Title: Permutation Tests 101

Abstract:

Given independent samples from P and Q, two-sample permutation tests allow one to construct exact level tests when the null hypothesis is $P = Q$. On the other hand, when comparing or testing particular parameters θ of P and Q, such as their means or medians, permutation tests need not be level α, or even approximately level α in large samples. Under very weak assumptions for comparing estimators, we provide a general test procedure whereby the asymptotic validity of the permutation test holds while retaining the exact rejection probability α in finite samples when the underlying distributions are identical. The ideas are broadly applicable and generalized to the Wilcoxon test, and to the k-sample problem of comparing general parameters, whereby a permutation test is constructed which is exact level α under the hypothesis of identical distributions, but has asymptotic rejection probability α under the more general null hypothesis of equality of parameters. A quite general theory is possible based on a coupling construction, as well as a key contingency argument for the multinomial and multivariate hypergeometric distributions. Time permitting, the results will be extended to multivariate settings and multiple testing.