{p-j+1}(A) \right]^{1/r},
\]

$r = 1, \ldots, p$.

3. Inequalities for Roots of a Determinantal Equation.

Suppose we have two random positive definite matrices Y and Z, with $EY = A$, $EZ = B$, and we are interested in the roots of $|Y-\lambda Z| = 0$, or equivalently of $|YZ^{-1}-\lambda I| = 0$. If we use the results of Section 2.2, we obtain

\[
E T_k(YZ^{-1}) = E T_k(\frac{1}{2}Z^{-1}YZ^{-1}\frac{1}{2}) \geq T_k(E (\frac{1}{2}Z^{-1}Y^2))
\]

so that if

(3.1) \[
E \frac{1}{2}Z^{-1}Y^2 = A^{-\frac{1}{2}}B^{-\frac{1}{2}}A^{-\frac{1}{2}}
\]
we have that

\[E T_k(YZ^{-1}) \geq T_k(AB^{-1}), \quad E S_k(YZ^{-1}) \leq S_k(AB^{-1}) \, . \]

Since the assumption (3.1) is somewhat unnatural, it is of interest to see whether we can still obtain the result with the simpler and more natural assumption \(EY = A \) and \(EZ = B \).

We first need the following Lemma.

Lemma 3.1. If \(U \geq V \), then \(T_k(U) \geq T_k(V) \), \(S_k(U) \geq S_k(V) \).

Proof. \(U \geq V \) implies that \(\lambda_j(U) \geq \lambda_j(V) \), \(j = 1, \ldots, p \), from which the result follows.

Theorem 3.2. If \(Y \) and \(Z \) are independent random positive definite matrices, \(EY = A \), \(EZ = B \), then

\[E T_k(YZ^{-1}) \geq T_k(AB^{-1}) \, , \quad k = 1, \ldots, p \, . \]

Proof. Using conditional expectation and convexity,

\[E T_k(YZ^{-1}Y^2) = E_Y[E_{Z} T_k(Y^2Z^{-1}Y^2)|Y] \]

\[\leq E_Y T_k[E_{Z}(Y^2Z^{-1}Y^2)|Y] = E_Y T_k(Y^2(EZ^{-1})Y^2) \, . \]

But from Jensen's inequality, \(EZ^{-1} \geq (EZ)^{-1} = B^{-1} \), and hence

\[T_k(Y^2(EZ^{-1})Y^2) \geq T_k(Y^2B^{-1}Y^2) = T_k(B^{-1}Y) \, , \]

from Lemma 3.1. The result then follows from Corollary 2.8.
Remark. The method of proof does not carry through for $S_k(YZ^{-1})$. It is clear that $ES_k(YZ^{-1}) \leq S_k(AEZ^{-1})$, but $S_k(AEZ^{-1}) \geq S_k(A^2)$.

Consider a random matrix $Z > 0$, $EZ = A$, with the partition

$$Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix}, \quad A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

The roots of the determinantal equations

$$|Z_{12}Z_{22}^{-1}Z_{11} - \rho^2 Z_{11}| = 0, \quad |A_{12}A_{22}^{-1}A_{11} - \sigma^2 A_{11}| = 0,$$

are the canonical correlations. We now show that

$$(3.3) \quad E T_k(Z^{-1}_{11}Z_{12}^{-1}Z_{22}^{-1}Z_{21}) \geq T_k(A^{-1}_{11}A_{12}^{-1}A_{22}A_{21}).$$

Using Corollary 2.8 for the conditional expectation, we have

$$E_{Z_{11}} E_{Z_{12}} E_{Z_{22}} \{ T_k(Z^{-1}_{12}Z^{-1}_{22}Z^{-1}_{12}Z^{-1}_{22}) | Z_{11}, Z_{12} \}$$

$$\geq E_{Z_{11}} \{ E_{Z_{12}} T_k(Z^{-1}_{12}A^{-1}_{12}Z^{-1}_{22}A^{-1}_{22}) | Z_{11} \}$$

$$\geq E_{Z_{11}} T_k(Z^{-1}_{11} E(Z_{12}A^{-1}_{12}Z_{22}A^{-1}_{22}) Z^{-1}_{11}).$$

But $Z_{12}A^{-1}_{12}Z_{22}$ is a convex (matrix) function of Z_{12}, so that $E(Z_{12}A^{-1}_{12}Z_{22}) \geq A_{12}A^{-1}_{12}A_{22}$, and by Lemma 3.1,

$$E_{Z_{11}} T_k(Z^{-1}_{11} E(Z_{12}A^{-1}_{12}Z_{22}A^{-1}_{22}) Z^{-1}_{11}) \geq E_{Z_{11}} T_k(Z^{-1}_{11} A_{12}A^{-1}_{12}A_{22}).$$
The proof is completed by another application of Corollary 2.8.

