LIMIT PROBABILITIES IN A MULTI-TYPE
CRITICAL AGE-DEPENDENT BRANCHING PROCESS

BY

HOWARD J. WEINER

TECHNICAL REPORT NO. 2
MARCH 7, 1977

PREPARED UNDER GRANT
DAAG29-77-G-0031
FOR THE U.S. ARMY RESEARCH OFFICE

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government
Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
LIMIT PROBABILITIES IN A MULTI-TYPE
CRITICAL AGE-DEPENDENT BRANCHING PROCESS

by

HOWARD J. WEINER

TECHNICAL REPORT NO. 2
MARCH 7, 1977

Prepared under Grant DAAG29-77-G-0031
For the U. S. Army Research Office
Herbert Solomon, Project Director

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

Partially supported under Office of Naval Research
Contract N00014-76-C-0475 (NR-042-267) and issued as Technical Report No. 242.
THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.
Limit Probabilities in a Multi-type Critical Age-Dependent Branching Process

by

Howard J. Weiner

I. Introduction and Assumptions

Let

(1.1) \(Z_{ij}(t) \) = the number of cells of type \(j \) at time \(t \) starting with one new-born cell of type \(i \) at \(t = 0 \) with \(1 \leq i \leq m \) in an \(m \)-type critical age-dependent branching process described as follows.

At time \(t = 0 \), one newly born cell of type \(i \) starts the process, for some \(1 \leq i \leq m \). The cell lives a random time described by a continuous distribution function

(1.2) \(G_i(t), G_i(0+) = 0. \)

At the end of its life, cell \(i \) is replaced by \(j_i \) new daughter cells of type 1, \(j_2 \) new cells of type 2, \ldots, \(j_m \) cells of type \(m \) with probability \(\rho_{i_1 i_2 \ldots i_m} \).

Define the generating functions, for \(s = (s_1, \ldots, s_m) \), \(i = (i_1, \ldots, i_m) \),

\(s_i = (s_1, \ldots, s_{i_j}) \),

(1.3) \(h_i(s_1, \ldots, s_m) = h_i(s) = \sum_{(j_1 \ldots j_m)} \rho_{i_1^{j_1} \ldots i_m^{j_m} s_1 \ldots s_m} = \sum_{i} \rho_{i_i^j} s_i^j. \)
Each daughter cell proceeds independently of the state of the system, with each cell type \(j \) governed by \(G_j(t) \) and \(h_j(s) \).

Assume, for \(1 + \varepsilon = (1 + \varepsilon, \ldots, 1 + \varepsilon) \) and \(\underline{1} = (1, \ldots, 1) \), \(m \)-vectors,

\[
(1.4) \quad h_i(1 + \varepsilon) < \infty \quad \text{for} \quad 1 \leq i \leq m.
\]

This insures that all moments of \(h_i(s) \) evaluated at \(s = \underline{1} \) may be computed by partial differentiations under the summation sign.

Define, for \(1 \leq i, j \leq m \),

\[
(1.5) \quad m_{ij} = \frac{\partial h_i(s)}{\partial s_j} \bigg|_{s=\underline{1}} = h_{ij}(\underline{1})
\]

and assume

\[
(1.6) \quad m_{ij} > 0 \quad \text{all} \quad 1 \leq i, j \leq m,
\]

and let the first moment \(m \times m \) matrix be

\[
(1.7) \quad M = (m_{ij}).
\]

By standard Frobenius theory [2], there is a largest eigenvalue in absolute value, denoted \(\rho \), which is positive.

The basic assumption of criticality is that

\[
(1.8) \quad \rho = 1.
\]

It follows again from standard Frobenius theory [2] that there are strictly positive eigenvectors \(\underline{u} > 0, \underline{v} > 0 \) (no notational distinction between row and column \(m \)-vectors) such that
Let the quantity denoted by $Q(u)$ satisfy
\begin{equation}
0 < Q(u) = \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{r=1}^{m} \frac{\partial^2 h_i(l)}{\partial s_i \partial s_k} u_i u_r v_i < \infty
\end{equation}
and also
\begin{equation}
\frac{\partial^2 h_i(l)}{\partial s_i \partial s_k} > 0 \quad 1 \leq i, j, k \leq m.
\end{equation}

Further assume that each distribution function $G_i(t)$ satisfies
\begin{equation}
\int_{0}^{\infty} t^{4+\delta} dG_i(t) < \infty \text{ for some } \delta > 0.
\end{equation}

Let
\begin{equation}
0 < \mu_i = \int_{0}^{\infty} t dG_i(t) < \infty,
\end{equation}
and denote
\begin{equation}
F_i(s, t) = E \left[\frac{Z_{i1}(t)}{s_1} \frac{Z_{i2}(t)}{s_2} ... \frac{Z_{im}(t)}{s_m} \right].
\end{equation}

Let
\begin{equation}
Z_i(t) = (Z_{i1}(t), Z_{i2}(t), ..., Z_{im}(t))
\end{equation}

