MATRICES VERSIONS OF THE CAUCHY
AND KANTOROVICH INEQUALITIES

by

A. W. Marshall and I. Olkin

Technical Report No. 229
April 1987

Prepared under the Auspices
of
National Science Foundation
DMS 84-11411
Ingram Olkin, Project Director

Department of Statistics
Stanford University
Stanford, California
MATRIX VERSIONS OF THE CAUCHY
AND KANTOROVICH INEQUALITIES

by

A. W. Marshall and I. Olkin

University of British Columbia and Stanford University

ABSTRACT

A version of Cauchy's inequality is obtained which relates two matrices by an inequality in the sense of the Loewner ordering. In that ordering a symmetric idempotent matrix is dominated by the identity matrix and this fact yields a simple proof.

A consequence of the matrix Cauchy inequality leads to a matrix version of the Kantorovich inequality, again in the sense of Loewner.

1 Supported in part by the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.
1. Introduction.

The Cauchy inequality for (row) vectors \(x, y \in \mathbb{R}^n \) asserts that

\[(xx')yy' \geq (xy')^2,\]

with equality if and only if \(y = \alpha x \) for some scalar \(\alpha \).

If \(A \) is a positive definite Hermitian matrix and \(A^{1/2} \) is its unique positive definite Hermitian square root, the choice

\[x = uA^{1/2}, \quad y = uA^{-1/2} \]

in (1) yields

\[(2) \quad uA^{-1}u' \geq (uAu')^{-1}\]

for all \(u \in \mathbb{R}^n \) satisfying \(uu' = 1 \).

If the characteristic roots, \(\alpha_1, \ldots, \alpha_n \), of \(A \) satisfy

\[0 < m \leq \alpha_i \leq M, \quad i = 1, \ldots, n, \]

the Kantorovich inequality provides a reversal to (2):

\[(3) \quad uA^{-1}u' \leq \frac{(m+M)^2}{mM}(uAu')^{-1}\]

where the constant is the square of the ratio of the arithmetic to geometric mean of \(m \) and \(M \).

Many derivations of (1) and (3) have been devised. We obtain a matrix version of (1) and (3) that incidentally provides yet another proof of Cauchy's inequality.

For Hermitian matrices \(B, C \) the notation \(B > C \) (\(B \geq C \)) means that \(B - C \) is positive definite (semidefinite); this is a Loewner ordering for Hermitian matrices.

A Cauchy Inequality for Matrices.

If \(X \) is a \(k \times n \) matrix and \(Y \) is an \(\ell \times n \) matrix of rank \(\ell \),

\[(4) \quad XX^* \geq XY^*(YY^*)^{-1}YX^*\]

is a matrix version of (1), and yields (1) when \(k = \ell = 1 \).
Inequality (4) follows quite simply by noting that $Y^*(YY^*)^{-1}Y$ is idempotent and hence has characteristic roots equal to 0 or 1. Consequently,

\[I \geq Y^*(YY^*)^{-1}Y. \]

Inequality (4) now follows by pre- and post-multiplication by X and X^* respectively.

Take $k = \ell$, let $A > 0$ and let U be a $k \times n$ matrix satisfying $UU^* = I$. The substitution of

\[X = UA^{1/2}, \quad Y = UA^{-1/2} \]

in (4) yields

\[UA^{-1}U^* \geq (UAU^*)^{-1}, \]

which is a matrix version of (2).

If A and A^{-1} are partitioned conformably as

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} A_{11}^{-1} & A_{12} \\ A_{21} & A_{22}^{-1} \end{pmatrix}, \]

then the choice $U = (I_k \ 0)$ in (6) yields

\[A_{11}^{11} \geq A_{11}^{-1}, \]

a result of Chollet (1982). An alternative proof of (8) is given by Marcus (1982). His proof is similar to the following alternative proof of (4).

If A is partitioned as in (7), then $A \geq 0$ and $A_{11} > 0$ if and only if

\[A_{11} > 0, \quad A_{22} \geq A_{21}A_{11}^{-1}A_{12}. \]

This equivalence is an immediate consequence of

\[\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}. \]

If

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} Y \\ X \end{pmatrix}(Y^*X^*) = \begin{pmatrix} YY^* & YX^* \\ YX^* & XX^* \end{pmatrix}, \]

where X is a $k \times n$ matrix and Y is an $\ell \times n$ matrix of rank ℓ, then (9) yields (4).
3. A Kantorovich Inequality for Positive Definite Matrices.

For \(z \in [mM], m > 0 \), the convexity of \(z^{-1} \) implies that

\[
(11) \quad z^{-1} \leq \frac{m + M}{mM} - \frac{z}{mM}.
\]

(See Marshall and Olkin, 1964, p. 509). If \(A \) has the representation \(A = \Gamma D_\alpha \Gamma^* \), where \(\Gamma \) is unitary and \(D_\alpha = \text{diag}(\alpha_1, \ldots, \alpha_n) \), and if \(0 < m \leq \alpha_i \leq M, \quad i = 1, \ldots, n \), then from (11)

\[
(12) \quad D_\alpha^{-1} \leq \frac{m+I}{mM} - \frac{D_\alpha}{mM},
\]

pre- and post-multiplication of (12) by \(\Gamma \) and \(\Gamma^* \), respectively, yields

\[
(13) \quad A^{-1} \leq \frac{m+M}{mM} I - \frac{A}{mM}.
\]

Consequently, if \(U \) is a \(p \times n \) matrix satisfying \(UU^* = I \), then

\[
(14) \quad UA^{-1}U^* \leq \frac{m+M}{mM} I - \frac{UAU^*}{mM} \leq \frac{(m+M)^2}{4mM} (UAU^*)^{-1}.
\]

The first inequality in (14) follows directly from (13) by pre- and post- multiplication by \(U \) and \(U^* \), respectively, and provides a stronger result than Kantorovich's inequality. The second inequality in (14) is obtained by completing the square.

If \(A \) is a Hermitian matrix satisfying \(0 < mI \leq A \leq MI \), then the choice \(U = (I, 0) \) in (14) yields an inequality complementary to (8):

\[
A^{11} \leq \frac{(m+M)^2}{4mM} A^{-1}_{11}.
\]

References

