MINIMAL CONDITIONS FOR WEAK CONVERGENCE OF
THE SAMPLE SPECTRAL DISTRIBUTION FUNCTION

by

T. W. Anderson
Linfeng You

Technical Report No. 312
May 1995

Prepared Under the Auspices
of
National Science Foundation Grant
DMS 93-01366
Ingram Olkin, Project Director

Department of Statistics
Stanford University
Stanford, California
MINIMAL CONDITIONS FOR WEAK CONVERGENCE OF THE
SAMPLE SPECTRAL DISTRIBUTION FUNCTION

by

T. W. Anderson
Linfeng You

Technical Report No. 312
May 1995

Prepared Under the Auspices
of
National Science Foundation Grant
DMS 93-01366
Ingram Olkin, Project Director

Department of Statistics
Stanford University
Stanford, California
MINIMAL CONDITIONS FOR WEAK CONVERGENCE OF THE
SAMPLE SPECTRAL DISTRIBUTION FUNCTION

T. W. Anderson and Linfeng You

In proving the weak convergence of the normalized empirical spectral distribution function of a stationary process to a Gaussian process, Rosenblatt and Grenander (1952), (1957) assumed that the eighth-order moment of the process is finite. This paper shows that existence of the fourth-order moment is sufficient when the process consists of independently identically distributed variables. For weak convergence of the normalized standardized empirical spectral distribution, only the second moment is needed.

May 18, 1995

Let \(\{y_t\} \) be a stationary stochastic process with \(\mathbb{E}y_t = 0 \) and \(\mathbb{E}y_t y_{t+h} = \sigma(h) \). The spectral distribution function is

\[
H(\lambda) = \frac{1}{\pi} \left[\sigma(0) \lambda + 2 \sum_{h=1}^{\infty} \frac{\sin \lambda h}{h} \sigma(h) \right], \quad 0 \leq \lambda \leq \pi.
\]

If \(y_1, \ldots, y_T \) is a sample from \(\{y_t\} \), define the sample covariance as \(c_h = \frac{1}{T-h} \sum_{t=1}^{T-h} y_t y_{t+h} / T, \quad h = 0, 1, \ldots, T - 1 \). The sample spectral distribution is

\[
H_T(\lambda) = \frac{1}{\pi} \left(c_0 \lambda + 2 \sum_{h=1}^{T-1} \frac{\sin \lambda h}{h} c_h \right), \quad 0 \leq \lambda \leq \pi.
\]

Under suitable conditions \(\sqrt{T} \left[H_T(\lambda) - H(\lambda) \right] \) converges weakly to a Gaussian stochastic process. A frequently quoted condition is that of Grenander and Rosenblatt (1952), (1957), namely, \(\mathbb{E}y_t^8 < \infty \) when the \(y_t \)'s are independently identically distributed (iid). We shall show that when the \(y_t \)'s are iid, the condition \(\mathbb{E}y_t^4 < \infty \) suffices.

The standardized spectral distribution

\[
F(\lambda) = \frac{1}{\pi} \left[\lambda + 2 \sum_{h=1}^{\infty} \frac{\sin \lambda h}{h} \frac{\sigma(h)}{\sigma(0)} \right]
\]

is useful for specifying patterns of dependence [Anderson (1993)]. The sample standardized spectral distribution is

\[
F_T(\lambda) = \frac{1}{\pi} \left[\lambda + 2 \sum_{h=1}^{T-1} \frac{\sin \lambda h}{h} \frac{c_h}{c_0} \right].
\]
We shall show that $\sqrt{T} \left[F_T(\lambda) - F(\lambda) \right]$ converges weakly if $\mathbb{E} y_t^2 < \infty$ when the y_t's are iid.