As in the case of Theorem 3.2, the proof does not carry over to the S_k function.

4. **Median Bias of the Roots of a Random Matrix.**

In this section we assume that Z is a symmetric random matrix, with an absolutely continuous distribution which is symmetric about a matrix A, i.e.,

\[(4.1) \quad P(\text{tr } C(Z-A) \geq 0) = P(\text{tr } C(Z-A) \leq 0) = \frac{1}{2}, \quad \text{for all } C \neq 0.\]

Theorem 4.1. If Z is a random symmetric matrix, $EZ = A$, and the distribution of Z is symmetric about A, then

\[P(S_k(Z) \leq S_k(A)) \geq \frac{1}{2},\]

\[P(T_k(Z) \geq T_k(A)) \geq \frac{1}{2}, \quad k = 1, \ldots, p.\]

Proof. We use a characterization of Fan [1, p. 77],

\[S_k(Z) = \min_{\Omega} \text{tr } GZG', \quad T_k(Z) = \max_{\Omega} \text{tr } GZG',\]

\[\Omega = \{G : k \times p \mid GG' = I\}.\]

Let $S_k(A) = \min_{\Omega} \text{tr } GAG' = \text{tr } \Gamma A \Gamma'$. Then, for all $G \in \Omega$,

\[P(S_k(Z) \leq S_k(A)) \geq P(\text{tr } GZG' \leq \text{tr } \Gamma A \Gamma').\]
Choose \(G = \Gamma \), use the definition of symmetry, \((4.1)\), and the result follows.

The result for \(T_k(Z) \) is proved similarly. ||

Remark. Theorem 4.1 generalizes the result of [3] in which the case \(k = 1 \) was considered.

For the case of two matrices \(Y \) and \(Z \), \(EY = A \), \(EZ = B \), \(Y \) symmetric about \(A \), \(Z \) symmetric about \(B \), we have for all \(G \in \Omega \),

\[
P(S_k(YZ^{-1}) \leq S_k(AB^{-1})) \geq P(\text{tr } GZ^{-\frac{1}{2}}YZ^{-\frac{1}{2}}G' \leq \text{tr } GB^{-\frac{1}{2}}AB^{-\frac{1}{2}}G') ,
\]

where \(\min \text{tr } GB^{-\frac{1}{2}}AB^{-\frac{1}{2}}G' = GB^{-\frac{1}{2}}AB^{-\frac{1}{2}}G' \). Choose \(G = \Gamma \), and consider the conditional probability for \(Z = B \). Since

\[
P(\text{tr } GB^{-\frac{1}{2}}YB^{-\frac{1}{2}} \leq \text{tr } GB^{-\frac{1}{2}}AB^{-\frac{1}{2}}G') \geq \frac{1}{2} ,
\]

the unconditional probability is \(\geq \frac{1}{2} \).

We obtain the same inequality if we assume \(EZ^{-\frac{1}{2}}YZ^{-\frac{1}{2}} = B^{-\frac{1}{2}}AB^{-\frac{1}{2}} \), and \(Z^{-\frac{1}{2}}YZ^{-\frac{1}{2}} \) is symmetric about \(B^{-\frac{1}{2}}AB^{-\frac{1}{2}} \).

For canonical correlations we obtain a similar result:

\[
P(S_k(Z_{11}^{-1}Z_{12}^{-1}Z_{22}^{-1}Z_{21}^{-1}) \leq S_k(A^{-1}A_{11}^{-1}A_{12}^{-1}A_{22}^{-1}A_{21}^{-1})) \geq \frac{1}{2} ,
\]

\[
P(T_k(Z_{11}^{-1}Z_{12}^{-1}Z_{22}^{-1}Z_{21}^{-1}) \geq T_k(A^{-1}A_{11}^{-1}A_{12}^{-1}A_{22}^{-1}A_{21}^{-1})) \geq \frac{1}{2} , ~ k = 1,\ldots,p .
\]

By using conditional probability with \(Z_{11} = A_{11} \), \(Z_{12} = B_{12} \), the proof follows that of Theorem 4.1.
REFERENCES

