THE COINCIDENCE OF MEASURE ALGEBRAS
UNDER AN EXCHANGEABLE PROBABILITY

BY
RICHARD A. OLSHEN

TECHNICAL REPORT NO. 30
FEBRUARY 10, 1970

PREPARED UNDER GRANT DA-ARO(D)-31-124-G1077
FOR
U.S. ARMY RESEARCH OFFICE

Reproduction in Whole or in Part is Permitted for
any purpose of the United States Government
This document has been approved for public release and sale;
its distribution is unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
THE COINCIDENCE OF MEASURE ALGEBRAS
UNDER AN EXCHANGEABLE PROBABILITY

By
Richard A. Olshen

TECHNICAL REPORT NO. 30
February 10, 1970

PREPARED FOR THE U. S. ARMY RESEARCH OFFICE
UNDER GRANT DA-ARO(D)-31-124-G1077

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government
This document has been approved for public release and sale;
its distribution is unlimited

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

This report is also being issued under The National Science Foundation Grant GP-15909
The Coincidence of Measure Algebras

Under an Exchangeable Probability

By

Richard A. Olshen
Stanford University

1. Introduction. This note is concerned with countably infinite product σ-fields and their invariant, tail, and exchangeable sub-σ-fields. Under an exchangeable probability the three sub-σ-fields coincide as measure algebras (the theorems (1) and (7)). An immediate consequence is the Hewitt-Savage $0\text{-}1$ law. A later section includes examples which by and large preclude extensions of (1) and (7) to probabilities merely invariant under the shift. However, at least one interesting conjecture of David Freedman remains to be settled. I thank him for helpful conversations.

The results presented here serve to clarify and extend a remark by Halmos about power product probabilities ([4], p. 493). They also extend a theorem set forth by Meyer ([7], p. 150) to the effect that in a unilateral countable product space, under an exchangeable probability, exchangeable and tail σ-fields coincide as measure algebras.\(^1\)

The final section contains the answer to a question posed in the paper [3] by Chung and Doob.

1. Meyer attributes this result to Hewitt and Savage [4], and indeed one can argue that it is implicit there. I do not agree that it is "the main result of Hewitt and Savage".
2. **Notation.** If \((\Omega, \mathcal{F})\) is a measurable space and \(I\) is either the set of integers \(\mathbb{Z}\) or the set of positive integers \(\mathbb{Z}^+\), then
\(\tilde{\Omega} = \tilde{\Omega}(I) = \Omega^I\), and \(\mathcal{F}\) is the product \(\sigma\)-field. To avoid trivialities, assume that \(\mathcal{F} \neq \{\Omega, \emptyset\}\). Here and in the remainder of the note \(\pi\) refers to a fixed permutation of \(I\) which leaves all but finitely many members fixed. To each \(\pi\) corresponds a \(1\)-\(1\), bimeasurable map \(a_\pi\) of \(\tilde{\Omega}\) onto itself. More precisely, if \(\tilde{\omega} \in \tilde{\Omega}\) has coordinates \(\tilde{\omega}(i)\), then \((a_\pi \tilde{\omega})(i) = \tilde{\omega}(\pi(i))\). The set \(E\) is exchangeable provided \(E \in \mathcal{F}\) and \(a_\pi E = E\) for each \(\pi\). The collection of such sets is a \(\sigma\)-field, the exchangeable \(\sigma\)-field; it is denoted by \(\mathcal{F}_e\). Context determines which \(I\) is pertinent.

