GROWTH RATES OF MOMENT SEQUENCES

BY

WILLIAM L. HARKNESS

TECHNICAL REPORT NO. 289
JULY 30, 1980

PREPARED UNDER CONTRACT
NO0014-76-C-0475 (NR-042-267)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
GROWTH RATES OF MOMENT SEQUENCES

By

William L. Harkness

TECHNICAL REPORT NO. 289
JULY 30, 1980

Prepared under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Growth Rates of Moment Sequences

William L. Harkness
Pennsylvania State University and Stanford University

1. Introduction.

Let X be a non-negative random variable having distribution function F such that its nth moment μ'_n about the origin is finite for all positive integers. Then $\{\mu'_n\}$ is a moment sequence associated with F. The study of moment sequences has received considerable attention (see, e.g., [1], [6], and [10]), including determination of criteria (a) for a sequence of real numbers to be a moment sequence and (b) for the sequence $\{\mu'_n\}$ to determine F uniquely. Interest here is focused on the behavior of the ratio μ'_{n+1}/μ'_n of moments as $n \to +\infty$ and, in particular, the construction of distribution functions having a "suitably" prescribed growth rate.

It is well-known [10] that a sequence of real numbers $1, \mu'_1, \mu'_2, \ldots$, is a moment sequence of a non-negative random variable if and only if the quadratic forms

\[
Q_0 = \sum_{i,j=0}^{n} \mu'_{i+j} x_i x_j \quad \text{and} \quad Q_1 = \sum_{i,j=0}^{n} \mu'_{i+j+1} x_i x_j
\]

are positive semi-definite for all $n \geq 0$ and for every sequence of real numbers x_0, x_1, \ldots, x_n. An elementary consequence of (1.1) is that the sequence $\{\mu'_{n+1}/\mu'_n\}$ is non-decreasing. If F is a finite distribution function (i.e., $b = \inf\{x : F(x) = 1\} < \infty$) then $\lim(\mu'_n)^{1/n} = b$.
(see Boas [2]). By a well-known theorem this implies that \(\lim \frac{\mu'_n}{\mu'_n} = b \). Consequently, the study of the growth rate of the ratio \(\frac{\mu'_n}{\mu'_n} \) for finite distributions is "uninteresting".

If the support of \(F \) is unbounded, i.e., \(F(x) < 1 \) for all \(x > 0 \), then \(\lim \frac{\mu'_n}{\mu'_n} = +\infty \). To see this, suppose that the limit \(L \) is finite. Then \((\mu'_n)^{1/n} + L \). Let \(A > 0 \) be an arbitrary but fixed number. Then

\[
\mu'_n = \int_0^\infty x^n \, dF(x) \geq \int_A^\infty x^n \, dF(x) \geq A^n [1 - F(A)]
\]

and hence \(\lim \inf \mu'_n^{1/n} \geq A \). Since \(A \) was arbitrary, we conclude that \((\mu'_n)^{1/n} \rightarrow +\infty \), a contradiction.

Thus, we see that distributions of non-negative random variables with finite and unbounded supports may be distinguished in terms of the behavior of the ratio of their \((n+1)\)st and \(n\)th moments. Further consideration of the study of such ratios is in the direction of exhibiting distributions of non-negative random variables for which the ratio asymptotically behaves in a suitably prespecified manner. Before proceeding, however, we give several examples which illustrate the behavior of moment ratios and "suggest" how to carry out the construction just referred to.

Example 1. \(F(x) = \begin{cases} 0 & x \leq 0 \\ 1-p & 0 < x \leq C \\ 1 & x > C \end{cases} \).

Here, \(\mu'_n = pC^n \) and \(\mu'_{n+1}/\mu'_n = C \). For \(0 < C < 1, C = 1, C > 1, \mu'_n + \rightarrow 0, 1, +\infty \), the ratio is equal to \(C \) independently of \(n \).

Example 2. \(F(x) = \begin{cases} 0 & x \leq 0 \\ x/C & 0 \leq x \leq C \\ 1 & x > C \end{cases} \).
In this case, \(\mu_n' = C^n/(n+1) \), \(\mu_{n+1}'/\mu_n' = (n+1)C/(n+2) \to C \); as in Example 1, \(\mu_n' \to 0, 1 \), or \(\pm \infty \), according to whether \(C < 1 \), \(C = 1 \), or \(C > 1 \).