Let
\begin{equation}
N_i(t) = (N_{i1}(t), N_{i2}(t), ..., N_{im}(t))
\end{equation}
denote the \(m \)-vector with entries

\begin{equation}
(1.17) \quad N_{ij}(t) = \text{total progeny of type } j \text{ born by } t \text{ in the above critical } m \text{-type process starting with one new cell of type } i.
\end{equation}

Denote

\begin{equation}
(1.18) \quad H_i(s, t) = E \left[\begin{array}{cccc}
N_{i1}(t) & N_{i2}(t) & \cdots & N_{im}(t) \\
\sum_1 & \sum_2 & \cdots & \sum_m
\end{array} \right].
\end{equation}

For \(\mathbf{k} = (k_1, \ldots, k_m) \) a vector of non-negative integers, it is to be shown that as \(t \to \infty \)

\begin{equation}
(1.19) \quad P[Z_i(t) = \mathbf{k}] \sim \frac{c}{t^2}
\end{equation}

for \(\mathbf{k} \neq 0 \), and

\begin{equation}
(1.20) \quad P[N_i(t) = \mathbf{k}] \sim c > 0,
\end{equation}

where the constants \(c \) may be found by a recursive method.

II. Integral Equations and Approximations

Denote

\begin{equation}
(2.1) \quad P_i(t) = P[Z_i(t) > 0] = \left(\sum_{i=1}^{m} u_i v_i u_i \right) / Q(u),
\end{equation}

where \(\mathbf{0} = (0, \ldots, 0) \) and \(u > v \) means term by term strict inequality for vectors, and

\begin{equation}
(2.2) \quad Q(u) = \frac{1}{2} \sum_{i=1}^{m} \sum_{r=1}^{m} \sum_{\ell=1}^{m} h_{\ell r}(1) u_\ell u_r v_1 < \infty.
\end{equation}

See [3].
Denote by $1 - \mathbf{P}(t)$ the m-vector

$$
(2.3) \quad 1 - \mathbf{P}(t) = (1 - P_1(t), 1 - P_2(t), \ldots, 1 - P_m(t)).
$$

Theorem 1. Under the assumptions of section I, for $\mathbf{k} = (k_1, \ldots, k_m)$ an m-vector of non-negative integers not all of whose terms are zero, for $t \to \infty$

$$
(2.4) \quad \mathbb{P}[Z_i(t) = k] \sim \frac{c}{t^2}
$$

where $c > 0$ is a constant depending on \mathbf{k}, i.

Proof. First consider the case $\mathbf{k} = e_j$, that is, $\mathbf{k} = e_j = (0, 0, \ldots, 01, 00)$ where the 1 is in the jth place, all other places have a zero.

From [3]

$$
(2.5) \quad F_i(s, t) = s_i (1 - G_i(t)) + \int_0^t h_i(F(s, t-u))dG_i(u),
$$

where

$$
(2.6) \quad F(s, t) = (F_1(s, t), F_2(s, t), \ldots, F_m(s, t)).
$$

Under the assumptions of the Theorem,

$$
(2.7) \quad P_{ij}(t) = \frac{\partial F_i(s, t)}{\partial s_j} \bigg|_{s=0} = \mathbb{P}[Z_i(t) = e_j].
$$

Applying (2.7) to (2.5) yields, for δ_{ij} the Kroneker delta,

$$
(2.8) \quad P_{ij}(t) = \delta_{ij} (1 - G_i(t)) + \int_0^t \sum_{k=1}^m h_{ij}(F(0, t-u)) P_{kj}(t-u) dG_i(u),
$$

all $1 \leq i, j \leq m$.

5
The proof for the \(i_j(t) \) will continue by a series of claims.

Claim I. For arbitrary \(c > 0, b > 0, \) sufficiently large \(T > 0, \) the functions \(Q_{ij}(t) \) defined for \(1 \leq i, j \leq m \) by

\[
Q_{ij}(t) = \begin{cases}
 cu_i t^{-(2-\varepsilon)}, & t > T \\
 b, & t < T
\end{cases}
\]

(2.9)

for some \(0 < \varepsilon < 1, \) satisfy, for all \(1 \leq i, j \leq m, \) and all \(t \) sufficiently large,

\[
\sum_{i=1}^{m} v_i Q_{ij}(t) > v_j (1-G_j(t))
\]

(2.10)

for \(t > 2T, \) note that by (2.9), a Taylor expansion of \(h_{i \ell} \) about \(1, \) and a Newton expansion of \((t-u)^{-(2-\varepsilon)} \) until the power \(t^{-(3-\varepsilon)} \) yields, as

\[
F(0,t-u) = 1-P(t-u),
\]

(2.11)

\[
\int_0^{t/2} + \int_{t/2}^{t} \text{ for } t \gg 2T, \text{ note that by (2.9), a Taylor expansion of } h_{i \ell} \text{ about } 1, \text{ and a Newton expansion of } (t-u)^{-(2-\varepsilon)} \text{ until the power } t^{-(3-\varepsilon)} \text{ yields, as}
\]

\[
\sum_{i=1}^{m} v_i \sum_{\ell=1}^{m} \left[h_{i \ell}(1) - \sum_{r=1}^{m} P_r(t-u) h_{i \ell r}(1) + o(\sum_{r=1}^{m} P_r(t)) \right]
\]

