DISTRIBUTION OF A SUM OF WAITING TIMES
IN COUPON COLLECTION

BY
GERALD CHASE and HERMAN RUBIN

TECHNICAL REPORT NO. 109
AUGUST 12, 1965

THIS RESEARCH WAS SPONSORED BY THE ARMY RESEARCH OFFICE,
OFFICE OF NAVAL RESEARCH, AND AIR FORCE OFFICE OF
SCIENTIFIC RESEARCH BY CONTRACT NO.
Nonr-225(52) (NR 342-022)

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
DISTRIBUTION OF A SUM OF WAITING TIMES IN COUPON COLLECTION

by

Gerald Chase and Herman Rubin

TECHNICAL REPORT NO. 109
August 12, 1965

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
The distribution of balls into urns, or equivalent problems, has been treated by many authors. The many variations of the problem, known as occupancy problems, may be characterized by two assumptions:

(1) the distinguishability of the balls, and

(2) the manner in which the distribution of the balls is to be carried out. The classical variations of the problem may be found in Fanzen [7] or Feller [3]. One well known variation is often referred to as the coupon collector's problem, which is illustrated by the following non-urn example.

Suppose a soap manufacturer randomly encloses a coupon bearing one of the integers 1 to M in each package of soap. If n packages of soap are purchased, the probability that exactly m of the M integers will not be obtained is given by

\[
\binom{M}{m} \frac{\Delta^{M-m}(O^n)}{M^m}
\]

where

\[
\Delta^r(O^n) = \sum_{K=0}^{r} (-1)^K \binom{r}{K}(r-K)^n \quad r = 0,1,\ldots,n
\]

\[
n = 1,2,\ldots
\]
The function $\Delta^r(0^n)$ is tabulated in [4], Table XXII, for $n = 2(1)25$ and $r = 2(1)n$.

The general problem, which allows the probabilities of the coupons to be unequal was treated by H. von Schelling in 1936 [8].

One important aspect of the coupon collectors problem is the waiting time (number of trials) until r of the M numbers have been collected. Let S^r_M denote the waiting time (a random variable) until this event occurs.

We may characterize the distribution as follows: let X^r_{MK} have a geometric distribution with $P^r_{MK} = \frac{M-K}{M}$, $K = 0, 1, \ldots, M-1$.

\begin{equation}
Pr[X^r_{MK} = \ell] = (1-P^r_{MK})^{\ell-1}P^r_{MK}, \quad \ell = 1, 2, \ldots \\
K = 0, 1, \ldots, M-1
\end{equation}

with the X^r_{MK}'s independent.

Define

\begin{equation}
Y^r_M = \sum_{K=0}^{r-1} X^r_{MK},
\end{equation}

Then S^r_M is distributed the same as Y^r_M.

The distribution of Y^10_M has been tabulated by R. E. Greenwood [5]. He proposes its use as a test for random digits by using a goodness of fit test. That is, the number of random digits is counted until all ten digits have been observed. This number is recorded and the process is repeated, beginning with the next random digit, until the table of digits has been exhausted. The resulting sample is tested for
goodness of fit with the tabled distribution. A similar test was used by Kendall and Smith [6] to test a table of numbers for randomness.

This note is concerned with the approximation of the c.d.f. of sums of independent random variables distributed as Y^M_M. (We collect a complete set of coupons, then another set, and so on until we have a specified number (N) of complete sets. We then look at the total number of coupons we have.)