Example 3.
\[
F(x) = \begin{cases}
0 & x \leq 0 \\
\int_0^x y^{a-1} e^{-y/\beta} dy/\Gamma(\alpha) \beta^\alpha & x > 0
\end{cases}
\]

It is easily seen that \(\mu_n' = \Gamma(n+\alpha)\beta^n/\Gamma(\alpha) \) and \(\mu_{n+1}'/\mu_n' = (n+\alpha)\beta \); also, \([\mu_{n+1}'/\mu_n']/n \to \beta \).

Example 4.
\[
F(x) = \begin{cases}
0 & x \leq 0 \\
1 - e^{-x^\beta} & x > 0
\end{cases}
\]

A simple calculation shows that \(\mu_n' = \Gamma(n+\beta)/\beta \) and \(\mu_{n+1}'/\mu_n' \approx (n+1)^{1/\beta} \).

Thus, \(\mu_{n+1}'/n^{1/\beta} \mu_n' \to C \), \(0 < C < \infty \). In particular, if \(\beta = 1/k \), \(k \) an integer, then \(\mu_{n+1}'/n^k \mu_n' \to k^k \). If \(\beta = 1/2 \), \(\mu_n' = \Gamma(2n+1) = (2n)! \) for \(n \geq 1 \), while if \(\beta = 1/4 \), \(\mu_n' = \Gamma(4n+1) = (4n)! \) for \(n \geq 1 \). If \(\beta = 1/2 \), then \(\mu_{n+1}'/\mu_n' = 4n^2 \) while \(\mu_{n+1}'/\mu_n' = 256n^4 \) for \(\beta = 1/4 \).

Example 5.
\[
F(x) = \begin{cases}
0 & x \leq 1 \\
1 - e^{-(\ln x)^2} & x > 1
\end{cases}
\]

It can be shown that \(\mu_n' = e^{n^2/4} \), \(\mu_{n+1}'/\mu_n' = e^{(2n+1)/4} \).

Example 6. Let \(X \) be normally distributed with mean zero and variance \(\alpha = \sigma^2/2 \) and put \(Y = e^X \), so that \(Y \) has a log-normal distribution.

Then it can easily be shown that \(\mu_n' = \text{E}(Y^n) = e^{\alpha n^2} \) and \(\mu_{n+1}'/\mu_n' = e^{(2n+1)\alpha} \).

Thus, asymptotically, the distribution in Example 5 and a log-normal random variable with parameter \(\alpha = 1/4 \) (corresponding to \(\sigma^2 = 1/2 \)) have moments such that the ratios of the \((n+1)\)st and \(n\)th moments are equal.
2. Assumptions and Statement of Results.

Examples 3, 4, and 5 illustrate the fact that the more "slowly" \(1 - F(x) \to 0\) as \(x \to +\infty\), the more "rapidly" \(\frac{\mu_{n+1}'}{\mu_n'}\) tends to \(+\infty\) with \(n\). The strength of this "inverse relationship" between \(1 - F(x)\) and \(\frac{\mu_{n+1}'}{\mu_n'}\) is reflected in the examples. Thus, if \(-\ln[1 - F(x)] = x^\beta\), then \(\frac{\mu_{n+1}'}{\mu_n'} \approx [(n+\beta)/\beta]^{1/\beta}\), while if \(-\ln[1 - F(x)] = (\ln x)^2\), then \(\frac{\mu_{n+1}'}{\mu_n'} \approx e^{(2n+1)/4}\).

We assume that the distribution function behaves in a "smooth" manner. Explicitly, we assume that the log of the "tail" of \(F\) is the inverse of either a regularly varying or a rapidly varying function (but not "too" rapid). Before stating our assumptions and results, we recall the definition of "regularly" varying functions and list several properties. For a complete exposition on the subject, see Seneta [7].

Definition 2.1. A function \(\phi\) is said to be regularly varying at infinity if it is real-valued, positive and measurable on \([A, \infty)\), for some \(A > 0\), and if for each \(x > 0\),

\[
\lim_{t \to \infty} \frac{\phi(tx)}{\phi(t)} = x^\rho
\]

for some \(\rho\) in the interval \(-\infty < \rho < \infty\); \(\rho\) is called the index of regular variation.

