FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

BY

T. L. LAI and D. SIEGMUND

TECHNICAL REPORT NO. 16
MAY 1982

PREPARED UNDER CONTRACT
N00014-77-C-0306 (NR-042-373)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

by

T.L. Lai and D. Siegmund

Columbia University Stanford University

TECHNICAL REPORT NO. 16
May 1982

Prepared under the Auspices of
Office of Naval Research Contract
N00014-77-C-0306(NR-042-373)

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

Also issued as Technical Report No. 189 under National Science Foundation Grant MCS80-24649 Stanford University, Department of Statistics.
FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

BY T. L. LAI and D. SIEGMUND

ABSTRACT

For a first order non-explosive autoregressive process with unknown parameter $\beta \in [-1,1]$, it is shown that if data are collected according to a particular stopping rule, the least squares estimator of β is asymptotically normally distributed uniformly in β. In the case of normal residuals, the stopping rule may be interpreted as sampling until the observed Fisher information reaches a preassigned level. The situation is contrasted with the fixed sample size case, where the estimator has a non-normal limiting distribution when $|\beta| = 1$.

AMS 1970 Subject Classification: Primary 62L10

Key Words and Phrases. Stopping rule, fixed width confidence interval, uniform asymptotic normality.
1. Introduction and Summary.

Consider the first order, non-explosive, autoregressive model

\[(1.1) \quad x_n = \beta x_{n-1} + \epsilon_n \quad (n = 1, 2, \ldots) \]

where \(\epsilon_1, \epsilon_2, \ldots\) are independent, identically distributed random variables with \(E\epsilon_1 = 0\) and \(0 < E\epsilon_1^2 = \sigma^2 < \infty\). The initial state \(x_0\) is a random variable (not depending on \(\beta\)) which is stochastically independent of \(\{\epsilon_n\}\). The constant \(\beta \in [-1, 1]\) is an unknown parameter, which at stage \(n\) is customarily estimated by the least squares estimate,

\[(1.2) \quad b_n = (\sum_{i=1}^{n} x_{i-1} x_i) / (\sum_{i=1}^{n} x_{i-1}^2) = \beta + (\sum_{i=1}^{n} x_{i-1} \epsilon_i) / (\sum_{i=1}^{n} x_{i-1}^2) \]

If the \(\epsilon\)'s are normally distributed, then \(b_n\) is also the maximum likelihood estimator of \(\beta\), and the observed Fisher information about \(\beta\) contained in \(x_0, x_1, \ldots, x_n\) is

\[(1.3) \quad -\frac{d^2}{d\beta^2} \left[\beta \sum_{i=1}^{n} x_{i-1} x_i - \beta^2 / 2 \sum_{i=1}^{n} x_{i-1}^2 \right] = \sum_{i=1}^{n} x_{i-1}^2 \]

It is well-known and easy to prove that for fixed \(\beta \in (-1, 1)\), as \(n \to \infty\),

\[(1.4) \quad b_n \overset{d}{\to} N(0, \sigma^2) \]

Here \(N(\mu, \sigma^2)\) denotes a normal random variable with mean \(\mu\) and variance \(\sigma^2\), and \(\overset{d}{\to}\) indicates convergence in law. See, for example, Anderson (1959).
However, for $\beta = \pm 1$, an entirely different limiting distribution occurs (Rao, 1978). For example, if $\beta = 1$, $x_n - x_0$ is the sum of i.i.d. random variables $\varepsilon_1 + \cdots + \varepsilon_n$, and summation by parts in (1.2) yields

$$\left(\sum_{i=1}^{n} x_{i-1}^2 \right)^{1/2} (b_n - 1) = \frac{1}{2} n^{-1} \left(x_n^2 - x_0^2 - \sum_{i=1}^{n} \varepsilon_i^2 \right) / \left(n^{-2} \sum_{i=1}^{n} x_{i-1}^2 \right)^{1/2}.$$

By Donsker's theorem this converges in law to

$$(1.5) \quad \frac{\sigma}{2} (W^2(1) - 1) / \left(\int_0^1 W^2(t) dt \right)^{1/2},$$

where \{W(t), 0 \leq t \leq 1\} is a standard Brownian motion process. Of course, this result indicates that the asymptotic normality of (1.4) breaks down for β in a neighborhood of ± 1, in the sense that for any given n, no matter how large, there will be a neighborhood of ± 1 in which one should not expect (1.4) to yield reasonable approximations.