The shift \(S\) maps \(\tilde{\Omega}\) onto itself by \((S\tilde{\omega})(i) = \tilde{\omega}(i+1)\); plainly, \(S\) is measurable. If \(I = \mathbb{Z}\), \(S\) is \(1\)-\(1\) and bimeasurable, while if \(I = \mathbb{Z}^+\), it is decidedly not \(1\)-\(1\). And in the latter case if \((\Omega, \mathcal{F})\) is the Borel structure of a Borel set, then \(S\) is bimeasurable iff \(\Omega\) is countable. This is a special case of a difficult theorem of Purves [8]; however, it is rather easy to give a direct proof based on the fact that there exist Borel subsets of the unit square whose projections on an axis are not Borel. If \(F \in \mathcal{F}\) and \(S^{-1}F = F\), then \(F\) is invariant. The invariant sets form a \(\sigma\)-field \(\mathcal{F}_I\), the invariant \(\sigma\)-field. As with \(\mathcal{F}_e\), the notation contains no reference to the index set \(I\).

Suppose \(J \subset I\). Define \(\mathcal{F}(J)\) to be the \(\sigma\)-field of subsets \(B\) of \(\mathcal{F}\) with this special property: if \(\tilde{\omega} \in B\) and \(\tilde{\omega}'(j) = \tilde{\omega}(j)\) for all \(j \in J\), then \(\tilde{\omega}' \in B\). Of course \(\mathcal{F}(I) = \mathcal{F}\).
3. **The case** $I = Z^+$. As the heading suggests, throughout this section I is the set of positive integers. Define the future tail σ-field to be $\bigcap_{n=1}^{\infty} \mathcal{F}(i: i \geq n)$, and denote it by \mathcal{F}^+. It is well-known and easily proved that in the present case, $\mathcal{F} \subset \mathcal{F}^+ \subset \mathcal{F}$, and the inclusions are proper. A probability P on \mathcal{F} is an exchangeable probability provided $B \in \mathcal{F}$ implies $P(a_i B) = P(B)$ for each π. A consequence of the following result is that under an exchangeable P, \mathcal{F} and \mathcal{F} are identical as measure algebras.

(1) **Theorem.** If P is exchangeable and $E \in \mathcal{F}$, then $P(E \Delta S^{-1} E) = 0$.

Proof. Fix $\gamma > 0$. A standard result from measure theory insures the existence of $m < \infty$ and $W \in \mathcal{F}(i: 1 \leq i \leq m)$ for which

$$
P(W \Delta E) < \gamma,
$$

where Δ means symmetric difference. Define a_{π^*} on \mathcal{F} by

$$
a_{\pi^*}(\omega_1, \omega_2, \ldots, \omega_m, \omega_{m+1}, \omega_{m+2}, \ldots) =
$$

$$
(\omega_{m+1}', \omega_1', \omega_2', \ldots, \omega_m', \omega_{m+2}', \ldots).
$$

Then $a_{\pi^*} W \Delta E = a_{\pi^*} W \Delta a_{\pi^*} E = a_{\pi^*} (W \Delta E)$; consequently

(3)

$$
P(a_{\pi^*} W \Delta E) = P(a_{\pi^*} (W \Delta E)) = P(W \Delta E).
$$

Now $S^{-1} W = a_{\pi^*} W$. So according to (2) and (3),

(4)

$$
P(S^{-1} W \Delta W) = P(a_{\pi^*} W \Delta W) \leq P(a_{\pi^*} W \Delta E) + P(E \Delta W) < 2\gamma.
$$

Also,
(5) \[P(S^{-1}W \triangle S^{-1}E) = P(S^{-1}(W \triangle E)) = P(W \triangle E) \]

for \(S \) is measure-preserving. (It is enough that \(P(S^{-1}C) = P(C) \)
when \(C \) is a cylinder, and this is given.)

Finally, (2), (4), and (5) together say that

\[P(E \triangle S^{-1}E) \leq P(E \triangle W) + P(W \triangle S^{-1}W) + P(S^{-1}W \triangle S^{-1}E) < 4\gamma \]

(6) **Corollary** (Hewitt-Savage 0-1 law). If \(P \) is a power product probability, then \(E \in \mathfrak{F} \) implies \(P(E) = P^2(E) \).

Proof. Let \(E^* = \lim \sup S^{-n}E \). In view of (1), \(P(E \triangle E^*) = 0 \).

Now \(E^* \in \mathfrak{F}_\infty \), so apply the Kolmogorov 0-1 law.

