APPORXIMATE TAIL PROBABILITIES FOR THE MAXIMA
OF SOME RANDOM FIELDS

by

David Siegmund
Stanford University

TECHNICAL REPORT NO. 38
AUGUST 1986

PREPARED UNDER CONTRACT
N00014-77-C-0306 (NR-042-373)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
APPROXIMATE TAIL PROBABILITIES FOR THE MAXIMA
OF SOME RANDOM FIELDS

by
David Siegmund
Stanford University

TECHNICAL REPORT NO. 38
AUGUST 1986

PREPARED UNDER CONTRACT
N00014-77-C-0306 (NR-042-373)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited

Also prepared under National Science Foundation Grant DMS-80-00235 and issued
as Technical Report #256, Department of Statistics, Stanford University.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
APPROXIMATE TAIL PROBABILITIES FOR THE MAXIMA OF SOME RANDOM FIELDS

by

David Siegmund
Stanford University

Abstract

For random walks \(\{S_n\} \) whose distribution can be embedded in an exponential family, large deviation approximations are obtained for the probability that \(\max_{0 \leq i < j \leq m}(S_j - S_i) \geq b \) (i) conditionally given \(S_m \) and (ii) unconditionally. The method used in the conditional case seems applicable to maxima of a reasonably large class of random fields. For the unconditional probability a more special argument is used, and more precise results obtained.

1980 AMS Subject Classification: Primary: 60F10, 60G60 Secondary: 60K05, 62N10

Key words and phrases: Large deviations, random field, CUSUM test
1. Introduction.

Hogan and Siegmund (1986) adapt the method developed by Pickands (1969), Qualls and Watanabe (1973), and Bickel and Rosenblatt (1973) to obtain explicit large deviation approximations for the maxima of several Gaussian random fields arising in statistics. Using a special argument for one particular case, they suggest a heuristic second order approximation for that case; and they show by a Monte Carlo experiment that the second order approximation frequently gives considerably better numerical results.

The purpose of this paper is to show that the method developed by Woodroofe (1976, 1982) for problems in one dimensional time can be adapted to study maxima of random fields. Overall it involves simpler computations than the previous method and consequently seems potentially capable of delivering a genuine second order approximation should one seem desirable. See Woodroofe and Takahashi (1982) for an example in one dimensional time.

Let \(x_1, x_2, \cdots\) be independent, identically distributed random variables, and put \(S_n = x_1 + \cdots + x_n\) \((n = 0, 1, \cdots)\). For \(b > 0\) define

\[t = t(b) = \inf \{ n : \max_{0 \leq k \leq n} (S_n - S_k) \geq b \}. \]

Theorem 1 below gives a large deviation approximation to the conditional probability

\[(1) \quad P\{ t < m \mid S_m = \xi \} \quad (\xi < b) \]

when the distribution of the \(x\)'s can be embedded in an exponential family. Although we discuss only this concrete case, it will be apparent that the method is reasonably general. See Hogan and Siegmund (1986) and Section 4 for additional examples. For applications of (1) see Levin and Kline (1985) and Brown and Adler (1986).

The unconditional probability

\[(2) \quad P\{ t \leq m \} \]

gives the distribution of the run length of a CUSUM test (e.g. van Dobben de Bruyn, 1968) and the probability that at least one among the first \(m\) customers in a single server queue has a waiting time exceeding \(b\). Several recent papers have discussed its numerical evaluation (e.g. Woodhall, 1983, Waldmann, 1986).
Although the method of Theorem 1 can also be applied to the unconditional probability (2), one can use a special, considerably simpler argument and obtain a more precise approximation, which in this case provides justification for the Hogan-Siegmund heuristic and indicates what one can expect to gain from second order approximations in related problems. This line of reasoning is developed in Section 3.

Section 4 contains additional examples and miscellaneous remarks.

2. Conditional Probability

In order to facilitate comparisons between Theorem 1 below and the related Theorem 8.72 of Siegmund (1985), we use the notation of that result, which was proved by a method which does not seem to adapt to multidimensional indexing sets. Here we modify a method developed by Woodrooffe (1976, 1982) in one dimensional time.

The following discussion omits some technical details which occur even in the one dimensional case and concentrates on issues which only arise because of the multidimensional indexing set.

Let P_μ denote the probability which makes x_1, x_2, \cdots independent, identically distributed random variables with probability distribution of the form

$$ P_\mu \{ x_n \in dx \} = \exp[\theta x - \psi(\theta)]dF(x) $$

relative to some fixed probability distribution F, which without loss of generality is assumed to have mean 0. The parameters μ and θ have the one to one relation $\mu = \psi'(\theta)$ ($= E_\mu x_1$). In Section 3 it is notationally convenient to standardize F to have unit variance.

Let $S_n = x_1 + \cdots + x_n$ ($n = 0, 1, \cdots$).

It is convenient to assume that for all μ there exists and n_0 such that

$$ \int_{-\infty}^{\infty} |E_\mu \exp(i\lambda x_1)|^{n_0} d\lambda < \infty. $$

This implies that for all $n \geq n_0$ the P_μ distribution of S_n has a continuous, bounded density function, $f_{\mu, n}$, and as $n \rightarrow \infty$

$$ f_{\mu, n}(\sigma^{1/2} y + n\mu)\sigma^{n/2} \rightarrow \varphi(y) $$

(3)
uniformly in \(y \), where \(\sigma^2 = \psi''(\theta) \) and \(\varphi \) denotes the standard normal density function (cf. Feller, 1972, p. 516). Also assume that \(z_1 \) has a density function. An alternative technical condition would be that \(F \) is an arithmetic distribution; and by using the technique of Lalley (1984), one can perhaps eliminate all such assumptions.