Theorem 1. If $\mathbb{E} y_t^4 < \infty$ and the y_t's are iid,

$$
(5) \quad \sqrt{T} [H_T(\lambda) - H(\lambda)] = \frac{\sqrt{T}}{\pi} \left\{ c_0 - \sigma(0) \right\} \lambda + 2 \sum_{h=1}^{T-1} \frac{\sin \lambda h}{h} c_h \overset{w}{\to} U(\lambda), \quad 0 \leq \lambda \leq \pi,
$$

where $U(\lambda)$ is a Gaussian process with $\mathbb{E} Z(\lambda) = 0$ and

$$
(6) \quad \mathbb{E} U(\lambda) U(\nu) = 2 \frac{\sigma^4}{\pi} \min(\lambda, \nu) + \frac{\lambda \nu}{\pi^2} \kappa_4,
$$

where $\sigma^2 = \sigma(0)$ and $\kappa_4 = \mathbb{E} y_t^2 - 3 \sigma^4$.

Proof. Convergence in distribution of $\sqrt{T} \left[F_T(\lambda_1) - F(\lambda_1) \right], \cdots, \sqrt{T} \left[F_T(\lambda_k) - F(\lambda_k) \right]$ for any $\lambda_1, \cdots, \lambda_k$ and k was shown by Grenander and Rosenblatt. The moment condition is used for tightness. We want to show that (5) converges uniformly in λ. Our proof is patterned after the method used by Harold Cramér in his lectures on Stochastic Processes in Stockholm, 1947-48, to develop Brownian motion and is similar to that used by Grenander and Rosenblatt (1952), (1957).

Lemma 1. If the y_t are iid and $\mathbb{E} y_t^2 < \infty$, then for any $\varepsilon > 0$ and $\eta > 0$ there exists a k_0 such that for $k > k_0$

$$
(7) \quad \Pr \left\{ \sup_{0 \leq \lambda \leq \pi} \left| \frac{\sqrt{T}}{\pi} \sum_{h=2^k}^{2^{k+1}} \frac{\sin \lambda h}{h} c_h \right| > \varepsilon \right\} < \eta
$$

for all $T > 2^k$.

Proof of Lemma 1. Consider

$$
(8) \quad \psi_m(\lambda) = \frac{\sqrt{T}}{\sum_{h=m+1}^{2m} \frac{\sin \lambda h}{h} c_h}
$$
for arbitrary m. (We define $c_h = 0$ for $h \geq T$.) Then

\[
|\psi_m(\lambda)|^2 \leq \sqrt{T} \sum_{h=m+1}^{2m} \frac{e^{i\lambda h}}{h} \frac{c_h}{c_g} \]

\[
= T \sum_{g, h=m+1}^{2m} \frac{e^{i\lambda(g-h)}}{gh} c_g c_h
\]

\[
= T \sum_{h=m+1}^{2m} \frac{c_h^2}{h^2} + 2TR \left[\sum_{g > h=m+1}^{2m} \frac{e^{i\lambda(g-h)}}{gh} c_g c_h \right]
\]

\[
= T \sum_{h=m+1}^{2m} \frac{c_h^2}{h^2} + 2TR \left[\sum_{j=1}^{m-1} e^{i\lambda j} \sum_{h=m+1}^{2m-j} \frac{c_h c_h+j}{h(h+j)} \right]
\]

\[
\leq \frac{T}{m^2} \sum_{h=m+1}^{2m} c_h^2 + 2T \sum_{j=1}^{m-1} \left| \sum_{h=m+1}^{2m-j} \frac{c_h c_h+j}{h(h+j)} \right|
\]

\[
= \Psi_m^2,
\]

say. Note that Ψ_m^2 is independent of λ. Define

\[
U_j = T \sum_{h=m+1}^{2m-j} \frac{c_h c_h+j}{h(h+j)}
\]

\[
= \frac{1}{T} \sum_{h=m+1}^{2m-j} \sum_{t=1}^{T-h} \sum_{s=1}^{T-(h+j)} \frac{y_t y_{t+h} y_{s+h+j}}{h(h+j)}
\]

\[
= X_j + Y_j,
\]

where $X_j = X_{1j} + X_{2j} + X_{3j} + X_{4j},$

\[
X_{1j} = \frac{1}{T} \sum_{h=m+1}^{2m-j} \frac{1}{h(h+j)} \sum_{t=1}^{T-(h+j)} y_t^2 y_{t+h} y_{t+h+j},
\]