4. **The case** \(I = \mathbb{Z} \). When \(I = \mathbb{Z} \), as is the case in this section, the relationships among invariant, tail, and exchangeable \(\sigma \)-fields are not so simple as when \(I = \mathbb{Z}^+ \). In fact, there are several tail \(\sigma \)-fields of interest. Clearly, \(\mathfrak{F}^+ \) can be defined as in Section 3. But also the past tail \(\sigma \)-field \(\mathfrak{F}_- \) merits study, where \(\mathfrak{F}_- = \bigcap_{n=1}^{\infty} \mathfrak{F}(i: i \leq -n) \).

Obviously, \(\mathfrak{F}^+ \) and \(\mathfrak{F}_- \) are proper sub-\(\sigma \)-fields of \(\mathfrak{F}_\infty \), the smallest \(\sigma \)-field containing them both. I learned from David Freedman (oral communication) that also \(\mathfrak{F}^+_+ \) is a proper sub-\(\sigma \)-field of \(\mathfrak{F} = \bigcap_{n=1}^{\infty} \mathfrak{F}(i: |i| \geq n) \).

He begins with the special case in which \(\mathfrak{F} \) has four members as follows.

Let \(\mathfrak{F} = (\ldots, \delta_{-1}, \delta_0, \delta_1, \ldots) \) be a (bilateral) sequence of random variables with \(\delta_0, \delta_1, \ldots \) independent and identically distributed, and \(P(\delta_0 = 1) = P(\delta_0 = -1) = \frac{1}{2} \).
Suppose that for $i \geq 1$, $\delta_1 = \delta_1 (\delta_0 = 1)^{-1} (\delta_0 = 1)$. Then also $\delta_1, \delta_2, \ldots$ are independent; and, by the Kolmogorov 0-1 law, both past tail and future tail σ-fields of this process are trivial, but for every n, δ_0 is determined by any pair $\{\delta_i, \delta_{-1}\}$ with $i \neq 0$, hence by $\{\delta_i : |i| > n\}$. Thus \mathcal{F} is not trivial. To deduce the general case, pick $A \in \mathcal{B}$, $A \neq \Omega$, \emptyset. Fix $\omega_1 \in A$, $\omega_2 \in A^c$. For $B \in \mathcal{B}$, let $P(B) = 0$ if $\omega_1 \notin B$, $\omega_2 \notin B$; $P(B) = 1$ if $\omega_1 \in B$, $\omega_2 \in B$; $P(B) = \frac{1}{2}$ otherwise. By a variant of the Kolmogorov 0-1 law, \mathcal{F} is trivial under the power product probability \mathcal{F} on $\mathcal{F}(i : i \geq 0)$. Now for $n \in \mathbb{Z}$, let $\xi_n(\omega) = 1$ if $\omega(n) \in A$, $\xi_n(\omega) = -1$ otherwise. Then $\{\xi_n\}_{n \in \mathbb{Z}} \sim \{\delta_n\}_{n \in \mathbb{Z}}$ where $X \sim Y$ means that the random objects X and Y have the same distribution.

It is a very special case of the Tulcea extension theorem that \mathcal{F} can be extended to \mathcal{G} in such a way that $\{\xi_n\}_{n \in \mathbb{Z}} \sim \{\delta_n\}_{n \in \mathbb{Z}}$ and \mathcal{G} is trivial. Thus \mathcal{G} is trivial, while \mathcal{F} contains sets of probability $\frac{1}{2}$. The argument that $\mathcal{F} \neq \mathcal{G}$ implies a result in [5]. That is, if \mathcal{C}_n, $n=1,2,\ldots$, and \mathcal{D} are σ-fields of subsets of a fixed space, and under a fixed probability $\mathcal{C} = \bigcap_{n=1}^{\infty} \mathcal{C}_n$ is trivial, it does not necessarily follow that $\bigcap_{n=1}^{\infty} (\mathcal{C}_n \vee \mathcal{D})$ and $\mathcal{C} \vee \mathcal{D}$ coincide as measure algebras. (Of course set-theoretic inclusion in one direction is clear.) For if equality held, from two applications it would follow that under \mathcal{F}, \mathcal{G}, and \mathcal{G} coincide as measure algebras. Section 5 contains a strengthened version of the foregoing example.