(2.12)

\[
\times \left[\frac{cu_{\ell}}{(t-u)^{2-\varepsilon}} \right] dG_i(u) + o(t^{-4-\delta})
\]

for some \(\delta > 0, \) and hence (2.10) equals, to terms of order \(t^{-(3-\varepsilon)}, \)
\begin{equation}
(2.13)
\int_0^{t/2} \sum_{i=1}^m \nu_i \left[\frac{c u_i}{t^{2-\epsilon}} \left(1 + \frac{(2-\epsilon)u}{t} + o\left(\frac{1}{t^{\epsilon}}\right)\right) \right] dG_i(u)
- \int_0^{t/2} \left(\sum_{i=1}^m \sum_{r=1}^m \nu_i u_i h_{i-r}(1) \right) \left(\sum_{i=1}^m u_i v_i^2 i_i^2 \right) \frac{dG_i(u)}{t^{(3-\epsilon)}} Q(u) \right) dG_i(u) + o(t^{-(3-\epsilon)})
\end{equation}

using (1.9), (2.1), (2.2).

\begin{equation}
(2.14)
1 - \gamma_r(t) = o(t^{-(4-\delta)}) \quad \text{for } 1 \leq r \leq m
\end{equation}

\begin{equation}
(2.15)
\int_0^{t/2} u dG_i(u) = \mu_i + o(t^{-(3+\delta)}) \quad \text{for } 1 \leq i \leq m
\end{equation}

Use of (2.14), (2.15) in (2.12), (2.13) yields the result of the Claim I.

Claim II. If for $1 \leq i, j \leq m$, $R_{ij}(t)$ are differentiable and

\begin{equation}
(2.16)
R_{ij}(0) = 0
\end{equation}

\begin{equation}
(2.17)
\sum_{i=1}^m \nu_i R_{ij}(t) > \int_0^t \sum_{i=1}^m \nu_i h_{i-j} (1 - P(t-u)) R_{ij}(t-u) dG_i(u)
\end{equation}

for all t sufficiently large, then

\begin{equation}
(2.18)
\sum_{i=1}^m \nu_i R_{ij}(t) > 0
\end{equation}

for all t sufficiently large.

Proof of Claim II. Expand $h_{i-j}(1 - P(t-u))$ in a Taylor expansion about $h_{i-j}(1)$.

The r.h.s. of (2.17) becomes, after splitting the integral into two parts

\begin{equation}
\int_0^{t/2} + \int_{t/2}^t,
\end{equation}

\[7\]
\begin{equation}
\int_0^{t/2} \sum_{i=1}^{m} v_i \left[h_{\ell_i}(1) - \sum_{r=1}^{m} P_r(t-u)h_{\ell_r}(1) + o\left(\sum_{r=1}^{m} P_r(t/2) \right) \right] R_{\ell_j}(t-u)dG_{\ell_i}(u) \\
+ o(t^{-\delta}),
\end{equation}

which simplifies by \((1.9)\), and plugging back into \((2.17)\), where we now let

\begin{equation}
R_j(t) \equiv \sum_{i=1}^{m} v_i R_{ij}(t),
\end{equation}

that, for all \(t \) sufficiently large, assuming (say) the upper inequality in \((2.17)\),

\begin{equation}
R_j(t) > \int_0^t R_j(t-u)dG_{\ell_i}(u).
\end{equation}

and

\begin{equation}
R_j(0) = 0.
\end{equation}

First note that from \((2.21)\), it cannot be the case that \(R_j(t) \equiv 0 \) on any interval \([0,T]\). For if so, set \(t = T \) in \((2.21)\) to obtain \(0 > 0 \), a contradiction.

Suppose now that there is a first \(t_o > 0 \) such that \(R_j(t_o) = 0 \), \(R_j(t) \neq 0 \), \(t < t_o \). Set \(t = t_o \) in \((2.21)\) to obtain a contradiction if, in fact, \(R_j(t) > 0 \) for \(t < t_o \). If \(R_j(t) < 0 \) for \(t < t_o \), by continuity there is a \(T \leq t_o \) such that \(|R_j(T)| > |R_j(t)| \) all \(t < t_o \). Set \(t = T \) in \((2.21)\) to obtain an immediate contradiction.

This contradiction yields that \(R_j(t) \neq 0 \), \(t > 0 \). Hence if the upper inequality of \((2.18)\) fails, it must be that \(R_j(t) < 0 \), all \(t > 0 \). Again, for any interval \([0,t_1]\), there is a \(t_2 \leq t_1 \) such that \(|R(t_2)| > |R(t)| \), \(t \leq t_1 \).
Set \(t = t_2 \) in (2.21) to obtain a contradiction. This suffices to prove Claim II, as the argument for the lower inequality is similar.