Let

\[
P^{(m)}_\xi(A) = P_\mu(A \mid S_m = \xi)
\]

for events \(A \) defined in terms of \(x_1, \cdots, x_m \). By sufficiency the conditional probability does not depend on \(\mu \). Also let

\[
\tau_+(\tau_-) = \inf\{n : S_n > (\leq)0\}.
\]

Theorem 1. Let \(b = m\zeta \) and \(\xi = m\xi_0 \) for arbitrary fixed \(\zeta > 0 \) and \(\xi_0 < \zeta \). Assume there exist \(\mu_2 < 0 < \mu_1 \) (necessarily unique) such that

\[
1 = \mu_1^{-1}\zeta + |\mu_2|^{-1}(\zeta - \xi_0)
\]

and

\[
\psi[\theta(\mu_2)] = \psi[\theta(\mu_1)],
\]

where \(\theta(\mu) \) denotes the inverse of the function \(\mu = \psi'(\theta) \). Let \(\theta_i = \theta(\mu_i) \) \((i = 1, 2)\), \(\theta_0 = \theta(\xi_0) \), and \(\sigma_i^2 = \psi''(\theta_i) \) \((i = 0, 1, 2)\). Then as \(m \to \infty \)

\[
P^{(m)}_\xi\{t < m\} \sim mC(s, \xi_0) \exp[-mB(s, \xi_0)],
\]

where

\[
B(s, \xi_0) = (\theta_1 - \theta_2)\zeta - \psi(\theta_2) + \psi(\theta_0) + (\theta_2 - \theta_0)\psi'(\theta_0)
\]

and

\[
C(s, \xi_0) = \frac{P^{(m)}_{\mu_2}\{\tau_+ = \infty\}P^{(m)}_{\mu_1}\{\tau_- = \infty\}}{(\theta_1 - \theta_2)\mu_1|\mu_2|} \cdot \frac{\sigma_0(\zeta - \xi_0)|\mu_2|^{-1}}{(\sigma_1^2\zeta/(\theta_1 - \theta_2) + \sigma_2^2(\zeta - \xi_0)/|\mu_2|^3)^{1/2}}
\]

Remarks. (i) To evaluate \(C(s, \xi_0) \) it is usually adequate to use the approximation

\[
P_{\mu_2}\{\tau_+ = \infty\}P_{\mu_1}\{\tau_- = \infty\}/[(\theta_1 - \theta_2)\mu_1] = \exp[-(\theta_1 - \theta_2)\rho_+] + o((\theta_1 - \theta_2)^2]
\]
as \(\theta_1 - \theta_2 \to 0 \), where \(\rho_+ = E_0S_{\tau_+}^2/(2E_0S_{\tau_+}) \) an be calculated numerically (cf. Siegmond, 1985, Proposition 10.37 and Theorem 10.55). A similar approximation holds for \(P_{\mu_2}\{r_+ = \infty\}P_{\mu_1}\{r_- = \infty\}/([\theta_1 - \theta_2]_{\mu_2}) \) in terms of \(\rho_- = E_0S_{\tau_-}^2/(2E_0S_{\tau_-}) \). (ii) In the case \(dF(x) = \varphi(x)dx \) it is easy to see that \(\mu_1 = -\mu_2 = 2\zeta - \xi_0 \), so Theorem 2 of Hogan and Siegmond (1986) is a special case.

Proof of Theorem 1. Let \(0 \leq i_0 < j_0 \leq m \) and let

\[
J = J(i_0, j_0) = \{(i, j) : 0 \leq i < j \leq m, j < j_0 \text{ or } j = j_0 \text{ and } i < i_0\}.
\]

Then

\[
P_{\xi}^{(m)}\{t \leq m\} = \sum_{i_0 < j_0} \int_0^{\infty} P_{\xi}^{(m)}\{S_{j_0} - S_{i_0} \in b + dx\} P_{\xi}^{(m)}\{S_j - S_i < b \forall (i, j) \in J \mid S_{j_0} - S_{i_0} = b + x\}.
\]

From Lemma 1–5 below, all of which involve standard arguments, one obtains (6), but with a constant \(C \) of the form

\[
C = C'[\text{second fraction in (8)}]/\mu_1|\mu_2|.
\]

In (11)

\[
C' = \int_0^{\infty} e^{-(\theta_1 - \theta_2)x} P_{\mu_2}\{\max_{n \geq 1} S_n \leq -x\} P_{\mu_1}\{\min_{n \geq 0} S_n + \min_{n \geq 1} S'_n \geq x\} dx,
\]

where \(\{S'_n, n = 0, 1, \cdots\} \) is an independent copy of the random walk \(\{S_n, n = 0, 1, \cdots\} \). The proof of Theorem 1 is completed by the evaluation of \(C' \) given below in Lemma 7.

Lemma 1 is an easy, well known consequence of (3) and the relation

\[
f_{0,n}(y) = \exp[-\hat{\theta}y + n\psi(\hat{\theta})]f_{\hat{\mu},n}(y),
\]

where \(\hat{\mu} = \psi'(\hat{\theta}) = y/n \). (Actually (3) must be strengthened slightly to provide for the desired uniformity.)