\mathcal{G} consists precisely of those measurable sets whose measurability does not depend on any finite number of coordinates. (This characterization applies to \mathcal{G} in the context of Section 3.) Patently, $\mathcal{G} \subset \mathcal{F}$ properly, and $\mathcal{F} \subset \mathcal{G} \supset \mathcal{G}^+$, \mathcal{G}^-, \mathcal{G}, \mathcal{G}^-.

5
Theorem. Suppose \(P \) is exchangeable. Then \(\mathcal{F}, \mathcal{F}_+, \mathcal{F}_-, \mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2 \), and any intersection of these not contained in \(\mathcal{F}_+ \cap \mathcal{F}_- = (\emptyset, \emptyset) \) coincide as measure algebras.

Proof. The argument given for (1), only slightly altered, shows that \(E \in \mathcal{A} \) implies the existence of \(H \in \mathcal{F} \) satisfying \(P(FAH) = 0 \). Now take \(F \in \mathcal{F} \), and fix \(\gamma > 0 \). There exists \(m < \infty \) and \(G \in \mathcal{B}(1: |i| \leq m) \) satisfying \(P(FA) < \gamma \). So

\[
P(S^{-m}(FA)) = P(FA \cap S^{-m}G) < \gamma,
\]

and \(S^{-m}G \in \mathcal{B}(1: i \geq 0) \). Thus there exists \(G' \in \mathcal{B}(1: i \geq 0) \) for which \(P(FA) = 0 \). Let \(G^* = \limsup S^{-m}G' \). Then \(G^* \in \mathcal{F} \) and \(P(FA \cap S^{-m}G^*) = 0 \).

The rest is obvious.

This argument shows that if \(P \) is merely invariant under the shift, that is, if \(P(S^{-1}A) = P(A) \) for each \(A \in \mathcal{F} \), then as measure algebras \(\mathcal{F} \equiv \mathcal{F}_+ \). Also, \(\mathcal{F} \subset \mathcal{F}_- \). Rosenblatt noticed this in [10]. Krengel and Sucheston [6] have shown more.

5. Generalizations. Motivated by the last paragraph, one might hope that many of the conclusions of (1) and (7) still hold if \(P \) is not exchangeable but only invariant under the shift. The following examples substantiate my previous assertion that most of the conclusions no longer hold. In the first place, \(\mathcal{F} \) need not coincide with \(\mathcal{F}_+ \). Assume that for each \(i \in \mathbb{Z}, \delta_i = (\ldots, \delta_{i,-1}, \delta_{i,0}, \delta_{i,1}, \ldots) \) is a
sequence of random variables distributed as \(\cdots, \delta_{-1}, \delta_0, \delta_1, \cdots \) in the last section, and that \(\cdots, \delta_{-1}, \delta_0, \delta_1, \cdots \) are independent. Let
\[\mathcal{X}_1 = (\cdots, \gamma_{i,-1}, \gamma_{i,0}, \gamma_{i,1}, \cdots) \]
be a (bilateral) sequence of sequences, where \(\gamma_{i,j} = \delta_{i+j,j} \). It is easy to see that the \(\mathcal{X} \) process is stationary and that its future tail \(\sigma \)-field is trivial because it is the smallest \(\sigma \)-field containing the future tail of each \(\delta \) sequence. The past tail is also trivial. But the observations \(\{x_i : |i| > n\} \) determine every \(\delta_{i,0} \) for every \(n \), and so the \(\sigma \)-field corresponding to \(\delta \) is as rich as the Borel unit interval. Freedman has put forward the attractive conjecture that if \(\mathcal{B} \) is finite, then \(\mathcal{X}^+ \) and \(\delta \) coincide as measure algebras. A very special case of this conjecture will be mentioned at the end.