Examples in econometrics having values of β close to 1 are cited by Evans and Savin (1981) and by Fuller (1981).

In this paper we consider the asymptotic behavior of \{\beta_n\} under a sequential sampling scheme which measures time in terms of accumulated (observed) Fisher information. Define

$$(1.6) \quad N_c = \text{first } n \geq 1 \text{ such that } \frac{n}{1} \sum_{i=1}^{n} x_{i-1}^2 \geq c \sigma^2.$$

Our principal result (Theorem 2.1) is that as $c \to \infty$

$$(1.7) \quad \left(\sum_{i=1}^{N_c} x_{i-1}^2 \right)^{1/2} (b_{N_c} - \beta) \overset{\mathcal{L}}{\to} N(0, \sigma^2)$$

uniformly in β for $-1 \leq \beta \leq 1$.

2
The sampling rule (1.6) is motivated by the theory of fixed width confidence intervals, cf. Anscombe (1953), Chow and Robbins (1965), or Grambsch (1982). Some precedent for the rather surprising uniformity in the convergence of (1.7) is found in the work of Siegmund (1981), although the underlying reasons are quite different in the present case.

When it is feasible to use the sampling rule (1.6), its advantages appear to be threefold: (i) the accuracy of \(b_{N_c} \) as an estimator of \(\beta \) (as measured by the variance of its asymptotic distribution) is approximately a small constant \(c^{-1} \), rather than an uncontrolled random variable, (ii) the appropriate asymptotic distribution theory does not depend on the value of the unknown parameter \(\beta \); and (iii) the convergence to asymptotic normality is much more rapid, even when \(\beta \) is not near the values \(\pm 1 \). (See Section 3.)

The remainder of this paper is arranged as follows. Section 2 contains a proof of (1.7). In Section 3 we give the results of some simulations comparing confidence intervals obtained by indiscriminate use of (1.4) for fixed sample sizes with (1.7) for sequentially determined sample sizes. Section 4 is concerned with some related asymptotic results, and in particular the appropriate modification of (1.6) when \(\sigma \) is unknown.

Partial results for the model \(x_n = \alpha + \beta x_{n-1} + \varepsilon_n \) indicate that the multiparameter case can be appreciably more complicated. We expect to consider this problem in the future.

2. **Uniform Asymptotic Normality of** \(b_{N_c} \).

The main result of this section is the proof of (1.7) (Theorem 2.1 below). Our approach is motivated by the observation that
\[
\frac{x_n - \beta}{\sqrt{\sum_{i=1}^{N_c} (x_i - \beta)^2 / \sum_{i=1}^{N_c} (x_i - \beta)^2}}
\]
is of the form of a martingale divided by the sum of
the conditional variances of its increments. The novelty of our approach lies in systematic exploitation of the condition (2.6) and the simple identity (2.16). We begin with some preliminary probabilistic results.

Proposition 2.1. Let \(x_n, \varepsilon_n, n = 0, 1, \ldots \) be random variables adapted to the increasing sequence of \(\sigma \)-algebras \(\mathcal{F}_n, n = 0, 1, \ldots \). Let \(\{P_\theta, \theta \in \Theta\} \) be a family of probability measures such that under every \(P_\theta \)

\[
(2.1) \quad \varepsilon_1, \varepsilon_2, \ldots \text{ are i.i.d. with } E_\theta \varepsilon_1 = 0, \ E_\theta \varepsilon_1^2 = 1; \\
(2.2) \quad \sup_{\theta} E_\theta[\varepsilon_1^2; |\varepsilon_1| > a] \to 0 \text{ as } a \to \infty; \\
(2.3) \quad \varepsilon_n \text{ is independent of } \mathcal{F}_{n-1} \text{ for each } n \geq 1; \\
(2.4) \quad P_\theta\{\sum_{i=0}^{\infty} x_{i}^2 = \infty\} = 1; \\
(2.5) \quad \sup_{\theta} P_\theta\{x_n^2 > a\} \to 0 \text{ as } a \to \infty \text{ for each } n \geq 0; \\
(2.6) \quad \lim_{m \to \infty} \sup_{\theta} P_\theta\{x_n^2 \geq \delta \sum_{i=0}^{n-1} x_{i}^2 \text{ for some } n \geq m\} = 0.
\]