Lemma 1. Let \(\mu = \psi'(\theta), \sigma^2 = \psi''(\theta), \) and assume \(|x| \leq \delta_n n^{2/3} \) for some sequence \(\delta_n \to 0 \). Then uniformly in \(x \) as \(n \to \infty \)

\[
f_{0,n}(n\mu + x) \sim \exp[-\theta(n\mu + x) + n\psi(\theta)]\varphi(x/\sigma n^{1/2})/\sigma n^{1/2}.
\]
Lemmas 2 and 3 follow form Lemma 1, some standard estimates, and the identity

\[P^m_{\xi}(S_n \leq dy) = f_{0,n}(y)f_{0,m-n}(\xi - y)/f_{0,m}(\xi). \]

Let \(D = \{(i_0, j_0) : i_0 \geq m^{1/2}, j_0 \leq m - m^{1/2}, |j_0 - i_0 - m\zeta/\mu_1| \leq m^{7/12}\} \).

Lemma 2. As \(m \to \infty \)

\[\sum_{(i_0, j_0) \notin D} P^m_{\xi}(S_{j_0} - S_{i_0} > b) = o[m \exp\{-mB(\zeta, \xi_0)\}] \]

and

\[\sum_{(i_0, j_0) \in D} P^m_{\xi}(S_{j_0} - S_{i_0} > b + x) \leq \delta(x)m \exp\{-mB(\zeta, \xi_0)\}, \]

where \(\delta(x) \to 0 \) as \(x \to \infty \).

Lemma 3. Suppose \((i_0, j_0) \in D \) and put \(n = j_0 - i_0 \). Then uniformly in \((i_0, j_0) \) and \(|x| \leq m^{1/12} \)

\[P^m_{\xi}(S_{j_0} - S_{i_0} \leq x) \sim \exp\{-mB(\zeta, \xi_0) - (\theta_1 - \theta_2)x\} \]

\[= \frac{(2\pi m)^{1/2}\sigma_0}{\sigma_1 \sigma_2 n^{1/2}(m - n)^{1/2}} \varphi \left[\frac{\mu_2(n - m\zeta/\mu_1)}{\sigma_2(m - n)^{1/2}} \right] \varphi \left[\frac{\mu_1(n - m\zeta/\mu_1)}{\sigma_1 n^{1/2}} \right] dx. \]

Although the following lemma is not difficult to prove, its importance cannot be over emphasized. It shows that the two dimensional random field under consideration here behaves locally like a superposition of independent one dimensional random fields, and thus makes possible the explicit evaluation of \(C \).

Lemma 4. Suppose \(i_0 \geq m^{1/2}, j_0 \leq m - m^{1/2} \) and \(j_0 - i_0 \sim m\zeta/\mu_1 \). Then uniformly in \((i_0, j_0) \) and \(x \) in compact subsets of \([0, \infty)\)

\[P^m_{\xi}(S_j - S_i < b \forall (i, j) \in J \mid S_{j_0} - S_{i_0} = b + x) \]

\[= P_{\mu_2}\{\max_{n \geq 1} S_n \leq -x\}P_{\mu_1}\{\min_{n \geq 0} S_n + \min_{n \geq 1} S'_n \geq x\}, \]

where \(\{S'_n, n = 0, 1, \cdots\} \) is an independent copy of \(\{S_n, n = 0, 1, \cdots\} \).

Proof. Given \(S_{j_0} - S_{i_0} = m\zeta + x \), the event on the left hand side of (14) equals

\[\{S_{j_0} - S_{j_0-j} + (S_{i_0+i} - S_{i_0}) > x \forall (i, j) : (i_0 + i, j_0 - j) \in J\}. \]

It is easy to see that in the quantification \(\forall (i, j) \) such that \((i_0 + i, j_0 - j) \in J \) the indices \((i, j) \) with \(i \leq -1 \) and \(j \geq 1 \) are redundant, because the required inequality holds for these \((i, j) \) if
it holds for $i \leq -1$, $j = 0$ and for $i = 0$, $j \geq 1$. Hence the event above equals
\[
\{ S_{i_0 + i} - S_{i_0} > x \ \forall \ i \leq -1 : (i_0 + i, j_0) \in J ;
S_{j_0} - S_{j_0 - j} + S_{i_0 + i} - S_{i_0} > x \ \forall \ i \geq 0, j \geq 1 : (i_0 + i, j_0 - j) \in J \},
\]
which is contained in or contains
\[
\{ \min_{-n < i \leq -1} (S_{i_0 + i} - S_{i_0}) \geq x, \min_{1 \leq j < n} (S_{j_0} - S_{j_0 - j}) + \min_{0 \leq i < n} (S_{i_0 + i} - S_{i_0} \geq x) \},
\]
according as n is arbitrary, but fixed, or $n = j_0 - i_0$.

It is easy to see that for arbitrary $n = 1, 2, \cdots$, given $S_m = m\xi_0$ and $S_{j_0} - S_{i_0} = m\zeta + x$, as $m \to \infty$ the joint distribution of
\[
S_{j_0} - S_{j_0 - j}, \quad j = 0, 1, \cdots, n
\]
converges to the P_{μ_1} joint distribution of $S_j, j = 0, 1, \cdots, n$; the joint distribution of
\[
S_{i_0 + i} - S_{i_0}, \quad i = 0, 1, \cdots, n
\]
converges to the P_{μ_1} joint distribution of $S_i, i = 0, 1, \cdots, n$; the joint distribution of
\[
S_{i_0 + i} - S_{i_0}, \quad i = 0, -1, \cdots, -n
\]
converges to the P_{μ_2} joint distribution of $-S_i, i = 0, 1, \cdots, n$; and asymptotically these three collections of random variables are stochastically independent.

