THE DIVISION OF SPACE BY HYPERPLANES WITH
APPLICATIONS TO GEOMETRICAL PROBABILITY

BY

THOMAS COVER and BRADLEY EFRON

TECHNICAL REPORT NO. 108
AUGUST 10, 1965

THIS RESEARCH WAS SPONSORED BY THE ARMY RESEARCH OFFICE,
OFFICE OF NAVAL RESEARCH, AND AIR FORCE OFFICE OF
SCIENTIFIC RESEARCH BY CONTRACT NO.
Nonr-225(52) (NR 342-022)

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
THE DIVISION OF SPACE BY HYPERPLANES WITH
APPLICATIONS TO GEOMETRICAL PROBABILITY*

by

Thomas Cover and Bradley Efron

TECHNICAL REPORT NO. 108
August 10, 1965

PREPARED UNDER CONTRACT Nonr-225(52)
. (NR-342-022)

FOR

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

* Partially supported by a National Science Foundation Fellowship
THE DIVISION OF SPACE BY HYPERPLANES WITH
APPLICATIONS TO GEOMETRICAL PROBABILITY

by

Thomas Cover and Bradley Efron

0. Summary

This paper investigates invariant combinatorial properties of convex cones and their dual cones generated by collections of vectors in a Euclidean space. These properties, which include the number of non-degenerate cones, the number of k-faces of these cones, and the natural measures of the set of k-faces, do not depend on the configuration of the set of generating vectors, except for a weak non-degeneracy requirement. Applications to geometrical probability are given.

1. Introduction.

It is known that N hyperplanes in general position in E^d divide E^d into

$$(1.1) \quad C(N,d) = 2^{d-1} \sum_{i=0}^{d-1} \binom{N-1}{i}$$

regions. (A set of N vectors in Euclidean d-space E^d is said to be in general position if every d-element subset is linearly independent, and a set of N hyperplanes through the origin of E^d is said to be in general position if the corresponding set of normal vectors is in general position.)

This result, first proved by Schlafli [1], in the 19th century, is an intrinsic property of collections of hyperplanes in the sense that
the number of nondegenerate cones formed is independent (subject to
general position) of the configuration of the normal vectors. Schlafli's
theorem, essentially combinatorial in nature has been restated to yield
useful results in many branches of mathematics, as the following examples
show:

a) Given \(x_1, x_2, \ldots, x_N \) in general position in \(\mathbb{R}^d \),
consider the set of simultaneous inequalities

\[
\operatorname{sgn}(x_i \cdot w) = \delta_i, \quad i = 1, 2, \ldots, N
\]

where \(\operatorname{sgn} \) is the signum function defined on the reals

\[
\operatorname{sgn}(y) = \begin{cases}
1, & y > 0 \\
0, & y = 0 \\
-1, & y < 0
\end{cases}
\]

and each \(\delta_i = \pm 1 \). Then among the \(2^N \) possible
assignments of the \(\delta_i \), exactly \(C(N,d) \) will admit
some solution vector \(w \). That is, \(C(N,d) \) of the
\(2^N \) sets of inequalities will be consistent.

b) Of the \(2^N \) partitions of the vectors \(x_1, x_2, \ldots, x_N \)
(d-dimensional and in general position) into two
subsets, exactly \(C(N,d) \) can be separated by a
hyperplane through the origin. (A dichotomy is
separable by a hyperplane if the two classes lie
entirely on opposite sides of the hyperplane.) This
formulation of 1) is relevant to the theory of linear
threshold devices, [2].
c) Let N vectors be chosen independently according to a d-dimensional probability distribution which is symmetric about the origin ($\mu(A) = \mu(-A)$) for every measurable set A, where $-A = \{x: -x \in A\}$ and absolutely continuous with respect to Lebesgue measure on E^d. Then with probability $C(N,d)/2^N$ there will exist a half-space containing the set of N vectors. This probabilistic formulation of 1) is due to Wendel [3].

The $C(N,d)$ regions generated by hyperplanes in general position through the origin of d-space are all proper, nondegenerate convex cones. It is the purpose of this paper to demonstrate other properties of these cones and their dual cones, which, like the number $C(N,d)$, depend on the orientation of the partitioning hyperplanes only through the condition of general position. Applications of invariant properties analogous to 1), 2), and 3) above will be obvious in most cases. When they are not, or when the result is deemed of independent interest, they will be stated explicitly.