For \(c > 0 \) let

\[
(2.7) \quad T_c = \inf\{n: \sum_{i=1}^{n} x_{i-1}^2 \geq c\}, \quad (\inf \phi = +\infty).
\]

Then uniformly in \(\theta \in \Theta \) and \(-\infty < t < \infty \)

\[
(2.8) \quad P_\theta\{c^{-1/2} \sum_{i=1}^{T} x_{i-1}^{-1} \varepsilon_i \leq t\} \to \Phi(t) \text{ as } c \to \infty.
\]
Remark. For the autoregressive model (1.1), if we identify \(\theta \) with the autoregressive parameter \(\beta \), all the conditions of Proposition 2.1 are trivially verified, with the single exception of (2.6).

Proposition 2.1 is proved by reducing it to the following convenient martingale central limit theorem (cf. Freedman, 1971, pp. 90-92).

Lemma 2.1. Given \(0 < \delta < 1 \), there exists \(\rho(\delta) > 0 \) with \(\lim_{\delta \to 0} \rho(\delta) = 0 \)

such that for any martingale difference sequence \(\{u_n, \mathcal{F}_n, n \geq 0\} \) satisfying

\[
\left| u_n \right| \leq \delta \text{ for all } n
\]

and

\[
\sum_{1}^{\infty} \mathbb{E}(u_n^2 | \mathcal{F}_{n-1}) > r \quad \text{a.s.,}
\]

if \(\tau = \inf\{n: \sum_{1}^{n} \mathbb{E}(u_i^2 | \mathcal{F}_{i-1}) > r\} \), then \(P\{\tau < \infty\} = 1 \)

and

\[
\sup_{x} \left| P\left(\sum_{1}^{\tau} u_1 \leq x\right) - \Phi(x/r^{1/2})\right| \leq \rho(\delta/r^{1/2})
\]

Proof of Proposition 2.1.

By (2.4) \(P_{\theta}\{T_c < \infty\} = 1 \), and obviously \(P_{\theta}\{\lim_{c \to \infty} T_c = \infty\} = 1 \) for all \(\theta \). Let \(0 < \delta < 1 \) and define \(\tilde{x}_n = x_n \) if \(x_n^2 \leq \delta^2 c \) and \(\tilde{x}_n = \delta c^{1/2} \) otherwise. Then for all \(\theta \)

\[
P_{\theta}\{x_n \neq \tilde{x}_n \text{ for some } n < T_c\}
\]

\[
\leq \sum_{i=1}^{m} P_{\theta}\{x_{i-1}^2 > \delta^2 c\} + P_{\theta}\{T_c > m, x_n \neq \tilde{x}_n \text{ for some } m \leq n < T\}
\]

\[
\leq \sum_{i=1}^{m} P_{\theta}\{x_{i-1}^2 > \delta^2 c\} + P_{\theta}\{x_n^2 > \delta^2 \sum_{0}^{n-1} x_i^2 \text{ for some } n \geq m\}
\]

5
which is \(\leq 2\delta \) if we first choose \(m \) large enough and use (2.6), then choose \(c \) large and use (2.5). Hence if

\[
\Omega_c = \{x_n = \tilde{x}_n \text{ for all } n < T_c \},
\]

then for all large \(c \)

\begin{equation}
(2.11) \quad P(\Omega_c) \geq 1 - 2\delta
\end{equation}

Define \(\tilde{\varepsilon}_n = \varepsilon_n I\{ |\varepsilon_n| \leq \delta^{-1/2} \} \) and \(\tilde{\varepsilon}_n = \varepsilon_n - \tilde{\varepsilon}_n \). Then under \(P_0 \)

\[\{c^{-1/2}\tilde{\varepsilon}_{n-1}(\tilde{\varepsilon}_n - E_0\tilde{\varepsilon}_n), \mathcal{F}_n, 0 \leq n < \infty \} \]