Claim III. The functions defined for arbitrary \(a \geq 0, b > 0, T > 0, \)

\[
R_{ij}(t) = \begin{cases}
 a, & t < T \\
 bu_i, & t > T \\
 \frac{bu_i}{t^2}, & t > T
\end{cases}
\]

satisfy, for \(1 \leq i, j \leq m, \) the system

\[
R_{ij}(t) = f_{ij}(t) + \int_0^t \sum_{\ell=1}^m h_{i\ell}(1-P(t-u))R_{\ell j}(t-u) \, dG_i(u)
\]

where, as \(t \to \infty, \)

\[
f_{ij}(t) = o(t^{-3}).
\]

Proof of Claim III. The integral on the r.h.s. of (2.24) with (2.23) substituted becomes, after a Taylor expansion about \(h_{i\ell}(1), \) less than or equal to

\[
\int_0^{t/2} \sum_{\ell=1}^m (h_{i\ell}(1) - \sum_{r=1}^m P_r(t-u)h_{i\ell r}(1)) + o(\sum_{r=1}^m P_r(t/2)) \frac{bu_{i\ell}}{(t-u)^2} \, dG_i(u)
\]

\[+ G(t) - G(t/2)\]

and similarly, the integral on the r.h.s. of (2.24) is greater than or equal to the integral term of (2.26).
The integral in (2.26) equals

$$
(2.27) \quad b \int_0^{t/2} \left[\frac{u_i}{t^2} (1 + \frac{2u_i}{t} + o(\frac{1}{t})) - \sum_{\ell=1}^m \sum_{r=1}^m \frac{h_{i,\ell,r}(1)(\mu, v, \alpha, \alpha, \alpha) u_i u_{\ell, r}}{Q(u) t^3} \right] \times dG_i(u)
$$

+ o(t^{-3}).

Since

$$
(2.28) \quad \int_0^{t/2} u dG_i(u) = \mu_i + o(t^{-3}),
$$

and

$$
(2.29) \quad G(t) - G(t/2) = o(t^{-4}),
$$

this suffices for the proof of Claim III.

The proof of Theorem I may now be completed.

Define the iterative sequence for \(n = 0, 1, 2, \ldots \)

$$
(2.30) \quad P_{(n+1)i,j} = \delta_{i,j} (1 - G_i(t)) + \int_0^t \sum_{\ell=1}^m h_{i,\ell}(1 - P(t-u))P(n) \delta_{j}(t-u) dG_i(u)
$$

with

$$
(2.31) \quad P_{(0)i,j}(t) = P_{(0)i,j}(t) = R_{i,j}(t) = \frac{bu_i}{t^2}, \quad \text{for } t \text{ sufficiently large.}
$$

Then, suppressing the \(i,j \) part of the subscript,

$$
(2.32) \quad |P_{(1)}(t) - P_{(0)}(t)| = |\delta_{i,j} (1 - G_i(t)) - f_{i,j}(t)| = o(t^{-3}),
$$

which implies that
(2.33) \[P_{(1)ij}(t) \sim \frac{cu_i}{t^2} \] for some \(c > 0 \).

Assume, by an induction hypothesis, that, for some constant \(c \) (the value of \(c \) may change from expression to expression)

(2.34) \[P_{(j)ij}(t) \sim \frac{cu_i}{t^2} \] for \(0 \leq j \leq n-1 \).

Then, by (1.9),

(2.35) \[|P_{(n)ij}(t) - P_{(n-1)ij}(t)| \leq \int_0^{t/2} \sum_{\ell=1}^{m} h_{i\ell}(1-P(t-u))P_{(n-1)\ell j}(t-u)dG_i(u) - P_{(n-1)ij}(t) | \]

\[+ 2b(1-G(t/2)). \]

Again by (1.9) and a Taylor expansion about \(h_{i\ell}(1) \),

(2.36) \[|P_{(n)ij}(t) - P_{(n-1)ij}(t)| \leq \int_0^{t/2} \sum_{\ell=1}^{m} h_{i\ell}(1) - \sum_{r=1}^{m} P_r(t-u)h_{i\ell r}(1) \]

\[+ o(\sum_{r=1}^{m} P_r(t/2)) \left[P_{(n-1)\ell j}(t-u)dG_i(u) - P_{(n-1)ij}(t) \right] + 2b(1-G(t/2)) \]

or

(2.37) \[|P_{(n)ij}(t) - P_{(n-1)ij}(t)| \leq \int_0^{t/2} \sum_{\ell=1}^{m} h_{i\ell}(1) - \sum_{r=1}^{m} P_r(t-u)h_{i\ell r}(1) \]

\[+ o(\sum_{r=1}^{m} P_r(t/2)) \left\{ \frac{u\ell}{(t-u)^2} dG_i(u) - \frac{cu_i}{t^2} \right\} + 2b(1-G(t/2)), \]

where the two constants labeled \(c \) in (2.37) have the same value.
Hence

\begin{equation}
|P_{ij}(t) - P_{ij}(t)| \leq \int_0^{t/2} \left[\frac{u_i}{t^2} (1 + \frac{2u}{t} + o(\frac{1}{t})) + \frac{1}{t^3} \right] dG_i(u) - \frac{cu_i}{t^2} + o(t^{-3})
\end{equation}

or

\begin{equation}
|P_{ij}(t) - P_{ij}(t)| \leq 0(\frac{1}{t^3}),
\end{equation}

which implies that, for \(t \to \infty \)

\begin{equation}
P_{ij}(t) \sim \frac{cu_i}{t^2},
\end{equation}

and

\begin{equation}
P_{ij}(t) \leq \frac{cu_i}{t^2}
\end{equation}

for appropriate choice of \(c \).