One direction in which something of (7) can be salvaged is the coincidence of \(\tilde{\mathcal{B}}^+ \) and \(\tilde{\mathcal{B}}^- \) in case \(\mathcal{B} \) is finite. To see this, apply Theorem 2 of [9] first to \(\mathcal{B}(i: i < 0) \) and \(\mathcal{S}_{-1} \), then to \(\mathcal{B}(i: i > 0) \) and \(\mathcal{S} \), and find that both \(\tilde{\mathcal{B}}^+ \) and \(\tilde{\mathcal{B}}^- \) correspond to Pinsker's maximal partition — what Rohlin and Sinai term \(\pi(T) \). Be warned that in general \(\tilde{\mathcal{B}}^+ \) and \(\tilde{\mathcal{B}}^- \) can be very different. For suppose \(\cdots, x_{-1}, x_0, x_1, \cdots \) is any sequence of independent, identically distributed, nondegenerate random variables, and for \(i \in \mathbb{Z} \),
\[\tilde{\mathcal{X}}_1 = (\cdots, x_{i-2}, x_{i-1}, x_i). \]
Then \(\{\tilde{x}_i\} \) is stationary; clearly its past tail is trivial, and its future tail is full. Of course \(\{\tilde{x}_i\} \), as well as the previous \(\{x_i\} \), can be realized on the unit interval. And note that \(\{x_i\} \) is Markov; the remaining examples share this property.
It is hopeless to expect $\tilde{\sigma}$ and $\tilde{\delta}^+$, or $\tilde{\delta}^-$, to coincide. A stationary process with trivial future or trivial past is mixing (see [1], page 121, or [2], Theorem 2), and there are stationary Markov processes which are ergodic but not mixing. In fact, any recurrent, countable state Markov chain with stationary transition probabilities and cyclically moving subclasses has a nontrivial future tail σ-field. Much more is shown in [2]. The third example of that paper is a stationary Markov chain with three states, and tail and exchangeable σ-fields which do not coincide as measure algebras. While the paper treats unilateral processes, the conclusions persist in the bilateral case. More precisely, Theorem 1 becomes: if $\{x_n\}_{n \in \mathbb{Z}}$ is a stationary Markov chain with countable state space, and A is determined measurably by the x_n's but does not depend on any finite number of them, then $P(A|x_0 = i) = P^2(A|x_0 = i)$ for each state i. According to the extension of Corollary 1, $P(A|x_0 = i) = P(A|x_0 = j)$ if i and j are in the same cyclically moving subclass. Together, these facts and the aforementioned Example 3 substantiate the assertion about $\tilde{\sigma}$ and $\tilde{\delta}$. The facts along with the results of [2] also serve to establish Freedman's conjecture in the special case that P is the measure of a Markov process.
6. Intersections and products of σ-fields. The distribution of the random variables $\tilde{\omega}$ in Section 4 can be utilized to solve a problem previously posed ([3], p. 414). Assume that Ω is a set and that for each real t \mathcal{F}_t is a σ-field of subsets of Ω. The \mathcal{F}_t's are nondecreasing. Let \mathcal{B}_t be the σ-field of subsets of the interval $(-\infty, t]$, and for real s and s' let $\mathbf{B}_s \times \mathbf{B}_s'$ be the product σ-field on $(-\infty, s] \times \Omega$. In the reference cited it was noted that for each real a,

$$\bigcap_{\delta > 0} (\mathbf{B}_{a+\delta} \times \mathbf{B}_{a+\delta}) = \bigcap_{\delta > 0} (\mathbf{B}_a \times \mathbf{B}_{a+\delta}).$$