is a martingale difference sequence satisfying

\[
|c^{-1/2}\tilde{\varepsilon}_{n-1}(\tilde{\varepsilon}_n - E_0\tilde{\varepsilon}_n)| \leq 2\delta^{1/2}
\]

and by (2.4)

\[
P_0\{\sum_0^\infty \tilde{x}_n^2 = \infty\} = 1
\]

also by (2.2), as \(\delta \to 0 \)

\begin{equation}
(2.12) \quad v_0(\delta) = \text{var}_0\tilde{\varepsilon}_1 \to 1
\end{equation}

uniformly in \(\theta \). Hence, if

\[
\tau_c = \inf\{n: \sum_{1}^{n} \tilde{x}_{1-1}^2 > c\},
\]

then by Lemma 2.1
\[(2.13) \quad |P_\theta(c^{-1/2}\sum_1^\tau \tilde{x}_{i-1}(\tilde{e}_i - E_0\tilde{e}_i) \leq t) - \Phi(t/(\nu_0(\delta))^{1/2})| \leq \rho\left[2(\delta/\nu_0(\delta))^{1/2}\right].\]

On Ω_c, $\tau_c = T_c$ and

\[(2.14) \quad |\sum_1^\tau \tilde{x}_{i-1}(\tilde{e}_i - E_0\tilde{e}_i) - \sum_1^\tau x_{i-1}e_i| = |\sum_1^\tau \tilde{x}_{i-1}(\tilde{e}_i - E_0\tilde{e}_i)|.\]

By Wald's identity (cf. Chow, Robbins, and Siegmund, 1971, p. 23)

\[(2.15) \quad E_\theta[c^{-1/2}\sum_1^\tau \tilde{x}_{i-1}(\tilde{e}_i - E_0\tilde{e}_i)]^2 = c^{-1}(1-\nu_0(\delta))E_\theta(\sum_1^\tau \tilde{x}_{i-1}^2)\]

\[\leq (1-\nu_0(\delta))(1+\delta^2)\]

The Proposition follows from (2.11)-(2.15) by letting $\delta \to 0$.

For ease of reference we state without proof the following lemma.

It is related to the strong law of large numbers given e.g. by Neveu (1965, p. 148), whose method of proof can be adapted to the present purpose. Alternatively it follows easily from Proposition 2 of Robbins and Siegmund (1971) and a straightforward calculation along the lines of their Lemma 1.

Lemma 2.2. Under the measurability assumptions of Proposition 2.1, (2.1), and (2.3), for each $\gamma > \frac{1}{2}$ and increasing sequence of positive constants $c_n \to +\infty$, and for each $\delta > 0$

\[\sup_\theta P_\theta\left(|\sum_1^n x_{i-1}e_i| \geq \delta \max(c_n, (\sum_1^n x_{i-1})^\gamma)\right) \text{ for some } n \geq m \to 0\]

as $m \to \infty$.

We now return to the autoregressive model (1.1) and write P_β to denote dependence of probabilities on the parameter β. (The joint distribution of
\(x_0, \varepsilon_1, \varepsilon_2, \ldots \), however, is assumed not to depend on \(\beta \). The principal result of this section is

Theorem 2.1. Define \(\{b_n, n = 2,3,\ldots\} \) by (1.2) and \(N_c \) by (1.6). If \(\varepsilon_1, \varepsilon_2, \ldots \) are i.i.d. with mean 0 and variance \(\sigma^2 \), and are independent of \(x_0 \), then

\[
\lim_{c \to \infty} P_c \left\{ \sum_{i=1}^{N_c} (b_{N_c} - \beta) \leq t \right\} = \Phi(t/\sigma)
\]

uniformly for \(-1 \leq \beta \leq 1\) and \(-\infty < t < \infty\).