Claims I, II yield that for arbitrary \(c > 0 \), one may write

\begin{equation}
P_{ij}(t) < \frac{cu_i}{t^{2-\epsilon}}
\end{equation}

for all \(t \).

Hence

\begin{equation}
|P_{ij}(t) - P_{ij}(t)| \leq \int_0^m \sum_{k=1}^{m} h_{i,k} (1 - P_{ij}(t-u)) |P_{ij}(t-u) - P_{ij}(t-u)| dG_i(u).
\end{equation}
Denote

\begin{equation}
\Delta_n(t) = |P_{ij}(t) - P_{ij}(t)|.
\end{equation}

Then, using (2.40), (2.41), (2.42) in (2.43) yields

\begin{equation}
\Delta_n(t) \leq \int_0^t \Delta_{n-1}(t-u)dG_i(u).
\end{equation}

Iterating (2.45), and denoting

\begin{equation}
\Delta * G = \int_0^t \Delta(t-u)dG(u),
\end{equation}

\begin{equation}
\Delta_n(t) \leq \Delta_0 \ast G_i^{(n)}(t) \leq G_i^{(n)}(t)
\end{equation}

where

\begin{equation}
G_i^{(n)}(t) \text{ is the } n\text{-th convolution of } G_i(t).
\end{equation}

Let \{X_i\} be a sequence of I.I.D. r.v.s. each with distribution function \(G_i(t) \), and let

\begin{equation}
S_n = \sum_{i=1}^n X_i.
\end{equation}

Then

\begin{equation}
G_i^{(n)}(t) = P[S_n \leq t] = P[S_n - n\mu_i < t - n\mu_i].
\end{equation}
By Chebyshev's inequality,

\begin{equation}
G_1^{(n)}(t) \leq \frac{\text{Var} S_n}{(n\mu_i - t)^2} \leq \frac{Kn}{(n\mu_i - t)^2}.
\end{equation}

Let \(n \geq t^{2+\epsilon} \). Then (2.47) yields, for each \(t \),

\begin{equation}
\Delta_n(t) \leq t^{-(2+\epsilon)}.
\end{equation}

Then (2.52), (2.40), yield that

\begin{equation}
P_{ij}(t) \sim \frac{c}{t^2}
\end{equation}

for some \(c > 0 \).

Hence the theorem is proved for \(k = e_j \).

In general, note that for \(k = (k_1, \ldots, k_m) \) and \(\sum_{i=1}^{m} k_i = k \), where \(k \) is the degree of differentiation,

\begin{equation}
P_{k}(t) = \frac{1}{k_1!k_2!\cdots k_m!} \frac{\partial^k}{\partial s_1 \cdots \partial s_m} F_i (s, t) \bigg|_{s=0} = P[Z_i(t) = k].
\end{equation}

Then, successively differentiating (2.5) according to (2.54) will yield, by Leibniz' rule for successive differentiation

\begin{equation}
P_{ik}(t) = f_{ik}(t) + \int_{0}^{t} \sum_{\ell=1}^{m} h_{i\ell}(1-P(t-u)) P_{\ell k}(t-u) dG_i(u),
\end{equation}

where \(f_{ik}(t) \) consists of sums of terms of the form
\((2.56) \int_0^t \sum_{\lambda, r, \cdots = 1} \left(\left. \frac{\partial^p}{\partial s_1 \partial s_r \cdots} h_i (F (s, t-u)) \right|_{s=0} \right) p_{\lambda q} (t-u) p_{rb} (t-u) \cdots d_G_i (u) \)

where

\((2.57) \) \(p < k \) and the sum of degrees of \(q, b, \cdots \) total less than \(k \).

By induction, assume that for degree of \(k \leq n \)

\((2.58) \quad p_{ik} (t) \sim \frac{c}{t^2} \quad \text{for} \quad 1 \leq i \leq m \)

where \(c > 0 \) may change in value.

By (2.55)-(2.58), (2.55) may be written

\((2.59) \quad p_{ik} (t) = f_{ik} (t) + \int_0^t \sum_{\lambda=1}^m h_{ik} (1 - p(t-u)) p_{\lambda k} (t-u) d_G_i (u) \)

where

\((2.60) \quad f_{ik} (t) = o(t^{-3}). \)

Hence the techniques of section 2 used in the proof of the theorem for \(p_{ij} (t) \) may be used again, since (2.59), (2.60) is of the form (2.8).