2. Theorems and proofs.

Let x_1, x_2, \ldots, x_N be a set of N vectors in general position in Euclidean d-space, and let H_1, H_2, \ldots, H_N be the N corresponding hyperplanes through the origin:

* These conditions can be weakened. See Section 3.
(2.1) \[H_i = \{ w : v \cdot x_i = 0 \} \quad i=1,2,...,N \ . \]

The \(N \) hyperplanes partition \(\mathbb{F}^d \) into \(C(N,d) \) proper, nondegenerate (of full dimension) cones \(\{ W_j : j=1,2,...,C(N,d) \} \), where \(C(N,d) \) is given by (1.1).

The interior of each cone \(W_j \) is the set of all solution vectors \(w \) to a certain set of simultaneous linear inequalities,

(2.2) \[\text{sgn}(x_i \cdot w) = \delta_i \quad i=1,2,...,N, \]

where each \(\delta_i = \pm 1 \). (Of the \(2^N \) possible vectors of \(\pm 1 \)'s, \(\delta = (\delta_1, \delta_2, ..., \delta_N) \), exactly \(C(N,d) \) yield consistent inequalities and hence non-empty solution cones.)

The boundary of the \(d \)-dimensional solution cone \(W_j \) is the union of a finite number of \((d-1) \)-dimensional cones, which will be referred to as the \((d-1) \)-faces of \(W_j \). The boundaries of the \((d-1) \)-faces are in turn composed of \((d-2) \)-dimensional cones, the \((d-2) \)-faces of \(W_j \). In general, the \(k \)-faces of \(W_j \) will be proper cones contained in a \(k \)-dimensional but not \((k-1) \)-dimensional subspace of \(\mathbb{F}^d \). The \(1 \)-faces are the extreme rays of \(W_j \), while the origin is the only \(0 \)-face.

In the following \(k \) will always satisfy \(1 \leq k \leq d-1 \).

The interior (relative to the smallest subspace containing it) of each \(k \)-face of \(W_j \) is the totality of solutions to some set of simultaneous relations.
\[(2.3) \quad \text{sgn}(x_i \cdot w) = \delta_i^* \quad i=1,2,...,N,\]

where \(I \) is a subset of size \(d-k \) of the integers \(\{1,2,...,N\} \) and

\[(2.4) \quad \delta_i^* = 0 \quad i \in I, \]

\[(2.4) \quad \delta_i^* = \delta_i \quad i \notin I. \]

Theorem 1. (Counting the k-faces of the solution cones).

Let \(R_k(W_j) \) be the number of k-faces of the cone \(W_j, j=1,2,...,C(N,d) \).

Then

\[(2.5) \quad \sum_{j=1}^{C(N,d)} R_k(W_j) = 2^{d-k} \binom{N}{d-k} C(N-d+k,k), \]

Proof. Let \(H = \bigcap_{i=1}^{d-k} H_i \) be the k-dimensional linear subspace orthogonal to the vectors \(x_1, x_2, ..., x_{d-k} \). The remaining \(N-d+k \) hyperplanes \(H_{d-k+1}, H_{d-k+2}, ..., H_N \) partition \(H \) into \(C(N-d+k,k) \) convex cones \(\{V_f\} \). (This is easily verified by noting that the projections of \(x_{d-k+1}, x_{d-k+2}, ..., x_N \) into \(H \) are in general position in that space, and that the intersection of \(H_i \) with \(H \), for \(d-k < i \leq N \), is the \((k-1) \)-dimensional subspace of \(H \) orthogonal to the projection of \(x_i \). Hence the result (1.1) applies.