Proof. Theorem 2.1 follows immediately from Proposition 2.1 once we have verified (2.6). To this end, note that squaring (1.1) and summing yields

\[
(2.16) \quad x_n^2 + (1-\beta^2) \sum_{i=0}^{n-1} x_i^2 - x_0^2 = \sum_{i=1}^{n} \varepsilon_i^2 + 2\beta \sum_{i=1}^{n} x_{i-1} \varepsilon_i.
\]

Let \(|\beta| \leq 1 \) and \(0 < \lambda < \sigma^2/4 \). Let

\[
(2.17) \quad \Omega_{m,\lambda} = \left\{ \left| \sum_{l=1}^{n} \varepsilon_l^2 - \sigma^2 \right| < \lambda, \left| \sum_{l=1}^{n} x_{l-1} \varepsilon_l \right| < \max(\lambda n, (\sum_{l=1}^{n} x_{l-1}^2)^{2/3}) \text{ for all } n \geq m \right\}.
\]

On \(\Omega_{m,\lambda} \), if \(n \geq m \) and \(x_n^2 \leq \lambda n \), then (2.16) implies

\[
\sum_{l=0}^{n-1} x_l^2 \geq (\sigma^2 - \lambda)n - \lambda n - 2 \max(\lambda n, (\sum_{l=1}^{n} x_{l-1}^2)^{2/3})
\]

and hence for all \(m \) sufficiently large

\[
(2.19) \quad \sum_{l=0}^{n-1} x_l^2 \geq (\sigma^2 - 4\lambda)n \geq (\sigma^2 \lambda^{-1} - 4) x_n^2
\]
On the other hand, since $|x_{n-1}| \geq |\beta x_{n-1}| \geq |x_n| - |\epsilon_n|$, it follows that

$$
\min_{1 \leq j \leq k} |x_{n-j}| \geq |x_n| - \sum_{j=0}^{k-1} |\epsilon_{n-j}| \geq |x_n| \left\{ 1 - \sum_{j=0}^{k-1} |\epsilon_{n-j}| / (\lambda n)^{1/2} \right\}
$$

if $x_n^2 \geq \lambda n$. Hence $n \geq k$ and $x_n^2 \geq \lambda n$ imply

$$
(2.19) \quad \sum_{i=1}^{n-1} x_i^2 / x_n^2 \geq k^2 \left\{ 1 - \sum_{j=0}^{k-1} |\epsilon_{n-j}| / (\lambda n)^{1/2} \right\};
$$

and since $\sum_{j=0}^{k-1} |\epsilon_{n-j}|$, $n = k, k+1, \ldots$ are i.i.d. with finite second moment, the right hand side of (2.19) converges to k^2 with probability one, at a rate which does not involve β. Hence by choosing λ so small that $2/(\sigma^2 \lambda^{-1} - 4) < \delta$ and $k^2 > 1/\delta$, we see by (2.18) and (2.19) that

$$
\lim_{m \to \infty} \sup_{|\beta| \leq 1} \mathbb{P}_\beta \{ x_n^2 \geq \delta \sum_{i=0}^{n-1} x_i^2 \text{ for some } n \geq m \} \leq \lim_{m \to \infty} \sup_{|\beta| \leq 1} \mathbb{P}_\beta (\Omega_m^c, \lambda),
$$

which equals 0 by Lemma 2.2 and the strong law of large numbers. This establishes (2.6) and hence the theorem.

3. Monte Carlo Results.

In this section we report the results of a Monte Carlo experiment to compare the fixed sample size and sequential asymptotic distributions. The basic experiment to assess the accuracy of the normal approximation indicated
by (1.4) and (1.7) consisted of a frequency count of the number of times the normalized estimator of β exceeded z or was less than $-z$ for commonly used quantiles z of the standard normal distribution. Since very similar results were obtained for various z, we report here only for $z = 1.28$, for which the (one-tailed) probabilities are nominally 0.10. For simplicity $x_0 = 0$, and $\varepsilon_1, \varepsilon_2, \ldots$ were taken to be $N(0,1)$. In the fixed sample experiment, $n = 50$ observations were taken; and the results are reported in Table 1. In Table 2 observations are taken sequentially with c chosen so that $E_{\beta|c}N_c = 50$ for all β; in Table 3 $c = 50$ and $E_{\beta|c}N_c$ varies with β.