The proof is completed by letting $m \to \infty$ with n held fixed and the three minima restricted to indices with $|i| < n$ and $j < n$, then letting $n \to \infty$ and showing that the indices $|i| \geq n$ or $j \geq n$ do not contribute in the limit. The details of this final step are similar to the one dimensional case and are omitted.

Lemma 5. As $m \to \infty$
\[
\sum_D \int_0^\infty P^{(m)}(S_{j_0} - S_{i_0} \in b + dx)P^{(m)}(S_j - S_i < b \ \forall (i, j) \in J | S_{j_0} - S_{i_0} = b + x)
\]
\[
\sim \text{ Right hand side of (6)}
\]
with C as given in (11) and (12).

Proof. To sum the approximations provided by Lemmas 2–4 over D, observe that by (4) there are asymptotically $m(1 - \zeta/\mu_1) = m(\zeta - \xi_0)/|\mu_2|$ terms i_0, and for each i_0 the sum over
\[j_0 = i_0 + n \text{ of (from (13))} \]
\[
\frac{(2\pi n)^{1/2}\sigma_0}{\sigma_1\sigma_2n^{1/2}(m - n)^{1/2}} \phi \left[\frac{\mu_2(n - m\xi_0)}{\sigma_2(m - n)^{1/2}} \right] \phi \left[\frac{\mu_1(n - m\xi_0)}{\sigma_1n^{1/2}} \right]
\]
converges to
\[
\sigma_0(\mu_1|\mu_2|)^{-1}\{\frac{\sigma_1^2}{\mu_1^2} + \frac{\sigma_2^2}{\mu_2^2}(\xi_0 - \xi_0)/|\mu_2|^3\}^{-1/2}.
\]

To complete the proof of the theorem we must evaluate the constant \(C' \) defined in (12).

This part of the argument seems substantially more difficult than the analogous result of Hogan and Siegmund (1986, Lemma 3.4). The following lemma is well known (e.g. Woodroofe, 1982, p. 26).

Lemma 6. For \(x > 0 \)
\[
P_{\mu_1}\{\min_{n\geq1} S_n \geq x\} = \mu_1 P_{\mu_1}\{S_{r+} \geq x\}/E_{\mu_1}(S_{r+})
\]
and
\[
P_{\mu_2}\{\max_{n\geq1} S_n \leq -x\} = \mu_2 P_{\mu_2}\{S_{r-} \leq -x\}/E_{\mu_2}S_{r-}.
\]

Lemma 7. Let \(\{S'_n, n = 0, 1, \cdots\} \) be an independent copy of \(\{S_n, n = 0, 1, \cdots\} \).

\[
\int_0^\infty \exp\{[\theta_1 - \theta_2]x\} P_{\mu_2}\{\max_{n\geq1} S_n \leq -x\} P_{\mu_1}\{\min_{n\geq0} S_n + \min_{n\geq1} S'_n \geq x\} dx
\]
\[
= (\theta_1 - \theta_2)^{-1} \frac{p_{\mu_2}^2}{\mu_2} \{\tau_+ = \infty\} P_{\mu_1}^{\frac{1}{2}} \{\tau_- = \infty\}
\]

Proof. For \(y \leq 0 \) let \(\tau(y) = \inf\{n : S_n \leq y\} \), and observe that by Wald’s likelihood ratio identity and (5)
\[
P_{\mu_1}\{\tau(y) < \infty\} = E_{\mu_2}\exp\{[\theta_1 - \theta_2]S_{\tau(y)}\}.
\]

Also
\[
P_{\mu_1}\{\min_{n\geq0} S_n \leq y\} = P_{\mu_1}\{\tau(y) < \infty\} \quad (y \leq 0).
\]

If one writes the convolution appearing in the integrand in (15) as an integral, and uses Lemma
6, (16), and (17), after some manipulation one obtains

\[
\int_0^\infty \exp[(\theta_1 - \theta_2)z]P_{\mu_2} \{\max_{n \leq 1} S_n \leq -x\} P_{\mu_1} \{\min_{n \leq 0} S_n + \min_{n \leq 1} S'_n \geq x\} dx
\]

\[
= \frac{\mu_1 |\mu_2|}{E_{\mu_1} S_{r+}|E_{\mu_2} S_{r-}|} \int_0^\infty P_{\mu_2} \{S_{r-} \leq -x\} e^{-(\theta_1 - \theta_2)z} dx
\]

\[
\cdot \int_0^\infty P_{\mu_1} \{S_{r+} \in d\eta\} [1 - E_{\mu_2} \exp\{(\theta_1 - \theta_2)S_{r+}(\eta - \eta)\}] d\eta
\]

\[
= \frac{\mu_1 |\mu_2|}{E_{\mu_1} S_{r+}} \int_0^\infty P_{\mu_1} \{S_{r+} \in d\eta\} e^{-(\theta_1 - \theta_2)\eta} d\eta
\]

\[
\cdot \int_0^{\eta} \frac{P_{\mu_2} \{S_{r-} \leq -x\}}{|E_{\mu_2} S_{r-}|} \{\exp[(\theta_1 - \theta_2)\eta - x] - E_{\mu_2} \exp[(\theta_1 - \theta_2)(S_{r+}(\eta - \eta) + \eta - x)]\} dx
\]