However there remained the problem as to whether these two σ-fields coincide as sets with $\mathbf{B}_a \times \mathbf{B}_a^+$, where $\mathbf{B}_a^+ = \bigcap_{\delta > 0} \mathbf{B}_{a+\delta}$. Meyer has answered the question affirmatively when the product fields are augmented by the null sets of a product measure on $\mathcal{F} \times \bigvee_t \mathcal{F}_t$, where \mathcal{F} is the Borel σ-field on $(-\infty, \infty)$. But the question as originally posed has a negative answer. For there exist a family of σ-fields \mathcal{F}_t and a probability on $\mathbf{B}_1 \times \bigvee_t \mathcal{F}_t$ under which $\bigcap_{\delta > 0} (\mathbf{B}_1 \times \mathbf{B}_{1+\delta})$ and $\mathbf{B}_1 \times \mathbf{B}_{1+}$ do not coincide as measure algebras.

Let $\Omega' = \{-1, 1\}$, and give Ω' the discrete σ-field. Let $Z' = Z^+ \cup \{0\}$, and let $\Omega = (\Omega')^Z'$. Give Ω the product σ-field; call it \mathcal{B}. The σ-fields $\mathcal{B}(i: i \geq n)$ are defined as in Section 2. For $i\in Z'$ and $\tilde{\omega} \in \Omega$ let $X_i(\tilde{\omega}) = \tilde{\omega}(i)$, the i^{th} coordinate of $\tilde{\omega}$. There exists a probability P on \mathcal{B} under which (X_0, X_1, \ldots) has the same distribution as $(\delta_0, \delta_1, \ldots)$ in Section 4. For $i \in \mathbb{Z}^+$ let X_{i-1} be the i^{th} Rademacher function on the unit interval, so if $\gamma \in [0, 1]$ $X_{i-1}(\gamma)$ is 1 or -1 according as the integer j for which $j-1/2^i \leq \gamma < j/2^i$ is odd or even.
Extend the domain of definition of \(X_{-1} \) to the interval \((-\infty, 1]\) by \(X_{-1}(y) = 0 \) if \(y < 0 \).

In an abuse of notation the \(X_i \)'s will be viewed as functions on \((-\infty, 1]\times \mathbb{N} \): for \(i \geq 0 \) \(X_i((y, \bar{\omega})) = \bar{\omega}(i) \), and for \(i < 0 \) \(X_i((y, \bar{\omega})) = X_i(y) \). It is easy to show that \(P \) can be extended to \(\mathcal{F}_1 \times \mathfrak{F} \) in such a way that the sequence \(\ldots X_{-1}, X_0, X_1, \ldots \) has the same distribution as the aforementioned sequence \(\ldots \mathfrak{F}_i \mathfrak{F}_0, \mathfrak{F}_1, \ldots \).

Now the \(\mathfrak{F}_t \)'s will be defined. When \(t \leq 0 \) let \(\mathfrak{F}_t = \{\emptyset, \omega\} \); when \(t \geq 2 \) let \(\mathfrak{F}_t = \mathfrak{F} \); when \(n = 1, 2, \ldots \) and \(1/n + 1 < t \leq 1/n \), let \(\mathfrak{F}_t = \mathfrak{F}(i: i \geq n-1) \).

For each \(\delta > 0 \) the event \(A = [X_0 = 1] \) differs by a \(P \)-null event from an event in \(\mathfrak{F}_1 \times \mathfrak{F}_{1+\delta} \). Therefore \(A \) differs by a \(P \)-null event from an event in \(\bigcap_{\delta > 0} (\mathfrak{F}_1 \times \mathfrak{F}_{1+\delta}) \). Now suppose that there exists an event \(B^* \) in \(\mathfrak{F}_1 \times \mathfrak{F}_{1+} \) for which \(P(B^* A) = 0 \). This assumption will lead to a contradiction which will complete the argument that \(\mathfrak{F}_1 \times \mathfrak{F}_{1+} \) and \(\bigcap_{\delta > 0} (\mathfrak{F}_1 \times \mathfrak{F}_{1+\delta}) \) do not coincide as measure algebras.