Hence Theorem 1 is proved.

Theorem 2. Under the assumptions of section I, for \(k = (k_1, \ldots, k_m) \) a vector of strictly positive integers, as \(t \to \infty \),

\((2.61) \quad p[N_i (t) = k] \sim \mathcal{C} \geq 0 \)

where the constant \(\mathcal{C} \) will depend on \(k, i \) and can be obtained by a recursive argument.
Proof. Denote for \(1 \leq i \leq m\),

\[
H_i(s,t) = H_i(s_1, \ldots, s_m, t) = E(s_{i1} \cdots s_{im}).
\]

The law of total probability yields

\[
H_i(s,t) = s_i(1-G_i(t)) + \int_0^t h_i(H(s,t-u))dG_i(u),
\]

where

\[
H(s,t) = (H_1(s,t), H_2(s,t), \ldots, H_m(s,t)).
\]

Since

\[
Q_{ij}(t) = \frac{\partial H_i(s,t)}{\partial s_j} \bigg|_{s=0} = P[N_i(t) = e_j],
\]

and note that

\[
H_i(0,t) = 0,
\]

it follows immediately that

\[
Q_{ij}(t) = \delta_{ij}(1-G_i(t)+h_i(0)G_i(t)) \sim \delta_{ij}h_i(0)
\]

as \(t \to \infty\).
By an induction, assume, for vector $k = (k_1, \ldots, k_m)$ of degree
$\sum_{i=1}^m k_i$, for $k \leq n$

$$(2.68) \quad Q_{ik}(t) = P[N_{i}(t) = k] \sim c.$$

Then for degree $r = n+1$, note that, by Leibniz' rule, $Q_{ir}(t)$ is the
sum of terms of the form

$$(2.69) \quad \int_0^t \sum_{\ell,r,q=1}^m \frac{\partial^k h_i(H(s,t-u))}{\partial s_\ell \partial s_r \partial s_q \ldots} \left|_{s=0} \right. \frac{Q_{\ell\alpha}(t-u)Q_{r\beta}(t-u)Q_{q\gamma}(t-u)dG_i(u)}{Q_{\alpha\beta\gamma}(t-u)Q_{\ell\beta\gamma}(t-u)Q_{r\alpha\gamma}(t-u)Q_{q\ell\gamma}(t-u)}$$

possibly premultiplied by $a_{\delta_i}^\eta$, the Kronecker delta, each term Q with
degree $k \leq n$, (in fact the sum of all Q-degrees is $\leq n$) the induction
hypothesis applies to the Q's in the integrand of each term (2.69), as
$H(Q,t) = 0$, it follows that

$$(2.70) \quad \frac{\partial^k h_i(H(s,t-u))}{\partial s_\ell \partial s_r \partial s_q \ldots} \left|_{s=0} \right. = h_i^{\ell r q \ldots}(0), \text{ a constant.}$$

This discussion and (2.69), (2.70) suffices to prove Theorem 2.

III. Remarks and Extensions.

The analog of Claim III in one dimension could have been used to
simplify the argument of [4], and in particular, to not require the
"log t/t^2" condition of [1].

The argument using Claims I, II to deduce that $P_{ij}(t) < \frac{u_i}{t^2-\varepsilon}$ could have
been omitted, and it would have sufficed to note that

$P_{ik}(t) \leq P_i(t) = P[Z_i(t) > 0] \sim \frac{c}{t}$, but Claims I, II make the method self-
contained and show how finer estimates can be easily obtained.
The arguments of this paper can be easily extended to obtain asymptotic marginal probabilities as follows.

Theorem III. Under the assumptions of section I, for I a subset of the integers \{1,2,...,m\}, as \(t \to \infty \)

\[
(3.1) \quad P[Z_{ij}(t) = k_j, \text{all } j \in I] \sim P[Z_i(t) = k] \sim \frac{c}{t^2}
\]

where \(k_j > 0 \) for \(j \in I \),

\[
(3.2) \quad k = (k_1 \delta_{i1}, k_2 \delta_{i2}, \ldots, k_m \delta_{im})
\]

and

\[
(3.3) \quad \delta_{ii} = \begin{cases}
1 & \text{if } i \in I \\
0 & \text{if } i \notin I.
\end{cases}
\]

Also, as \(t \to \infty \),

\[
(3.4) \quad P[N_{ij}(t) = k_j; \text{all } j \in I] \sim c > 0.
\]

Outline of Proof. To prove (3.1), a modification of the Theorem 1 of [3] is required, as given by the following claim.