The moment generating function for X_{MK} is given by

$$G_{X_{MK}}(t) = \frac{P_{MK}e^t}{1 - (1-P_{MK})e^t}$$

Using independence and (4) we then get

$$G_{Y^M_M} = \prod_{K=0}^{M-1} \frac{P_{MK}e^t}{1 - (1-P_{MK})e^t}$$

$$= \frac{\Gamma(M+1) \Gamma(M[e^{-t}-1] + 1)}{\Gamma(Me^{-t} + 1)}$$

Let $Y_{MI}, i = 1, \ldots, N$, be i.i.d. as Y^M_M. We are interested in the distribution of

$$S_{M,N} = \sum_{i=1}^{N} Y_{MI} .$$

The investigation was done for $M = 30$, and the number of convolutions (N) equal to 8, 16, and 32.
Define $x_{M,N,\alpha}$ such that

$$P_r[S_{M,N} \leq x_{M,N,\alpha}] \leq \alpha < P_r[S_{M,N} \leq x_{M,N,\alpha} + 1].$$ \hspace{1cm} (8)

The following points were used in the estimation procedure:

$$x_{30,N,\alpha} = 0.999, 0.990, 0.900, 0.100, 0.010, 0.001$$

$$N = 8, 16, 32$$ \hspace{1cm} (9)

The exact distribution of Y_{30} was generated and convolved on the Stanford University IBM 7090 digital computer. A check was made on the generation routine by using $M = 10$ and the table of Greenwood's [5]. The convolution routine was checked with the Poisson distribution.

An Edgeworth series (Cramer [1], page 228) was used as follows:

$$\phi(Z) = \int_{-\infty}^{Z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$ \hspace{1cm} (10)

and suppose we wish to estimate

$$P_r[S_{M,N} \leq x] = P_r\left[\frac{S_{M,N} - E[S_{M,N}]}{(\text{Var}[S_{M,N}])^{\frac{1}{2}}} \leq Z'_{M,N}(x)\right]$$ \hspace{1cm} (11)

where

$$Z'_{M,N}(x) = \frac{x - E[S_{M,N}]}{(\text{Var}[S_{M,N}])^{\frac{1}{2}}}$$ \hspace{1cm} (12)
Using a continuity correction, let

\begin{equation}
\frac{Z^{(x)}}{\chi_{M,N}} = Z_{M,N}^{(x + \frac{1}{2})}
\end{equation}

Define \(\lambda_{M,U} \) to be the \(U \)th cumulant of \(\frac{Y_{M}^{M} - \mathbb{E}[Y_{M}^{M}]}{(\text{Var}[Y_{M}^{M}])^{\frac{1}{2}}} \).

The Edgeworth series approximation to the order of \((N^{-\frac{1}{2}})^{3}\) is given by:

\begin{equation}
\hat{F}_{M,N}(x) = \phi(Z_{M,N}(x)) - \frac{\lambda_{M,3}}{3!} \frac{1}{N^{2}} \phi(3)(Z_{M,N}(x))
\end{equation}

\begin{equation}
\quad + \frac{\lambda_{M,4}}{4!} \frac{1}{N} \phi(4)(Z_{M,N}(x)) + \frac{10}{6!} \frac{(\lambda_{M,3})^{2}}{N} \phi(6)(Z_{M,N}(x))
\end{equation}

\begin{equation}
\quad - \frac{\lambda_{M,5}}{5!} \frac{1}{N^{3/2}} \phi(5)(Z_{M,N}(x)) - \frac{35(\lambda_{M,4})(\lambda_{M,3})}{7!} \frac{1}{N^{3/2}} \phi(7)(Z_{M,N}(x)) +
\end{equation}

\begin{equation}
\quad - \frac{280}{9!} \frac{(\lambda_{M,3})^{3}}{N^{3/2}} \phi(9)(Z_{M,N}(x))
\end{equation}

where

\begin{equation}
\phi^{(K)}(Z) = \frac{d^{K}}{dZ^{K}} \phi(Z)
\end{equation}

The cumulants \(\lambda_{M,U} \) may be obtained from \(G_{M}^{M} \) in (6). Letting

\begin{equation}
\chi_{M,U} = \frac{d}{dt} \log[G_{M}^{M}(t)] \bigg|_{t=0}
\end{equation}
we then have

\begin{equation}
\chi_{M,U} = \frac{\chi_{M,U}}{\chi_{M,2}^{U/2}} \quad U = 2, 3, \ldots.
\end{equation}