To begin fix \(\varepsilon, 0 < \varepsilon < 1/2 \). It follows from elementary arguments that there exists \(n \in \mathbb{Z}^+ \), \(B_1, \ldots, B_n \in \mathfrak{F}_1 \), and \(F_1, \ldots, F_n \in \mathfrak{F}_{1+} \) satisfying

\[
P(A \Delta \left[\bigcup_{i=1}^n (B_i \times F_i) \right]) < \varepsilon.
\]

The Kolmogorov 0-1 law implies that

\[
P((-\infty, 1] \times F) \text{ is 0 or 1 for each } F \in \mathfrak{F}_{1+}. \text{ So for each fixed } i \text{ either } P(B_i \times F) = 0 \text{ or } P((B_i \times [B_i \times F_i])) = 0.
\]

With no loss of generality, assume that \(F_i = \Omega \) for each \(i \). Moreover, for each \(i \) also

\[
P((B_i \times \Omega) \setminus ((B_i \cap [0, 1]) \times \Omega)) = 0 \text{ because this event is a subset of } [X_{-1} = 0]. \text{ Again with no loss of generality, assume that each } B_i \text{ is a Borel subset of the interval } [0, 1]. \text{ Thus } B = \bigcup_{i=1}^n (B_i \times F_i) \text{ is determined measureably by } \{X_{-1}\}_{i \in \mathbb{Z}^+}. \text{ Clearly } A \text{ and } B \text{ are independent. \ Recall}
that $P(A \triangle B) < \frac{1}{2}$. Now $P(A \triangle B) = P(A) + P(B) - 2P(A)P(B)$. Since
$P(A) = P(X_0 = 1) = \frac{1}{2}, \frac{1}{2} + P(B) - P(B) < \frac{1}{2}$, which is impossible.

Loosely speaking, the foregoing construction shows that, when applied
to σ-fields, the operations countable intersection and product do not
commute. It would be interesting to know whether finite intersection and
product commute.
REFERENCES

1. ORIGINATING ACTIVITY (Corporate author)
 Stanford University
 Department of Statistics
 Stanford, California

2a. REPORT SECURITY CLASSIFICATION
 Unclassified

2b. GROUP
 Unclassified

3. REPORT TITLE
 THE COINCIDENCE OF MEASURE ALGEBRAS UNDER AN EXCHANGEABLE PROBABILITY

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
 Technical Report, February 1970

5. AUTHOR(S) (Last name, first name, initial)
 Olshen, Richard A.

6. REPORT DATE
 10 February 1970

7a. TOTAL NO. OF PAGES
 12

7b. NO. OF REFS
 10

8a. CONTRACT OR GRANT NO.
 DA-ARO(D)-31-124-G1077

9e. ORIGINATOR'S REPORT NUMBER(S)
 Technical Report No. 30

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
 NSF GP-15909 Technical Rpt. No. 9

10. AVAILABILITY/LIMITATION NOTES
 This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES
 Army Research Office
 Durham, North Carolina

12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT
 This note is concerned with countably infinite product \(\sigma \)-fields and their invariant, tail, and exchangeable sub-\(\sigma \)-fields. Under an exchangeable probability the three sub-\(\sigma \)-fields coincide as measure algebras (the theorems (1) and (7)). An immediate consequence is the Hewitt-Savage 0-1 law. A later section includes examples which by and large preclude extensions of (1) and (7) to probabilities merely invariant under the shift. However, at least one interesting conjecture of David Freedman remains to be settled.

 The results presented here serve to clarify and extend a remark by Halmos about power product probabilities. They also extend a theorem set forth by Meyer to the effect that in a unilateral countable product space, under an exchangeable probability, exchangeable and tail \(\sigma \)-fields coincide as measure algebras.

 The final section contains the answer to a question posed in the paper by Chung and Doob.
INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

5. **DESCRIPTION OF REPORT:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

7. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

8. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing text.

9. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

10. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

11. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

12. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

14. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through..."
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through..."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through..."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

15. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

16. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

17. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

18. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.