Consider the inner integral to be of the form (in the notation of Feller, 1971, Chapter XI) \(F_0 \ast Z(\eta)\), where \(dF_0(x) = P_{\mu_2} \{|S_{r-} \leq x\} dx / |E_{\mu_2} S_{r-}|\) is the stationary distribution for the renewal process determined by \(F(x) = P_{\mu_2} \{|S_{r-} \leq x\}\) and \(Z\) is a solution of the renewal equation \(Z = z + F \ast Z\), or equivalently in terms of the renewal measure \(U\), \(Z = U \ast z\). It is known that \(Z\) determines \(z\) uniquely; and since \(F_0\) is the stationary distribution, \(F_0 \ast U\) is proportional to Lebesgue measure and

\[
F_0 \ast Z(\eta) = (F_0 \ast U) \ast z(\eta) = \int_0^\eta z(x) dx / |E_{\mu_2} S_{r-}|.
\]

It is easy to see in the present case that

\[
z(x) = \exp[(\theta_1 - \theta_2)z][1 - E_{\mu_2} \exp\{(\theta_1 - \theta_2)S_{r-}\}],
\]

and hence the left hand side of (15) equals

\[
\frac{\mu_1 |\mu_2| [1 - E_{\mu_2} \exp\{(\theta_1 - \theta_2)S_{r-}\}]}{E_{\mu_1} S_{r+}|E_{\mu_2} S_{r-}|} \int_0^\infty P_{\mu_1} \{S_{r+} \in d\eta\} e^{-(\theta_1 - \theta_2)\eta} \int_0^{\eta} e^{(\theta_1 - \theta_2)z} dx
\]

\[
= \frac{\mu_1 |\mu_2| [1 - E_{\mu_2} \exp\{(\theta_2 - \theta_2)S_{r-}\}][1 - E_{\mu_1} \exp\{-(\theta_1 - \theta_2)S_{r+}\}]}{(\theta_1 - \theta_2)E_{\mu_1} S_{r+}|E_{\mu_2} S_{r-}|}
\]

\[
= P_{\mu_2}^{2} \{r_- = \infty\} P_{\mu_1}^{2} \{r_+ = \infty\} / (\theta_1 - \theta_2)
\]

where the last equality is a consequence of Wald's identities and the relations \(P_{\mu_1} \{r_- = \infty\} E_{\mu_1} (r_+) = 1, P_{\mu_2} \{r_+ = \infty\} E_{\mu_2} (r_-) = 1\).

3. Unconditional Probability

We continue to use the notation of Section 2 and consider the unconditional probability (2) with \(P = P_{\mu}\) for some \(\mu < 0\). In principle one can obtain a first order large deviation
approximation for $P_{\mu}(t \leq m)$ by integrating the approximation of Theorem 1 with respect to the distribution of S_m. Here we consider a different approach and obtain a second order approximation to (2). This method was mentioned briefly in Siegmund (1986), and for a related continuous time problem it was used by Hogan and Siegmund (1986).

The proofs of the following results are for the most part modifications of arguments given in Siegmund (1975, 1979) – see also Siegmund (1985), Chapters VIII and X). Consequently the steps of the argument are given in a sequence of lemmas, but most details are omitted.

Theorem 2. Assume that the P_{μ} distributions of x_1 are strongly nonarithmetical in the sense that

\[
\limsup_{|\lambda| \to \infty} |E_{\mu} \exp(i\lambda x_1)| < 1.
\]

Let $\mu_2 < 0$ and assume there exists $\mu_1 > 0$ such that (5) holds. Let $\Delta = \theta_1 - \theta_2$, where $\theta_i = \theta(\mu_i)$ ($i = 1, 2$). Let $b > 0$ and assume that for some $\delta > 0$

\[
m\mu_1/b \geq 1 + \delta, \quad m^2 \exp(-\Delta b) \to 0.
\]

Then as $m, b \to \infty$

\[
P_{\mu_2}(t \leq m) = \Delta|\mu_2|\nu_+\nu_- \exp(-\Delta b)\{m - b/\mu_1 + D + o(1)\},
\]

where

\[
\nu_+ = P_{\mu_2}\{\tau_+ = \infty\}P_{\mu_1}\{\tau_- = \infty\}/(\mu_1\Delta), \quad \nu_- = \mu_1\nu_+ / |\mu_2|,
\]

and

\[
D = 1 - \mu_1^{-1}E_{\mu_1}S_{\tau_+}^2/(2E_{\mu_1}s_{\tau_+}) - \mu_1^{-1}E_{\mu_1}(S_{\tau_-}; \tau_- < \infty)E_{\mu_1}(\tau_+)
\]

\[
+ E_{\mu_1}(\tau_-; \tau_- < \infty)E_{\mu_1}(\tau_+) + E_{\mu_2}(\tau_+; \tau_+ < \infty)E_{\mu_2}(\tau_-)
\]

\[
- (\mu_1\nu_+)^{-1}\int_0^{\infty} \{E_{\mu_1}\exp(-\Delta(S_{\tau(x)} - x)) - \nu_+ \}P_{\mu_1}\{\min_{n \geq 0} S_n > -x\}dx,
\]

with $\tau(x) = \inf\{n : S_n \geq x\}$.