Claim. For \(I \) a proper subset of the integers \{1,2,...,m\}, as \(t \to \infty \),

\[
(3.5) \quad P_{ii}(t) = P[Z_{ij}(t) > 0 \text{ for all } j \in I] \sim P[Z_i(t) > 0].
\]
Outline of Proof of Claim. Denote

\[J = \{1, 2, \ldots, m\} \]
\[\frac{1}{I} = (\delta_{1I}, \delta_{2I}, \ldots, \delta_{mI}) \]
\[1 - \frac{1}{I} = \frac{1}{J-I} = (1-\delta_{1I}, 1-\delta_{2I}, \ldots, 1-\delta_{mI}). \]

Then (3.5) yields, for \(s = \frac{1}{J-I} \)

\[1 - P_{i}(t) = \frac{1}{I}(J-I)(1-G_{i}(t)) + \int_{0}^{t} h_{i}(1-P_{1I}(t-u), \ldots, 1-P_{mI}(t-u)) \, dG_{i}(u). \]

The argument for \(P_{i}(t) \) in [3] pp. 527-529, may be modified for \(P_{1I}(t) \) by noting that the basic idea of bounding \(P_{1I}(t) \) above and below by probabilities of non-extinction for appropriate one-dimensional critical age-dependent processes, with known behavior, may be retained. A sketch of the modifications required is as follows. Let

\[G_{\alpha}(t) = \max_{1 \leq i \leq m} G_{i}(t) \]
\[G_{\beta}(t) = \min_{1 \leq i \leq m} G_{i}(t). \]

The critical \(m \)-type processes \(\bar{Z}_{i}(t), \bar{Z}_{1}(t) \) defined on p. 528 of [3] remain the same, both with generating functions \(h_{1}(s) \), \(1 \leq i \leq m \) and with progeny lifetime distributions \(G_{\alpha}(t), G_{\beta}(t) \) respectively.

Then denoting by \(\bar{P}_{1I}(t), \bar{P}_{1I}(t) \) the quantities corresponding to \(P_{1I}(t) \) for the \(\bar{Z}_{i}(t), \bar{Z}_{1}(t) \) processes respectively, it follows as before that
(3.9) \[\bar{P}_{i1}(t) \leq P_{i1}(t) \leq \bar{P}_{i1}(t) \]

and also (3.7) holds for \(\bar{P}_{i1}(t) \), \(\bar{P}_{i1}(t) \) with \(G_i(t) \) replaced by \(G(t) \), \(G\beta(t) \) for all \(1 \leq i \leq m \), respectively.

In [3] p. 528, referring to the numbering system there, inequalities (3.14), (3.15) hold as before, and relations (3.10), (3.12), hold with the term

(3.10) \[\sum_{i \in J-I} \frac{v_i}{a} (1-G\alpha(t)) \equiv c(1-G\alpha(t)) \]

added to the respective r.h.s., and subtracted from the r.h.s. of (3.16), and relations (3.11), (3.13) hold with

(3.11) \[\sum_{i \in J-I} \frac{v_i}{a} (1-G\beta(t)) \equiv c(1-G\beta(t)) \]

added to the respective r.h.s., and subtracted from the r.h.s. of (3.17),

(3.12) \[0 < c < 1. \]

The basic results of Lemmas 2, 7, 8 of [1] used in [3] p. 530 remain true if the term \(1-G(t) \) is replaced by \((1-c)(1-G(t)) \) in equation (2.3) p. 385, (3.2) p. 389, (3.3) p. 389 of [1]. That lemma 2 of [1] still holds is clear since the argument there depends solely on monotonicity considerations unaffected by this substitution. The new lemma 7 of [1] p. 389 should now be stated as:

If

(3.13) \[x(t) - a = (1-c)(1-G(t)) + \int_0^t x(t-y) dG(y), \]
Then

\[\frac{x(t)}{t} = \frac{a}{\mu} + o\left(\frac{1}{t}\right) \]

where

\[\mu = \int_{0}^{\infty} t dG(t), \]

and as \(t \to \infty \)

\[t^3 (1-G(t)) \to 0. \]

That this follows is well-known or can be seen by the methods of this paper as follows.

One may verify that

\[f(t) = \frac{a}{\mu} t \]

satisfies

\[f(t) = a + r(t) + \int_{0}^{t} f(t-u) dG(u) \]

where

\[r(t) = o\left(\frac{1}{t^2}\right). \]

Then, using the iteration scheme

\[x_{(n)}(t) = (1-c)(1-G(t)) + \int_{0}^{t} x_{(n-1)}(t-u) dG(u) \]

it may be verified that as \(t \to \infty \), for
\begin{align}
\tag{3.21} \quad x(0)(t) &= \frac{at}{\mu},
\end{align}

\begin{align}
\tag{3.22} \quad \frac{1}{t} |x(n)(t) - x(n-1)(t)| &= o(1)
\end{align}

for all \(n \), and

\begin{align}
\tag{3.23} \quad \frac{1}{t} |x(t) - x(n)(t)| &= o(1)
\end{align}

for all \(n \) sufficiently large with respect to \(t \).

Then (3.17)-(3.23) yield the new lemma 7.

The lemma 8 uses lemma 7 so remains true since the new lemma 7 has the same conclusion.

The other results embodied in revised lemmas of [1] remain true for reasons of monotonicity or convexity which are unchanged, or by reasoning as just above.