The interiors (in \(H \)) of each of the cones \(V_f \) can be characterized as the set of solution vectors to the simultaneous relations

\[(2.6) \quad \text{sgn}(x_i \cdot w) = \delta_i^* \quad i=1,2,...,N, \]

where

\[\delta_i^* = 0 \quad i=1,2,...,d-k, \]

and

\[\delta_i^* = 1 \quad i=d-k+1,...,N. \]
Let $\delta = (\delta_1, \ldots, \delta_N)$ be a vector of 1's such that $\delta_i = \delta_1^* \text{ for } i \geq d-k+1$. It follows by continuity that every such δ represents (as in (2.2) and (2.3)) a non-empty solution cone having V_{δ} as a k-boundary, and that these 2^{d-k} solution cones are the only ones having this property.

Finally, any of the $\binom{N}{d-k}$ subsets of the size $d-k$ from x_1, \ldots, x_N may be used in place of $x_1, x_2, \ldots, x_{d-k}$ in the discussion above, yielding a total of $\binom{N}{d-k} 2^{d-k} C(N+d-k, k)$ k-boundaries for the solution cones.

To each choice of $d-k$ vectors $x_{i_1}, x_{i_2}, \ldots, x_{i_{d-k}}$ from the set $\{x_1, x_2, \ldots, x_N\}$, there corresponds a k-dimensional orthogonal subspace, $L_k(i)$. These subspaces are distinct because of the condition of general position. The proof of Theorem 1 provides some obvious but useful additional information on the k-faces of the solution cones, which is summarized in Theorem 2.

Theorem 2. Each k-face of a solution cone W_j is contained in exactly one $L_k(i)$, and the union of the k-faces of all the W_j is the set formed by the union of the $\binom{N}{d-k}$ subspaces $L_k(i)$. Each k-face bounds exactly 2^{d-k} solution cones.

Given any convex cone W, the **dual cone** W^* is defined to be the set of vectors within a right angle of every vector in W, $W^* = \{w^*: w^* \cdot w \geq 0 \text{ for all } w \in W\}$. In particular, if W is the solution cone corresponding to the set of linear inequalities

$$\text{sgn}(x_i \cdot w) = \delta_i \quad \delta_i = \pm 1 \quad i = 1, 2, \ldots, N,$$

then it is known that the dual cone W^* is given by
(2.8) \[W^* = \{ w^* : w^* = \sum_{i=1}^{N} \alpha_i s_i x_i, \alpha_i \geq 0 \quad i=1,2,\ldots,N \} \]

That is, \(W^* \) is the proper convex cone spanned by the vectors
\(s_1 x_1, s_2 x_2, \ldots, s_N x_N \) (The \(2^N - C(N,d) \) sets of assignments of the \(s_i \)'s which lead to an inconsistent set of inequalities (2.7), generate improper cones in (2.8).)

As has been shown above, a k-face of the solution cone \(W_j \) is orthogonal to exactly \(d-k \) of the vectors \(x_i \), say \(x_{i_1}, x_{i_2}, \ldots, x_{i_{d-k}} \). In the \((d-k) \)-dimensional subspace generated by these vectors

\[
(2.9) \quad L^*_{d-k} = \{ x : x = \sum_{m=1}^{d-k} c_i x_i \} ,
\]

there is one \(d-k \) face to the dual cone \(W^*_j \), which is the convex cone generated by the vectors \(s_1 x_{i_1}, s_2 x_{i_2}, \ldots, s_{d-k} x_{i_{d-k}} \). Thus there is a one-to-one correspondence between the k-faces of a solution cone \(W_j \) and the \(d-k \) faces of its dual cone \(W^*_j \). Immediately, from Theorem 1, we obtain

Theorem 3. (Counting the k-faces of the dual cones).

Let \(R_k(W^*_j) \) be the number of k-faces of the dual cone \(W^*_j \). Then

\[
(2.10) \quad \sum_{j=1}^{C(N,d)} R_k(W^*_j) = 2^k \binom{N}{k} C(N-k,d-k), \quad k=1,2,\ldots,d-1.
\]

A statement corresponding to Theorem 2 can also be made for the dual cones. Let \(\{ L^*_k(1), L^*_k(2), \ldots, L^*_k(N) \} \) represent the class of k-dimensional linear subspaces of \(\mathbb{R}^d \) generated by the \(\binom{N}{k} \) possible k-element subsets of the N vectors \(x_1, x_2, \ldots, x_N \).
Theorem 4. Each k face of a dual cone W^*_j is contained in exactly one $L^*_k(i)$, and the union of the k-faces of all the W^*_j is the set formed by the union of the $\binom{N}{k}$ subspaces $L^*_k(i)$. Each k-face bounds exactly $C(N-k,d-k)$ dual cones. The $(k-l)$-dimensional interiors of the k-faces overlap only if the two k-faces are identical.