\[
X_{2j} = \frac{1}{T} \sum_{h=m+1}^{2m-j} \frac{1}{h(h+j)} \sum_{t=h+j+1}^{T-h} y_t^2 y_{t+h} y_{t-(h+j)},
\]

\[
X_{3j} = \frac{1}{T} \sum_{h=m+1}^{2m-j} \frac{1}{h(h+j)} \sum_{t=1}^{T-(2h+j)} y_t y_{t+h} y_{t+2h+j},
\]

\[
X_{4j} = \frac{1}{T} \sum_{h=m+1}^{2m-j} \frac{1}{h(h+j)} \sum_{t=1}^{T-(h+j)} y_t y_{t+h} y_{t+h+j}.
\]
\begin{align}
(14) \quad X_{4j} &= \frac{1}{T} \sum_{h=m+1}^{2m-j} \frac{1}{h(h+j)} \sum_{t=j+1}^{T-h} y_t y_{t+h} y_{t-j}, \\
(15) \quad Y_j &= \frac{1}{T} \sum_{h=m+1}^{2m-j} \sum_{t=1}^{T-h} \sum_{s=1}^{T-(h+j)} \frac{y_t y_{t+h} y_{s} y_{s+h+j}}{h(h+j)}.
\end{align}

Since each term in Y_j has mean zero and is uncorrelated with the others, the variance of Y_j is the sum of the variances of the individual terms. We have

\begin{align}
(16) \quad EY_j^2 &= \frac{1}{T^2} \sum_{h=m+1}^{2m-j} \sum_{t=1}^{T-h} \sum_{s=1}^{T-(h+j)} \frac{1}{h^2(h+j)^2} \sigma^8 \\
&< \frac{1}{T^2} \sum_{h=m+1}^{2m-j} \sum_{t=1}^{T-h} \sum_{s=1}^{T-(h+j)} \frac{1}{h^2(h+j)^2} \sigma^8 \\
&= \frac{(T-h)(T-h-j)}{T^2} \sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \sigma^8.
\end{align}

By using Schwarz inequality, we have

\begin{equation}
(17) \quad E|Y_j| \leq \sqrt{\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \sigma^4}.
\end{equation}

Note that the highest moment of the y_t's that is involved is the second since the four indices of the y_t's in each summand of Y_j are different.

To treat X_j we use the following lemma:

Lemma 2. If the random variables X_1 and X_2 are uncorrelated with mean zero, then

\begin{equation}
(18) \quad E|X_1| \leq \left[E(X_1 + X_2)^2 \right]^{\frac{1}{2}} = \left[EX_1^2 + EX_2^2 \right]^{\frac{1}{2}}.
\end{equation}

Exchanging the summations in (11) allows us to write

\begin{equation}
(19) \quad X_{1j} = \frac{1}{T} \sum_{t=1}^{T-j-(m+1)} y_t^2 Z_{1t},
\end{equation}
where

\begin{equation}
Z_{1t} = \sum_{h \in S_{1t}} \frac{y_{t+h}y_{t+h+j}}{h(h+j)}
\end{equation}

and \(S_{1t} \) is an integer set contained in \(\{m+1, m+2, \ldots, 2m - j\} \). Consider \(Z_{1t} \) and \(\sum_{h=m+1}^{2m-j} y_{t+h}y_{t+h+j}/[h(h+j)] \) as \(X_1 \) and \(X_1 + X_2 \), respectively, in Lemma 1; then by using Lemma 1, we obtain

\begin{equation}
E|Z_{1t}| \leq \left[E\left(\sum_{h=m+1}^{2m-j} \frac{y_{t+h}y_{t+h+j}}{h(h+j)} \right)^2 \right]^{\frac{1}{2}}
\end{equation}

\begin{equation}
= \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^2.
\end{equation}

Since \(y_t \) and \(Z_{1t} \) in (19) are independent and \(T - j - (m + 1) < T \),

\begin{equation}
E|X_{1j}| \leq \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^2.
\end{equation}