If \(\psi(X) \) denotes the Psi function, i.e.,

\begin{equation}
\psi(X) = \frac{d}{dX} \log \Gamma(X),
\end{equation}

the cumulants may be expressed as follows:

\begin{align*}
\chi_{M,2} &= M[\psi(1) - \psi(1+M)] + M^2[\psi'(1) - \psi'(1+M)] \\
\chi_{M,3} &= -M[\psi(1) - \psi(1+M)] - 3M^2[\psi'(1) - \psi'(1+M)] \\
&\quad - M^3[\psi''(1) - \psi''(1+M)] \\
\chi_{M,4} &= M[\psi(1) - \psi(1+M)] + 7M^2[\psi'(1) - \psi'(1+M)] \\
&\quad + 6M^3[\psi''(1) - \psi''(1+M)] + M^4[\psi'''(1) - \psi'''(1+M)] \\
\chi_{M,5} &= -M[\psi(1) - \psi(1+M)] - 15M^2[\psi'(1) - \psi'(1+M)] \\
&\quad - 25M^3[\psi''(1) - \psi''(1+M)] - 10M^4[\psi'''(1) - \psi'''(1+M)] \\
&\quad - M^5[\psi''''(1) - \psi''''(1+M)].
\end{align*}
The mean of the waiting time is given by

\begin{align*}
(20) \quad E[S_{M,N}] &= N \chi_{M,1} \\
&= -NM[\psi(1) - \psi(1+M)] .
\end{align*}

The \(\psi \) function and its derivatives (the polygamma functions) are
tabled up to \(M = 99 \) in [2]. For higher values of \(M \) the following approximations derived from Stirling's formula may be used:

\begin{align*}
\psi(1+M) &\approx \log M + \frac{1}{2M} - \frac{1}{12M^2} + \frac{1}{120M^4} \\
\psi^{(1)}(1+M) &\approx \frac{1}{M} - \frac{1}{2M^2} + \frac{1}{6M^3} - \frac{1}{30M^5} \\
\psi^{(2)}(1+M) &\approx -\frac{1}{M^2} + \frac{1}{3M^3} - \frac{1}{2M^4} + \frac{1}{6M^6} \\
\psi^{(3)}(1+M) &\approx \frac{2}{M^3} - \frac{3}{M^4} + \frac{2}{5M^5} - \frac{1}{7M^7} \\
\psi^{(4)}(1+M) &\approx \frac{6}{M^4} + \frac{12}{M^5} - \frac{10}{M^6} + \frac{7}{8M^8} \\
\end{align*}

Due to rounding errors, the tabled distributions were in error by
the following amounts:
\[F_{30,1}(\alpha) = 0.999997 \]
\[F_{30,8}(\alpha) = 0.999986 \]
\[F_{30,16}(\alpha) = 0.999975 \]
\[F_{30,16}(\alpha) = 0.999952 \]

The errors were taken into account in the upper tails, but ignored in the lower tails.

The unit normal c.d.f. and its derivatives were taken from [9]. The tables were in steps of 0.001 in the range of interest, and linear interpolation was used.

The results are given on the following tables for four approximations. The Edgeworth series