Proof. Each of the 2^k cones generated by the vectors $(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_k x_k)$, $\delta_i = \pm 1$, is a proper cone, and these cones partition the linear space L^*_k generated by x_1, x_2, \ldots, x_k. (The cones overlap only on their boundaries, not on their interiors.)

Let V^*_k be the cone generated by x_1, x_2, \ldots, x_k. V^*_k will be a k-face of the convex cone W^* generated by x_1, x_2, \ldots, x_k, $\delta_{k+1} x_{k+1}, \delta_{k+2} x_{k+2}, \ldots, \delta_N x_N$ if and only if the projections of the vectors $\delta_i x_i$, $i = k+1, k+2, \ldots, N$, into L_{d-k}, the orthocomplement of L^*_k generate a proper convex cone in that space. (Since, as mentioned previously, V^*_k is a k-face of W^* if and only if it corresponds to a $(d-k)$-face V_{d-k} of its dual cone W. If so, any vector w within V_{d-k} will lie in L_{d-k} and will satisfy $\text{sgn}(x'_i \cdot w) = \delta_i$, where x'_i is the projection of x_i into L_{d-k}, $i = k+1, \ldots, N$. Conversely, the existence of such a w easily implies W^* is proper and V^*_k is on its boundary.) By Schl"{a}fli's theorem exactly $C(N-k,d-k)$ assignments of the signs δ_i, $i = k+1, \ldots, N$, will have this property. (Note that the projected vectors will be in general position in the $(d-k)$-dimensional space L_{d-k}.)

Thus the k-faces of dual cones partition the subspace L^*_k into 2^k cones, and each k-face bounds $C(N-k,d-k)$ different dual cones. Repeating this argument for the $\binom{N}{k}$ possible selections of k vectors from x_1, x_2, \ldots, x_N completes the proof.
A separate argument is required to establish the next theorem, application of which will yield the expected volume of the cone spanned by a random collection of vectors. The statement is a logical generalization of a theorem proved by Samelson, Thrall, and Wesler [5] concerning the partitioning of \mathbb{E}^d by cones. Let $W^*(x_1, x_2, \ldots, x_N)$ denote the convex cone spanned by x_1, x_2, \ldots, x_N, and consider the 2^N cones $W^*(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_N x_N)$ where $\delta_i = \pm 1$, $i = 1, 2, \ldots, N$. Then Samelson et al show that, for $N = d$, this collection of 2^d cones partitions \mathbb{E}^d. We shall now show that for $N > d$ the cones $W^*(\delta_1 x_1, \ldots, \delta_N x_N)$ partition \mathbb{E}^d many times over in a systematic manner.

Theorem 5. Let x_1, x_2, \ldots, x_N lie in general position in \mathbb{E}^d. If v is a point in \mathbb{E}^d such that x_1, x_2, \ldots, x_N and v jointly lie in general position, then v is a member of precisely $\binom{N-1}{d-1}$ proper convex cones of the form $W^*(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_N x_N)$, $\delta_i = \pm 1$, $i = 1, 2, \ldots, N$.

Proof. Let $W(x_1, x_2, \ldots, x_N)$ be defined as following 2.1. Let v partition the set S of cones $W(\delta_1 x_1, \ldots, \delta_N x_N)$, the dual cones to the cones $W^*(\delta_1 x_1, \ldots, \delta_N x_N)$, $\delta_i = \pm 1$, $i = 1, 2, \ldots, N$, into three sets defined by

$$S^+ = \{ W \in S : v \cdot w > 0 , \text{ all } w \in W \},$$

(2.11) $$S^0 = \{ W \in S : v \cdot w = 0 , \text{ some } w \in W \},$$

$$S^- = \{ W \in S : v \cdot w < 0 , \text{ all } w \in W \}.$$

There are $C(N,d)$ non-empty cones in S^+ and there are $C(N,d-1)$ non-empty cones in S^0 by Schlaflili's theorem applied to the projections of the vectors X_i into the space orthogonal to v. Since S^- is the...
set of reflected cones of S^+, the number of elements in S^+ and S^- is equal, and thus the number of elements in S^+ is

\[(2.12) \quad \frac{1}{2} (C(N,d) - C(N,d-1)) = \binom{N-1}{d-1}.
\]

Finally, by the duality of W and W^*, $v \in W^* (\delta_1 x_1, \delta_2 x_2, \ldots, \delta_N x_N)$ if and only if $W(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_N x_N)$ is in S^+.