To prove the same property for \(X_{2j}, X_{3j}, \) and \(X_{4j} \), we follow the same procedure as that used for \(X_{1j} \). We can define \(Z_{kt} \) of \(X_{kj}, k = 2, 3, \) and 4, similar to that for \(k = 1 \). Since for any fixed \(t \), \(Z_{kt} \) consists of at most \(2m - j - (m + 1) + 1 \) uncorrelated random variables with coefficients \(1/[h^2(h+j)^2]\), \(m + 1 \leq h \leq 2m - j \), we obtain

\begin{equation}
E|Z_{kj}| \leq \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^2, \quad k = 1, 2, 3, 4.
\end{equation}

Furthermore, the number of possible \(Z_{kt} \) terms in each \(X_{kj} \), \(k = 1, 2, 3, 4 \), is less than \(T \); so

\begin{equation}
E|X_{kj}| \leq \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^2, \quad k = 1, 2, 3, 4.
\end{equation}

Therefore, for \(m \leq T \)

\begin{equation}
E|\sum_{j=1}^{m-1} X_j| \leq \sum_{j=1}^{m-1} E|X_j|
\end{equation}

\begin{equation}
\leq \sum_{j=1}^{m-1} \sum_{k=1}^{4} E|X_{kj}|
\end{equation}

\begin{equation}
\leq 4 \sum_{j=1}^{m-1} \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^2.
\end{equation}
Then
\[
\mathcal{E}\Psi_m^2 \leq \frac{1}{m^2} T \sum_{h=m+1}^{2m} \mathcal{E}c_h^2 + 2 \sum_{j=1}^{m-1} \left[\mathcal{E}|Y_j| + \sum_{i=1}^{4} \mathcal{E}|X_{ji}| \right]
\]
\[
\leq \frac{\sigma^4}{m} + 2\text{const} \sum_{j=1}^{m-1} \left[\sum_{h=m+1}^{2m-j} \frac{1}{h^2(h+j)^2} \right]^{\frac{1}{2}} \sigma^4
\]
\[
\leq \frac{\sigma^4}{m} + \text{const} \sum_{j=1}^{m-1} \frac{1}{m^{3/2}}
\]
\[
< \frac{\text{const}}{m^{1/2}}.
\]

Note that the last inequality does not depend on \(T\).

From (26) Rosenblatt and Grenander (1957) show that with arbitrarily high probability \(\sum_{n=k}^{\log T+1} \Psi_{2n}^2\) is arbitrarily small for \(k\) sufficiently large. Lemma 1 follows from this fact.

The rest of the proof of Theorem 1 follows the proof of Theorem 2.2 of Durlauf (1991).

Tightness follows from Lemma 1. \(\blacksquare\)

Note that the condition \(\mathcal{E}y_t^4 < \infty\) is needed because it is involved in the variance of \(c_0\).

Theorem 2. If \(\mathcal{E}y_t^2 < \infty\) and the \(y_t\)'s are iid,

\[
\sqrt{T} \left[F_T(\lambda) - F(\lambda) \right] = \frac{2}{\pi c_0} \sqrt{T} \sum_{h=1}^{T-1} \frac{\sin \lambda h}{h} c_h \xrightarrow{w} Z(\lambda), \quad 0 \leq \lambda \leq \pi,
\]

where \(Z(\lambda)\) is a Gaussian process with \(\mathcal{E}Z(\lambda) = 0\) and

\[
\mathcal{E}Z(\lambda)Z(\nu) = 2 \left[\frac{\min(\lambda, \nu)}{\pi} - \frac{\lambda \nu}{\pi^2} \right].
\]

Proof. Because the \(y_t\)'s are iid with \(\mathcal{E}y_t^2 = \sigma^2 < \infty, c_0 \xrightarrow{p} \sigma^2\). Then Theorem 2 follows from Lemma 1. \(\blacksquare\)

The condition that the \(y_t\)'s are iid can be relaxed. For Lemma 1 we only need that the \(y_t\)'s are independent and the \(\mathcal{E}y_t^2\)'s are bounded.
REFERENCES