Remark. The constant $\Delta\nu_+\nu_-$ in (19) and (20) is the first factor in the constant C of (6) and (8). The local expansions of Remark (i) following Theorem 1 applied to ν_+ and ν_- together with the similar local expansion of D given in Theorem 3 below lead to the much simpler
approximation

(22) \[P_{\mu_2}(t \leq m) \approx \exp[-\Delta(b + \rho_+ - \rho_-)]\{\Delta|\mu_2|[m - \mu_1^-(b + \rho_+ - \rho_-)] + 3 - 7\gamma \Delta / 6\}, \]

where \(\gamma = E_0 x_1^3 \) and the \(P_0 \) distribution of \(x_1 \) has been standardized to have unit variance. In the case of the unconditional probability (2), (22) gives precise meaning to the Hogan-Siegmund heuristic approximation (which applies only when \(\gamma = 0 \)).

Theorem 3. Assume that the \(P_0 \) distribution of \(x_1 \) is standardized to have unit variance. For \(D \) given by (21), as \(\Delta \to 0 \)

\[\Delta|\mu_2|D = 3 - \Delta|\mu_2|/(\rho_+ - \rho_-)/\mu_1 - 7\Delta \gamma / 6 + o(\Delta), \]

where \(\rho_\pm = \frac{1}{2} E_0(S_{n+}^2)/E_0(S_{n-}^2) \) and \(\gamma = E_0 x_1^3 \).

Table 1 contains some values of \(p = P_{\mu}(t \leq m) \) computed numerically by Waldmann (1986). For comparison it gives first order (\(\hat{p}_1 \)) and second order (\(\hat{p}_2 \)) approximations from (22). The \(x \)'s are normally distributed with mean \(\mu = -.5 \) and \(b = 3 \). The value of \(\rho_+ = |\rho_-| \approx .583 \) (e.g. Siegmund, 1985, p. 225). The approximation \(\hat{p}_2 \) is quite good, but \(\hat{p}_1 \) is rather poor. However, the values of \(b \) and \(m \) are quite small. Hogan and Siegmund (1986) compared similar approximations for (1) in a Monte Carlo experiment involving generally larger sample sizes and found that the first order approximation was reasonably good when \(\xi < 0 \) but not when \(\xi \geq 0 \). Their heuristic second order approximation was good in all cases. Some Monte Carlo experimentation shows that the approximation \(\hat{p}_2 \) begins to deteriorate when \(p \) is about .2, and as expected is poor for large values of \(p \).

| Table 1 |

| Approximations to \(p = P_{\mu}(t \leq m) \) |
|---|---|---|---|
| \(m \) | \(p \) | \(\hat{p}_1 \) | \(\hat{p}_2 \) |
| 9 | .054 | .023 | .052 |
| 12 | .079 | .047 | .076 |
| 15 | .102 | .070 | .098 |
| 18 | .126 | .093 | .122 |
Theorem 2 is a consequence of Lemmas 8–12.

Let \(T = \inf \{ n : S_n \notin (0, b) \} \).

\begin{align*}
\text{Lemma 8. For arbitrary } b > 0, \mu < 0 \\
P_\mu \{ t \leq m \} & \leq P_\mu \{ r_+ = \infty \} E_\mu \{ (m - T + 1); T < m, S_T \geq b \} \\
& + \sum_{n=0}^{m-1} P_\mu \{ n < r_+ < \infty \} P_\mu \{ T \leq m - n, S_T \geq b \}.
\end{align*}

(23)

A lower bound for \(P_\mu \{ t \leq m \} \) is given by the right hand side of (23) divided by \(1 + E_\mu \{ (m - T + 1); T < m, S_T \geq b \} \).

\begin{align*}
\text{Lemma 9. Under the condition (18)} \\
P_{\mu_2} \{ t \leq m \} & = P_{\mu_2} \{ r_+ = \infty \} E_{\mu_2} \{ m - T + 1; T < m, S_T \geq b \} \\
& + E_{\mu_2} \{ r_+ < \infty \} P_{\mu_2} \{ S_T \geq b \} + o(e^{-\Delta b}).
\end{align*}

\textbf{Proof.} Lemma 9 follows from Lemma 8, the inequality

\[E_{\mu_2} \{ m - T + 1; T < m, S_T \geq b \} \leq m P_{\mu_2} \{ S_T \geq b \} \leq me^{-\Delta b}, \]

and a related elementary inequality.

\begin{align*}
\text{Lemma 10. Under the conditions of Theorem 2} \\
P_{\mu_2} \{ T \leq m, S_T \geq b \} & = P_{\mu_2} \{ S_T \geq b \} (1 + o(m^{-1})) \\
& = \nu_+ P_{\mu_1} \{ r_- = \infty \} \exp(-\Delta b)(1 + o(m^{-1}))
\end{align*}

and

\begin{align*}
E_{\mu_2} \{ T; T < m S_T \geq b \} & = \nu_+ \exp(-\Delta b) \{ P_{\mu_1} \{ r_- = \infty \} [b + \rho_+(\mu_1)]/\mu_1 \\
& + \mu_1^{-1} E_{\mu_1} (S_{r_-}; r_- < \infty) - E_{\mu_1} (r_-; r_- < \infty) \\
& + P_{\mu_1} \{ r_- = \infty \} (\nu_+ + 1)^{-1} \int_0^\infty [E_{\mu_1} \exp(-\Delta (S_{r}(x) - x)) - \nu_+] P_{\mu_1} \{ \min S_n > -x \} dx \\
& + o(1) \},
\end{align*}

where \(\rho_+(\mu_1) = 1/2 E_{\mu_1} (S_{r_-}^2)/E_{\mu_1} (S_{r_-}). \)

Theorem 2 follows easily by substitution of the approximations of Lemma 10 into Lemma 9 and use of the well known relation \(P_{\mu_1} \{ r_- = \infty \} = 1/E_{\mu_1} (r_+) \) to rewrite the resulting expression.
Theorem 3 follows from Lemmas 11–12.