3. Applications to geometrical probability.

Let X_1, X_2, \ldots, X_N be N random points in E^d having a joint distribution invariant under reflections through the origin - that is, for any N sets A_1, A_2, \ldots, A_N in E^d, the probability $P(\delta_1 x_1 \in A_1, \delta_2 x_2 \in A_2, \ldots, \delta_N x_N \in A_N)$ has the same value for all 2^N choices of $\delta_i = \pm 1$. (Actually, as will be clear, it is sufficient for the symmetry condition to hold for all cones A_1, A_2, \ldots, A_N in E^d.)

Furthermore, let us suppose that with probability one the set of points is in general position. (This is satisfied in the important case where the X_i are selected independently according to a distribution absolutely continuous with respect to the natural Lebesgue measure.)

Wendel utilizes Schl"afli's theorem in the following manner to establish result (c) of the introduction. Given that $X_1 = \delta_1 x_1, X_2 = \delta_2 x_2, \ldots, X_N = \delta_N x_N$ for some fixed set of points $x_1, x_2, \ldots, x_N',$ the symmetry condition implies that all 2^N choices of $\delta_i = \pm 1$ are equally likely; and by Schl"afli's theorem, for exactly $C(N,d)$ of these choices the vectors $\delta_1 x_1, \delta_2 x_2, \ldots, \delta_N x_N$ will generate
a proper convex cone. The probability that X_1, X_2, \ldots, X_N all lie in some half-space of E^d, or that the unit vectors along the X_i all lie in some one hemisphere of the unit d-sphere, is therefore $\binom{N}{d}/2^N$.

This same argument yields probabilistic statements of Theorems 1 and 3:

Theorem 1'. Let W be the random polyhedral convex cone resulting from the intersection of N random half-spaces in E^d with positive normal vectors X_1, X_2, \ldots, X_N having a joint distribution as described above. Then the expected number of k-faces $R_k(W)$ of W, conditioned on $W = \emptyset$, is given by

$$
(3.1) \quad E(R_k(W)) = \binom{N}{d-k} \binom{N}{d-k} \frac{C(N-d+k)}{C(N,d)}
$$

and

$$
(3.2) \quad \lim_{N \to \infty} E(R_k(W)) = 2^{d-k} \binom{d-1}{d-k}.
$$

Theorem 3'. Let W^* be the random polyhedral convex cone spanned by the collection of random vectors X_1, X_2, \ldots, X_N. Then the expected number of k-faces of W^*, conditioned on W^* being a proper cone, is given by

$$
(3.3) \quad E(R_k(W^*)) = \binom{N}{k} \frac{C(N-k,d-k)}{C(N,d)},
$$

and

$$
(3.4) \quad \lim_{N \to \infty} E(R_k(W^*)) = 2^{d-k} \binom{d-1}{k}.
$$

(Note: by Wendel's result, $P(W \neq \emptyset) = P(W^* \text{ proper}) = \frac{C(N,d)}{2^N}$.)

11
Let \(\mu \) be any probability measure absolutely continuous with respect to natural Lebesgue measure.

Theorem 2'. The expected \(\mu \)-measure of a non-empty random \(W \) described in Theorem 1' is \(1/C(N,d) \). The expected \(\mu \)-measure of a proper random dual cone \(W^* \) described in Theorem 3' is \(\binom{N-1}{d-1}/C(N,d) \).