For normally distributed ε_i, $b_n (b_{N_c})$ fails to be normally distributed only because of variability in $\sum_{i=1}^n x_i^2 / \sum_{i=1}^n x_i$. (See Dvoretzky, 1972, p. 520) Of course, the sequential experiment is designed to reduce this variability. The columns of Tables 1-3 below with the headings $a_{x|x}$ and $s_{x|x}$ report the observed average and standard deviation of $E_{\beta|1}x_i^2$ respectively. Variability for $E_{\beta|1}x_i^2$ in the fixed sample experiment goes into variability in N_c for the sequential experiment, so Tables 2 and 3 also report estimates of $E_{\beta|c}N_c$ and $(\text{var}_{\beta|c}N_c)^{1/2}$. Note that variability in $E_{\beta|1}x_i^2$ for the fixed sample size case and $(\text{var}_{\beta|c}N_c)^{1/2}/E_{\beta|c}N_c$ for the sequential case increase dramatically as β approaches one.

The columns headed P_r and P_l report the percentage of excesses in the right and left tails of the distributions.

The figures in Tables 1 and 2 indicate that the fixed sample size asymptotic theory is not especially good when $n = 50$, even for small $|\beta|$.
TABLE 1

Fixed Sample Case

$m = 50$, $z = 1.28$, p_r and p_ℓ are nominally 0.10

<table>
<thead>
<tr>
<th>β</th>
<th>\hat{p}_r</th>
<th>\hat{p}_ℓ</th>
<th>a_{xx}</th>
<th>s_{xx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.084</td>
<td>0.108</td>
<td>49</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.086</td>
<td>0.118</td>
<td>65</td>
<td>18</td>
</tr>
<tr>
<td>0.9</td>
<td>0.052</td>
<td>0.136</td>
<td>232</td>
<td>136</td>
</tr>
<tr>
<td>1.0</td>
<td>0.048</td>
<td>0.166</td>
<td>1272</td>
<td>1505</td>
</tr>
</tbody>
</table>

TABLE 2

Sequential Case

$z = 1.28$, p_r and p_ℓ are nominally 0.10

<table>
<thead>
<tr>
<th>β</th>
<th>\hat{p}_r</th>
<th>\hat{p}_ℓ</th>
<th>c</th>
<th>a_{xx}</th>
<th>s_{xx}</th>
<th>$E_{\beta N_c}$</th>
<th>$(\text{var}_{\beta N_c})^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.094</td>
<td>0.105</td>
<td>50</td>
<td>52</td>
<td>1.7</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.103</td>
<td>0.096</td>
<td>65</td>
<td>67</td>
<td>2.2</td>
<td>52</td>
<td>13</td>
</tr>
<tr>
<td>0.9</td>
<td>0.103</td>
<td>0.099</td>
<td>200</td>
<td>207</td>
<td>8.0</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>1.0</td>
<td>0.098</td>
<td>0.101</td>
<td>500</td>
<td>524</td>
<td>22</td>
<td>48</td>
<td>24</td>
</tr>
</tbody>
</table>

TABLE 3

Sequential Case

$c = 50$, $z = 1.28$, p_r and p_ℓ are nominally 0.10

<table>
<thead>
<tr>
<th>β</th>
<th>\hat{p}_r</th>
<th>\hat{p}_ℓ</th>
<th>a_{xx}</th>
<th>s_{xx}</th>
<th>$E_{\beta (N_c)}$</th>
<th>$(\text{var}_{\beta N_c})^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>0.097</td>
<td>0.099</td>
<td>52</td>
<td>2.4</td>
<td>41</td>
<td>11</td>
</tr>
<tr>
<td>.9</td>
<td>0.092</td>
<td>0.102</td>
<td>55</td>
<td>5.4</td>
<td>20</td>
<td>9.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.108</td>
<td>0.107</td>
<td>58</td>
<td>8.2</td>
<td>16</td>
<td>7.6</td>
</tr>
<tr>
<td>1.1</td>
<td>0.096</td>
<td>0.093</td>
<td>61</td>
<td>10</td>
<td>13</td>
<td>5.9</td>
</tr>
</tbody>
</table>
and it deteriorates quite noticeably for β near 1. In the sequential case the asymptotic theory is much better and shows no dependence upon the value of β.

Here we give some additional asymptotic results, which follow from the techniques developed in Section 2. Theorem 4.1 describes the asymptotic behavior of N_c, and to some extent explains the rather surprising differences between the fixed sample and sequential cases. Theorem 4.2 is concerned with the uniform strong consistency of b_n and $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (x_i - b_i x_{i-1})^2$.

It provides the foundation for consideration of the case of unknown σ.