Lemma 11. Assume that the P_0-distribution of x_1 has been standardized to have variance 1. Then as $\Delta \to 0$

$$E_{\mu_2}(r_+; r_+ < \infty) = \mu_1^{-1} E_0(S_{r_+})(1 - \rho_+ \mu_1 + o(\Delta)),$$

$$E_{\mu_2}(r_-) = \mu_2^{-1} E_0(S_{r_-})(1 + \rho_- \mu_2 + o(\Delta)),$$

and

$$\mu_1^{-1} E_{\mu_1}(S_{r_+}) E_{\mu_1}(S_{r_-}; r_- < \infty) = -(2\mu_1)^{-1} + \rho_+ - \frac{1}{2} \gamma + o(1),$$

where $\rho_\pm = \frac{1}{2} E_0(S^2_{r_\pm})/E_0(S_{r_\pm})$ and $\gamma = E_0(x_1^3)$. Also $\rho_+ + \rho_- = \gamma/3$.

Proof. The first two approximations have proofs similar to (9) (cf. Siegmund, 1985, Proposition 10.37). For the third, differentiate the Wiener-Hopf factorization of the characteristic functions of S_{r_+} and S_{r_-} twice (e.g. Siegmund, 1985, Theorem 8.41) to obtain

$$\mu_1^{-1} E_{\mu_1}(S_{r_+}) E_{\mu_1}(S_{r_-}; r_- < \infty) = \frac{E_{\mu_1}(S_{r_+}^2)}{2E_{\mu_1}(S_{r_+})} - \frac{E_{\mu_1}(x_1^2)}{2\mu_1}$$

and then let $\mu_1 \to 0$. The identity $\rho_+ + \rho_- = \gamma/3$ follows easily from a three fold differentiation of the Wiener-Hopf factorization.

Lemma 12. Let $\tau(x) = \inf\{n : S_n \geq x\}$. Then

$$\int_0^\infty \{E_{\mu_1} \exp[-\Delta(S_{\tau(x)} - x)] - \nu_+\} P_{\mu_1}\{\min_{n \geq 0} S_n > -x\} dx \to 0$$

as $\mu_1 \to 0$.

Proof. Since $P_{\mu_1}\{\min_{n \geq 0} S_n > -x\} \to 0$ for each fixed x as $\mu_1 \to 0$, it suffices to consider the integral from x_0 to ∞, with x_0 arbitrarily large. Stone's (1965) renewal theorem with exponentially small remainder can be made uniform in μ_1, as indicated briefly by Siegmund (1979), to show that for some $\delta > 0$

$$P_{\mu_1}\{S_{\tau(x)} - x > y\} = (E_{\mu_1} S_{r_+})^{-1} \int_y^\infty P_{\mu_1}\{S_{r_+} > u\} du + O(\varepsilon^{-\delta x})$$

uniformly in y and μ_1 close to 0. Integration by parts and (24) show that uniformly in μ_1

$$E_{\mu_1} \exp[-\Delta(S_{\tau(x)} - x)] = \nu_+ + O(\varepsilon^{-\delta x}),$$
which allows one to complete the proof by letting \(\mu_1 \to 0 \), then \(x_0 \to \infty \).

4. Discussion.

The structure which makes possible the explicit evaluation in Theorem 1 is found in the proof of Lemma 4. Locally the increments to the two dimensional random field are approximately a superposition of independent one dimensional random fields. Somewhat more precisely, if \(\{W_m(i, j), i, j = 0, 1, \cdots, m\} \) denotes a sequence of (two dimensional) random fields, the required property is that for the appropriate \((i_0, j_0)\), which typically are proportional to \(m \), conditional on \(W_m(i_0, j_0) \) assuming a large value, the increments \(W_m(i_0 + i, j_0 - j) - W_m(i_0, j_0) \), perhaps normalized, converge in law as \(m \to \infty \) to a sum of independent random walks of the form \(S_{1i} + S_{2j} \) \((i = 0, \pm 1, \pm 2, \cdots, j = 0, 1, 2, \cdots)\).

Although this property is quite special, there are natural problems which have the required structure. Hogan and Siegmund (1986) give some examples. Another class of examples involves the empirical process as a function of the number of observations, which in the limit becomes the so-called Kiefer-Müller process.