(1) to the order of \(n^0 \) (normal approximation),
(2) to the order of \(n^{-1/2} \),
(3) to the order of \(n^{-1} \), and
(4) to the order of \(n^{-3/2} \).
<table>
<thead>
<tr>
<th>α (N^{-1/2})</th>
<th>$F_{30,8}(x_{30,8},\alpha)$</th>
<th>$F_{30,8}(x_{30,8},\alpha+1)$</th>
<th>$\hat{F}{30,8}(x{30,8},\alpha)$</th>
<th>$\hat{F}{30,8}(x{30,8},\alpha) - F_{30,8}(x_{30,8},\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 0</td>
<td>0.000956</td>
<td>0.001007</td>
<td>0.005671</td>
<td>+ 0.004715</td>
</tr>
<tr>
<td>1</td>
<td>- 0.000769</td>
<td>-</td>
<td>- 0.001725</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.000347</td>
<td>- 0.000609</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.001037</td>
<td>+ 0.000081</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.010 0</td>
<td>0.009843</td>
<td>0.010211</td>
<td>0.021769</td>
<td>+ 0.011926</td>
</tr>
<tr>
<td>1</td>
<td>0.010000</td>
<td>+ 0.000157</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.009019</td>
<td>- 0.000824</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.009626</td>
<td>- 0.000217</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.100 0</td>
<td>0.099679</td>
<td>0.101772</td>
<td>0.110476</td>
<td>+ 0.010797</td>
</tr>
<tr>
<td>1</td>
<td>0.103561</td>
<td>+ 0.003882</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.100001</td>
<td>+ 0.000322</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.099606</td>
<td>- 0.000073</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.900 0</td>
<td>0.999987</td>
<td>0.901402</td>
<td>0.905745</td>
<td>+ 0.005758</td>
</tr>
<tr>
<td>1</td>
<td>0.996728</td>
<td>- 0.003259</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.900339</td>
<td>+ 0.000352</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.900001</td>
<td>+ 0.000014</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.990 0</td>
<td>0.989994</td>
<td>0.990180</td>
<td>0.995999</td>
<td>+ 0.006005</td>
</tr>
<tr>
<td>1</td>
<td>0.990738</td>
<td>+ 0.000744</td>
<td>- 0.000575</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.989419</td>
<td>- 0.000575</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.990001</td>
<td>+ 0.000007</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.999 0</td>
<td>0.998990</td>
<td>0.999012</td>
<td>0.999914</td>
<td>+ 0.000924</td>
</tr>
<tr>
<td>1</td>
<td>0.999582</td>
<td>+ 0.000592</td>
<td>- 0.000526</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.999121</td>
<td>+ 0.000131</td>
<td>- 0.000088</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.998902</td>
<td>- 0.000088</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\alpha) ((N^{-1/2}))</td>
<td>(F_{30,16}(x_{30,16},\alpha))</td>
<td>(F_{30,16}(x_{30,16},\alpha))</td>
<td>(\hat{F}{30,16}(x{30,16},\alpha))</td>
<td>(\hat{F}{30,16}(x{30,16},\alpha)^{-1})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
<td>0.000981</td>
<td>0.001013</td>
<td>0.003681</td>
</tr>
<tr>
<td>1</td>
<td>0.000143</td>
<td>- 0.000838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.000162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+ 0.000053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0</td>
<td>0.009933</td>
<td>0.010168</td>
<td>0.017689</td>
</tr>
<tr>
<td>1</td>
<td>0.009912</td>
<td>- 0.000021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- 0.000283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.000040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>0</td>
<td>0.098834</td>
<td>0.100214</td>
<td>0.106016</td>
</tr>
<tr>
<td>1</td>
<td>0.100704</td>
<td>+ 0.001870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+ 0.000078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.000058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>0</td>
<td>0.899996</td>
<td>0.901053</td>
<td>0.904563</td>
</tr>
<tr>
<td>1</td>
<td>0.898290</td>
<td>- 0.001706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+ 0.000100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.000022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.990</td>
<td>0</td>
<td>0.989954</td>
<td>0.990098</td>
<td>0.994691</td>
</tr>
<tr>
<td>1</td>
<td>0.990303</td>
<td>+ 0.000349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- 0.000232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+ 0.000005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.999</td>
<td>0</td>
<td>0.998996</td>
<td>0.999013</td>
<td>0.999812</td>
</tr>
<tr>
<td>1</td>
<td>0.999378</td>
<td>+ 0.000382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+ 0.000039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.000033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>(F_{30,32}^{x_{30},32,\alpha})</td>
<td>(F_{30,32}^{x_{30},32,\alpha+1})</td>
<td>(F_{30,32}^{x_{30},32,\alpha}) (F_{30,32}^{x_{30},32,\alpha-1})</td>
<td>(F_{30,32}^{x_{30},32,\alpha}) (F_{30,32}^{x_{30},32,\alpha-2})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
<td>0.000984</td>
<td>0.001005</td>
<td>0.002603</td>
</tr>
<tr>
<td>1</td>
<td>0.000587</td>
<td>- 0.000397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.000943</td>
<td>- 0.000041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.000996</td>
<td>+ 0.000012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0</td>
<td>0.009915</td>
<td>0.010069</td>
<td>0.015041</td>
</tr>
<tr>
<td>1</td>
<td>0.009867</td>
<td>- 0.000048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.009818</td>
<td>- 0.000097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.009910</td>
<td>- 0.000005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>0</td>
<td>0.099322</td>
<td>0.100259</td>
<td>0.104197</td>
</tr>
<tr>
<td>1</td>
<td>0.100321</td>
<td>+ 0.000999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.099423</td>
<td>+ 0.000101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.099376</td>
<td>+ 0.000054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>0</td>
<td>0.899728</td>
<td>0.900501</td>
<td>0.903200</td>
</tr>
<tr>
<td>1</td>
<td>0.898849</td>
<td>- 0.000879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.899752</td>
<td>+ 0.000024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.899708</td>
<td>- 0.000020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.990</td>
<td>0</td>
<td>0.989945</td>
<td>0.990054</td>
<td>0.993559</td>
</tr>
<tr>
<td>1</td>
<td>0.990105</td>
<td>+ 0.000240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.989852</td>
<td>- 0.000093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.989942</td>
<td>- 0.000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.999</td>
<td>0</td>
<td>0.998991</td>
<td>0.999004</td>
<td>0.999681</td>
</tr>
<tr>
<td>1</td>
<td>0.999219</td>
<td>+ 0.000228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.999001</td>
<td>+ 0.000010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.998982</td>
<td>- 0.000009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary: The Edgeworth series to powers of \((N^{-1/2})^3\) appears to give a good approximation for \(P_{S_{M,N}} \leq x\), when \(x\) is an integer.