Proof. Given that \(X_1 = \delta_1 x_1, \ldots, X_N = \delta_N x_N \), the \(C(N,d) \) non-empty cones \(W_j \) generated (as in Theorem 1') by different choices of the \(\delta_i = \pm 1 \) partition \(E^d \) disjointly, ignoring their boundaries, which have \(\mu \)-measure \(0 \). Therefore, \(\sum_{j=1}^{C(N,d)} \mu(W_j) = 1 \), and \(EW = \frac{1}{C(N,d)} \) by the symmetry condition. From Theorem 5, the \(C(N,d) \) proper dual cones \(W_j^* \) cover almost every point in \(E^d \) exactly \(\binom{N-1}{d-1} \) times. Therefore, \(\sum_{j=1}^{C(N,d)} \mu(W_j^*) = \binom{N-1}{d-1} \), and the second half of the theorem follows by symmetry.

4. **Remarks.**

The total number of non-empty cones \(W \), proper dual cones \(W^* \), and \(k \)-faces of these cones have been determined and shown to be independent, up to general position, of the configuration of \(x_1, x_2, \ldots, x_N \). The extreme vectors of \(x_1, x_2, \ldots, x_N \) are the \(1 \)-faces of \(W^* \), the expected number of which is given in Eq. (3.3) and Eq. (3.4).

Thus

\[
(4.1) \quad ER_{1}(W^*) = \frac{2NC(N-1,d-1)}{C(N,d)}
\]

and

\[
(4.2) \quad \lim_{N \to \infty} ER_{1}(W^*) = 2(d-1).
\]
As a special case, suppose N points are chosen at random on the surface of the unit sphere in E^3. Then, given that they all lie in the same one hemisphere, the expected number of extreme points of their convex hull (taken with great circles on the surface of the sphere) does not grow without bound as N increases, but rather approaches the limit 4. This is perhaps surprising, particularly since the number of vertices can in no case be less than 3! For a comparison with the case of random points in the plane, where the expected number of extreme points goes to infinity, see [6]. On the other hand, the great circles having the N chosen points as poles partition the surface of the sphere into regions having an expected number of sides 4 as N goes to infinity. This agrees with the known result for regions formed by random lines in the plane [7, p. 57].

Closer inspection of (4.1) reveals that the expected number of extreme vectors of a random proper cone generated by N random vectors in E^d monotonically increases to $2(d-1)$ as N increases to infinity. We also remark that (3.2) expressing the asymptotic expected number of k-faces of W corresponds to the number of (k-1)-faces of a (d-1)-cube [7].

The $\binom{N-1}{d-1}$-fold overlapping of the cones spanned by the δ_iX_i's reduces, in the case $N = d$, to a corroboration of the result in [4] that the cones generated by d points in E^d partition E^d. Samelson et al extend their proof to cones generated by sets of pairs of vectors in E^d.

13
(4.3) \[\left\{ \begin{array}{c} \alpha_1 \\ \beta_1 \\ \vdots \\ \alpha_d \\ \beta_d \end{array} \right\}, \quad \alpha_1, \beta_1 \in \mathbb{R}^d, \quad i=1,2,\ldots,d \]

where each \((\alpha_i, \beta_i)\) pair is separated by each of the \(2^{d-1}\) hyperplanes generated by a set of representatives of the remaining pairs. Clearly each of the proofs in the present paper can be generalized in the same manner, the theorems holding true if \((X_{i'}, X_i)\) pairs are replaced by \((\alpha_i, \beta_i)\) pairs subject to the above conditions.
REFERENCES

Kendall, Hafner, New York, pp. 56-57.

The Division of Space by Hyperplanes with Applications to Geometrical Probability

Cover, Thomas and Efron, Bradley

August 10, 1965

Nomr-225(52)
NR 342-022

Technical Report
Technical Report No. 108

Releaseable without limitations on dissemination

Logistics and Mathematical Sciences Branch
Office of Naval Research
Washington, D.C. 20360

This paper investigates invariant combinatorial properties of convex cones and their dual cones generated by collections of vectors in a Euclidean space. These properties, which include the number of non-degenerate cones, the number of k-faces and these cones, and the natural measures of the set of k-faces, do not depend on the configuration of the set of generating vectors, except for a weak non-degeneracy requirement. Applications to geometrical probability are given.
Geometrical

Hyperspace

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report.Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.