For example, let \(W(s, t), 0 \leq s \leq 1, 0 \leq t < \infty \), denote the Gaussian random field with mean 0 and

\[
EW(s_1, t_1)W(s_2, t_2) = 4(s_1 \wedge s_2)(1 - s_1 \vee s_2)(t_1 \wedge t_2).
\]

The following result is of interest to a statistician who several times as data accumulate announces Kolmogorov-Smirnov confidence bands for a distribution function and wants to know the overall confidence to attach to the several statements. A related, slightly different result gives an approximation to the asymptotic significance level of a nonparametric test for a change-point discussed by Deshayes and Picard (1981) and Picard (1985). For fixed \(c > 0 \) and \(m_0 = m_t 0 < m_1 = m t_1 \), as \(n \to \infty \)

\[
P \left\{ \max_{0 \leq i \leq m} \frac{j^{-1/2}}{m_0 \leq j \leq m_1} |W(i/m, j)| \geq cm^{1/2} \right\}
\]

\[
\sim 2\nu(2c)mc^2\exp\left(-\frac{1}{2}mc^2\right)\int_{ct^{-1/2}_1}^{ct^{-1/2}_0} x^{-1}\nu(x)dx,
\]

(25)
\[
\nu(x) = 2x^{-2} \exp \left(-2 \sum_{1}^{\infty} n^{-1} \Phi \left(-\frac{1}{2} x n^{1/2} \right) \right) \\
= \exp(-\rho x) + o(x^2) \quad (x \to 0),
\]

\(\Phi\) denotes the standard normal distribution function, and \(\rho \equiv .583\). To obtain the analogous result for a continuous maximization over \(s \in [0, 1]\) (resp. \(t \in [m_0, m_1]\)) one replaces \(\nu(2c)\) (resp. \(\nu(x)\)) by 1 in (25).

The approximation of Theorem 2 is concerned with the probability that a CUSUM test for a process which is in control terminates well in advance of its average run length. Although this probability is of particular interest, one would also like to have approximations (i) to the right hand tail of the distribution of \(t\) and approximations which are valid (ii) when \(\mu \geq 0\), (iii) for tests with fast initial response feature (Lucas and Crozier, 1982), and (iv) for two-sided tests. Corrected diffusion approximations (Siegmund, 1979, 1985) seem to provide a unified approach to these problems which takes appropriate advantage of the special structure of the process \(S_n - \min_{0 \leq k \leq n} S_k\) \((n = 0, 1, \cdots)\), but they unfortunately do not seem to apply to more general random fields.

One simple approximation in the special case \(\gamma = E_0(x_1^2) = 0\) is as follows: approximate \(P_{\mu}\{t \leq m\}\) for a boundary at \(b\) by the analogous probability for a Brownian motion process with boundary at \(b' = b + \rho_+ - \rho_-\). The approximating Brownian probability can be evaluated as an infinite series (Sweet and Hardin, 1970) and for values of \(m\) which are not too small one needs only a single term of the series to obtain good numerical results. For the case of normal \(x\)'s considered in Section 3, one obtains when \(-\mu b' > 1\) \((b' = b + 2\rho_+ \equiv b + 1.166)\)

\[
P_{\mu}\{t > m\} \approx \frac{2q \sinh^2(qb')}{-b'(\mu^2 - q^2)(1 + \mu \sinh^2(qb')/q^2b')} \exp\{\mu b' - \frac{1}{2}(\mu^2 - q^2)m\},
\]

where \(q > 0\) satisfies \(\tanh(qb') = -q/\mu\).

For the small values of \(m\) in Table 1 one expects the approximation provided by (26) to be poor unless one includes more terms of the infinite series. For example, for \(m = 12\), (26) yields .070, whereas (22) gives .076 and the correct value is .079. For \(m = 82\) and 345, for which according to Waldmann (1986) the exact values of \(P_{\mu}\{t \leq m\}\) are .50 and .95 respectively, the approximation (22) is poor, but (26) yields .492 and .948.
The corrected diffusion approach to distributional problems associated with CUSUM tests will be discussed systematically in a future paper.

Simple modifications of the proof of Theorem 1 yield a large deviation approximation for the Kuiper (1960) statistic

\[
(27) \quad \max_{0 < z < y < 1} \{y - F_n(y) - [x - F_n(x)],
\]

where \(F_n\) denotes the empirical distribution for a sample of \(n\) independent random variables uniformly distributed on \((0, 1)\). From a standard representation of uniform order statistics by sums of exponentially distributed variables, it follows that the probability that (27) exceeds \(\xi\) equals

\[
P\{ \max_{0 \leq i < j \leq n} [W_j - W_i - (j - i)] \geq n\xi - 1 \mid W_{n+1} - (n + 1) = -1\},
\]

where \(W_k = y_1 + \cdots + y_k\) and the \(y's\) are independent standard exponential random variables.

If one puts \(m = n + 1\), \(b = (m - 1)\xi - 1\), and \(\xi = -1\), this probability is almost in the form required by Theorem 1. Minor modifications in the proof of that result yield

\[
P\{ \max_{0 < z < y < 1} [y - F_n(y) - (x - F_n(x))] \geq \xi\}
\]

\[
\sim \frac{n\theta_1(1 - \theta_1)^{1/2} \exp\{-n[(\theta_1 - \theta_2)\xi + \theta_2 + \log(1 - \theta_2)]\}}{[\theta_2(1 - \theta_2)[1 + \theta_2^2(1 - \theta_1)/(\theta_1^2(1 - \theta_2))]^{1/2}}.
\]

Siegmund (1982) obtains the analogous approximation for the ordinary Kolmogorov-Smirnov statistic and shows numerically that it provides extraordinarily accurate numerical results, but Hogan and Siegmund’s (1986) Monte Carlo experiment for a normal random walk indicates that one cannot expect comparable accuracy in this case, unless the sample size is fairly large. It would be interesting to obtain a second order approximation along the lines of Theorems 2 and 3.
REFERENCES