Hence the results of [3] pp. 530 ff. remain true with the indicated modifications and (3.5) holds. But then (2.8) holds with the argument

\begin{align}
\tag{3.24} \quad h_{1E} \left(1 - P_{J-I}(t) \right) &\sim h_{1E} \left(1 - P(t) \right)
\end{align}

where

\begin{align}
\tag{3.25} \quad 1 - P_{J-I}(t) &= (1-P_1, J-I(t), 1-P_2, J-I(t), \ldots , 1-P_m, J-I(t)),
\end{align}

and all the results of Theorem 1 go through as before with modified (2.8) written

\begin{align}
\tag{3.26} \quad P_{ijI}(t) &= \delta_{ij} (1-G_1(t)) + \int_0^t \sum \sum h_{1E} \left(1 - P_{J-I}(t-u) \right) P_{ijI}(t-u) dG_1(u).
\end{align}
This suffices to indicate the essential modifications that yield (3.1). To indicate (3.4), an example will illustrate the general method. Let

(3.27) \[H_{ij}(t) = P[N_{ij}(t) = 1]. \]

Note that

(3.28) \[\frac{\partial H_{ij}(s,t)}{\partial s_j} \bigg|_{s=1-e_j} = H_{ij}(t) \]

where

(3.29) \[1-e_j = (1110111) \text{ with the zero in the } j\text{th place}. \]

Apply (3.28) to (2.63) to yield, noting

(3.30) \[H(1-e_j, t) = 0, \]

that

(3.31) \[H_{ij}(t) = \delta_{ij} h_i(0) G_i(t) + (1-\delta_{ij}) \int_{0}^{t} \sum_{\ell=1}^{m} h_\ell(0) H_{ij}(t-u)dG_\ell(u). \]

A consistent sequence \(\{c_{ij}\} \) satisfying, for \(1 \leq i, j \leq m \)

(3.32) \[c_{ij} = \delta_{ij} h_i(0) + (1-\delta_{ij}) \sum_{\ell=1}^{m} h_\ell(0) c_{\ell j} \]

is constructed, since note that

(3.33) \[1 \geq H_{ij}(t) \geq Q_{ij}(t) = P[N_{i}(t) = e_j] \to c > 0, \]

23
Then the method of Theorem 1 may be employed by defining the iterative scheme

\[H_{ij}(n+1)(t) = \delta_{ij} h_i(0) G_i(t) + (1-\delta_{ij}) \int_0^t \sum_{k=1}^m h_i \delta_j(0) h_j(n)(t-u) dG_i(u) \]

with

\[H_{ij}(0)(t) = c_{ij}. \]

It remains to show that, for \(t \to \infty \)

\[|H_{ij}(n+1)(t) - H_{ij}(n)(t)| = o(1) \]

for all \(n \), and

\[|H_{ij}(t) - H_{ij}(n)(t)| = o(1) \]

for sufficiently large \(n \) with respect to \(t \). Thus (3.28)-(3.37) suffice for (3.27). The general case follows by a tedious induction on orders of derivatives, using Leibniz' rule to deduce the general form of the integral equation for the quantity (3.4) obtained by taking appropriate partial derivatives of (2.63), following the arguments from (2.65) to (2.69), and will not be given.

The method can be applied to multi-type sub- and supercritical cases also.
REFERENCES

LIMIT PROBABILITIES IN A MULTI-TYPE CRITICAL AGE-DEPENDENT BRANCHING PROCESS

PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Statistics
Stanford University
Stanford, California 94305

CONTRROLLING OFFICE NAME AND ADDRESS
U.S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 97709

Approved for public release; distribution unlimited.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. THIS REPORT PARTIALLY SUPPORTED UNDER OFFICE OF NAVAL RESEARCH CONTRACT N00014-76-C-0475 (NR-042-267) AND ISSUED AS TECHNICAL REPORT NO. 242

KEY WORDS
LIMIT - PROBABILITY - MULTI-TYPE - CRITICAL - BRANCHING PROCESSES
Limit Probabilities in a Multi-type
Critical Age-Dependent Branching Process

by

Howard J. Weiner

ABSTRACT

Let $Z_i(t) = (Z_{i1}(t), Z_{i2}(t), \ldots, Z_{im}(t))$ where $Z_{ij}(t)$ = number of cells of type j at time t starting at $t = 0$ with one new cell of type i, with $1 \leq i, j \leq m$. Assuming this to be an m-type critical age-dependent branching process, for $k = (k_1, \ldots, k_m)$ an m-vector of non-negative integers, not all of which are zero, it is shown that as $t \to \infty$, $P[Z_i(t) = k] \sim \frac{c}{t}$ for some $c > 0$.

Similarly, let $N_i(t) = (N_{i1}(t), N_{i2}(t), \ldots, N_{im}(t))$ denote the m-vector with entries $N_{ij}(t)$ = total progeny of type j born by time t in the critical m-type process starting with a new cell of type i at $t = 0$.

For $k = (k_1, \ldots, k_m)$ an m-vector of non-negative integers, it is shown that as $t \to \infty$, $P[N_i(t) = k] \sim c > 0$ where the constants may be evaluated explicitly by a recursion. Related results on marginal probabilities are indicated.