Theorem 4.1. Under the conditions of Theorem 2.1,

(i) for each $\beta \in (-1,1)$, $P_{\beta_c} \{ \lim c^{-1} N_c = (1-\beta^2) \} = 1$,

and

(ii) for $|\beta| = 1$, $c^{-1/2} N_c \stackrel{L}{\rightarrow} \inf \{ t : \int_0^t W^2(s) ds = 1 \}$,

where $W(t), 0 \leq t < \infty$, is a standard Brownian motion process.

Remark. In addition to containing information on the sample size of our sequential procedure, Theorem 4.1 has interesting connections with Theorem 2.1 and a theorem of Anscombe (1952). As generalized by Mogyoródi (1962) Anscombe's theorem says that if $Y_n \stackrel{P}{\rightarrow} Y$, some additional technical conditions are satisfied, and if $\nu(c)$ are integer-valued random variables which can be normalized by constants $k(c) \rightarrow +\infty$ in such a way that $\nu(c)/k(c)$ converges in probability to a positive random variable, then $Y_n \nu(c) \stackrel{L}{\rightarrow} Y$. Hence (1.4), Theorem 4.1 (i), and Anscombe's theorem show that $\sum_{i=1}^{N_c} (x_i - b_n x_{i-1})^{1/2} (b_n - \beta) \stackrel{L}{\rightarrow} N(0,1)$.
for each fixed $\beta \in (-1, 1)$. However, because the convergence of Theorem 4.1 (ii) is in law and not in probability, Anscombe's theorem is not applicable for $|\beta| = 1$, and in fact its conclusion would be incorrect.

Proof of Theorem 4.1.

On the event $\Omega_{m, \lambda}$ defined in (2.17), (2.16) implies for all $n \geq m$

\[
(4.1) \quad \left| x_n^2 - x_0^2 + (1-\beta^2) \sum_{i=1}^{n} x_{i-1}^2 - n\sigma^2 \right| \leq 3\lambda n + 2(\sum_{i=1}^{n} x_{i-1}^2)^{2/3} .
\]

If $|\beta|$ is bounded away from 1, say $|\beta| \leq \rho < 1$, so $1 - \beta^2 \geq 1 - \rho^2 > 0$, then (2.6), (4.1), and $P_{\beta}(\Omega_{m, \lambda}) \to 1$ (uniformly in β) imply that

\[
(4.2) \quad \lim_{m \to \infty} \sup_{|\beta| \leq \rho} P_{\beta}\{ |(1-\beta^2)n^{-1} \sum_{i=1}^{n} x_{i-1}^2 - \sigma^2| \geq \delta \text{ for some } n \geq n \} = 0 .
\]

Theorem 4.1 (i) follows easily from (4.2).

If $\beta = 1$, then $x_n = x_0 + S_n$, where $S_n = \varepsilon_1 + \cdots + \varepsilon_n$. Thus Theorem 4.1 (ii) follows from Donsker's Theorem, which implies that

\[
\{ c^{-1/2} \sum_{i=1}^{[ct^{1/2}]^2, t \geq 0} \} \overset{d}{\to} \{ \int_0^t \sigma^2 s^2 ds, t \geq 0 \} .
\]

A similar but slightly more complicated argument handles the case $\beta = -1$.

Theorem 4.2. Define the least squares estimate for β as in (1.2), and in the case of unknown σ, estimate σ^2 at stage n by

\[
(4.3) \quad \frac{\sigma_n^2}{n} = n^{-1} \sum_{i=1}^{n} (x_i - b_n x_{i-1})^2 .
\]

Then b_n and σ_n^2 are uniformly consistent for $|\beta| \leq 1$ in the sense that for all $\delta > 0$
\[(4.4) \quad \lim_{m \to \infty} \sup_{|\beta| \leq 1} P_{\beta}\{|b_n - \beta| \geq \delta \mbox{ for some } n \geq m\} = 0\]

and

\[(4.5) \quad \lim_{m \to \infty} \sup_{|\beta| \leq 1} P_{\beta}\{|\hat{\sigma}^2_n - \sigma^2| \geq \delta \mbox{ for some } n \geq m\} = 0 .\]

Proof. From (2.6), (2.16), and (4.2) it is easy to see that for all
\[0 < \lambda < 1\]

\[\sup_{|\beta| \leq 1} P_{\beta}\{n^{-1} \sum_{i=1}^{n} x_{i-1}^2 \leq \lambda \sigma^2 \mbox{ for some } n \geq m\} \to 0 \quad (m \to \infty) ,\]

which together with (1.2) and Lemma 2.2 proves (4.4).