To get this approximation, compute

\[
Z_{M,N}(x) = \frac{x - \text{NE}[Y_M^M] + 1/2}{N^{1/2}(X_{M,2})^{1/2}}, \quad \text{where}
\]

\(X_{M,2}\) is given in (19) and \(\text{NE}[Y_M^M]\) is given in (20). Compute \(\hat{P}_{S_{M,N}}(x)\) as in (13).
REFERENCES

Distribution of a Sum of Waiting Times in Coupon Collection

Report Date: August 12, 1965

Contract or Grant No.: Nbr 255(52)

Project No.: NR 342-022

Other Report No.(s): Technical Report No. 109

Availability/Limitation Notices: Releaseable without limitations on dissemination

Abstract

The problem of approximating the distribution of the sum of n times to collect all of M coupons is considered. The Edgeworth expansion is obtained to terms of order $n^{-3/2}$. Tables are given for $M = 30$, $n = 8$, 15, and 32, of the accuracy of the Edgeworth expansion for the cumulative distribution function approximately (because of discreteness) .001, .01, .1, .9, .99, and .999.
Waiting time distribution
Coupon collector's problem

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial.

6. REPORT DATE: Enter the date of the report as day, month, year, or month/year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was prepared.

8b. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC."

2. "Foreign announcement and dissemination of this report by DDC is not authorized."

3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _______."

4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _______."

5. "All distribution of this report is controlled. Qualified DDC users shall request through _______."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (U), (S), (C), or (S). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.