To prove (4.5) note that

\[(4.6) \quad \hat{\sigma}^2_n = n^{-1} \sum_{i=1}^{n} (\varepsilon_i + (\beta - b_n) x_{i-1})^2\]

\[= n^{-1} \sum_{i=1}^{n} \varepsilon_i^2 - \left(\sum_{i=1}^{n} x_{i-1} \varepsilon_i \right)^2 / n \sum_{i=1}^{n} x_{i-1}^2 .\]

For \[|\beta| \leq 1, |x_n| \leq |x_0| + \sum_{i=1}^{n} |\varepsilon_i| = U_n ,\] say, where the distribution of \[U_n\] does not depend on \(\beta\). Moreover, \[\sum_{i=1}^{n} x_{i-1}^2 \leq \sum_{i=1}^{n} U_i^2 = o(n^4) \] with probability one. Hence by Lemma 2.2

\[\lim_{m \to \infty} \sup_{|\beta| \leq 1} P_{\beta}\{(\sum_{i=1}^{n} x_{i-1} \varepsilon_i)^2 \geq \delta n \sum_{i=1}^{n} x_{i-1}^2 \mbox{ for some } n \geq m\} = 0 ,\]

which along with (4.6) and the strong law of large numbers implies (4.5).

With the help of (4.5) it is possible to modify the definition of \(N_c\) to handle the case of unknown \(\sigma\). The following result can be proved along
the lines of Theorem 2.1, although the details are considerably more complicated. The proof is omitted.

Theorem 4.3. Define b_n by (1.2) and $\hat{\sigma}_n^2$ by (4.3). Let $\{\delta_n\}$ be a sequence of positive constants with $\delta_n \to 0$. Let $s_n^2 = \max(\delta_n, \hat{\sigma}_n^2)$ and for $c > 0$ define

\[
(4.7) \quad \hat{N}_c = \inf \{n: n \geq 2, \frac{1}{n} \sum_{i=1}^{n} x_{i-1}^2 > cs_n^2\}.
\]

Then as $c \to \infty$

\[
P_\beta\left\{ \left(\frac{1}{n} \sum_{i=1}^{n} x_{i-1}^2 \right)^{1/2} \frac{(\hat{N}_c - \beta)}{\hat{\sigma}_n^2} \leq t \right\} \to \Phi(t)
\]

uniformly in $|\beta| \leq 1$ and $-\infty < t < \infty$.

15
REFERENCES

Title: Fixed accuracy estimation of an autoregressive parameter

Authors: T. L. Lai and D. Siegmund

Performing Organization:
- **Name:** Dept. of Statistics
- **Address:** Stanford University, Stanford, California

Controlling Office:
- **Name:** Statistics & Probability Program Code 436
- **Address:** Office of Naval Research, Arlington VA 22217

Contract or Grant Number: N00014-77-C-0306

Program Element, Project, Task Area & Work Unit Numbers: NR-042-373

Report Date: May 1982

Number of Pages: 17

Security Classification: Unclassified

Distribution Statement: Approved for public release: distribution unlimited

Supplementary Notes:
- Also issued as technical report No. 189 under National Science Foundation Grant MCS80-24649, Stanford University, Dept. of Statistics

Key Words:
- Stopping rule
- Fixed width confidence interval
- Uniform asymptotic normality

Abstract: Please see other side
FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

BY T. L. LAI and D. SIEGMUND

ABSTRACT

For a first order non-explosive autoregressive process with unknown parameter $\beta \in [-1,1]$, it is shown that if data are collected according to a particular stopping rule, the least squares estimator of β is asymptotically normally distributed uniformly in β. In the case of normal residuals, the stopping rule may be interpreted as sampling until the observed Fisher information reaches a preassigned level. The situation is contrasted with the fixed sample size case, where the estimator has a non-normal limiting distribution when $|\beta| = 1$.