Definition 2.2. A function \(L\) which is regular varying, with index of regular variation \(\rho = 0\), is called slowly varying.

Every regularly varying function \(\phi\) is necessarily of the form \(\phi(x) = x^\rho L(x)\), with \(L\) slowly varying. For slowly varying functions, we have the following results (from Seneta [7]):
(2.1) \[\lim_{t \to \infty} \frac{L(tx)}{L(t)} = 1 \] uniformly for \(x \) in closed intervals \([a,b]\), \(0 < a < b < \infty \).

(2.2) For any \(\gamma > 0 \), \(x^\gamma L(x) \to +\infty \) and \(x^{-\gamma} L(x) \to 0 \), as \(x \to \infty \).

(2.3) \[\ln L(x)/\ln x \to 0 \] as \(x \to \infty \).

(2.4) If \(L \), defined on \([A,\infty)\), \(A > 0 \), is slowly varying, then there exists a positive number \(B \geq A \) such that for all \(x \geq B \),

\[L(x) = \exp \left\{ \eta(x) + \int_{B}^{x} \frac{\varepsilon(t)}{t} \, dt \right\} \]

where \(\eta \) is a bounded measurable function on \([B,\infty)\) such that \(\eta(x) + C \) is finite, and \(\varepsilon \) is a continuous function on \([B,\infty)\) such that \(\varepsilon(x) \to 0 \) as \(x \to \infty \). Conversely, any function \(L \) having the above representation where \(\eta \) and \(\varepsilon \) have the properties stated is slowly varying.

(2.5) If \(L \) is a slowly varying function which is eventually non-decreasing (non-increasing), then the continuous \(\varepsilon(t) \) in its representation for sufficiently large values may be taken as satisfying \(\varepsilon(t) \geq 0 \) (\(\leq 0 \)).

(2.6) For a given slowly varying function \(L \) on \([A,\infty)\), there exists another, infinitely differentiable, slowly varying function \(L_1 \) with the following properties:

(a) \(L_1(x) \sim L(x) \), as \(x \to \infty \);

(b) \(L_1(n) = L(n) \) for all integers \(n \) sufficiently large;

(c) If \(L \) is ultimately monotone, then so is \(L_1 \);

(d) If \(L \) is ultimately convex, then so is \(L_1 \).

(2.7) If \(L_1 \) and \(L_2 \) are slowly varying, then so are \(L_1 \), \(L_2 \), \(L_1 + L_2 \) and \(L_1^\alpha \) for \(\alpha \neq 0 \), \(i = 1, 2 \).
(2.8) If \(\phi \) is a regularly varying differentiable function of index \(\rho \), then \(x \frac{d}{dx} \ln \phi(x) = \frac{x}{x} \ln \phi(x) + \rho \) as \(x \to \infty \).

The results which we present here are generalizations of Example 3 and 4. Explicitly, we consider two cases:

(i) \(-\ln[1 - F(x)] = \phi^{-1}(x)\), where \(\phi \) is a monotonically increasing twice differentiable regularly varying function of index \(\rho \geq 0 \), so that \(\phi(x) = x^\rho L(x) \); we assume \(\ln L(x) = \int_1^x [\epsilon(y)/y]dy \), where \(\epsilon \) is also assumed to be slowly varying. If \(\rho = 0 \), \(\ln L(x) \) increases to \(+\infty \) as \(x \to +\infty \); in this case, \(\epsilon(x) > 0 \) and decreases to zero. In order for \(F \) to be a distribution function, \(\phi^{-1}(x) \to +\infty \), so that \(\phi(x) \) also must increase to \(+\infty \).

(ii) \(-\ln[1 - F(x)] = \lambda^{-1}(\ln x)\), where \(\lambda \) is a monotonically increasing twice differentiable regularly varying function of index \(0 \leq \rho \leq 1 \). Thus, \(\lambda(x) = x^\rho L(x) \), with \(0 \leq \rho \leq 1 \). If \(\rho = 0 \), then \(L(x) \to +\infty \), so that the \(\epsilon(x) \) in the representation of \(L \) is a positive function decreasing to zero as \(x \to +\infty \). If \(0 < \rho < 1 \), then \(\epsilon(x) \) is either strictly monotone or is taken to be identically zero. Finally, if \(\rho = 1 \), then \(L(x) \) decreases to zero as \(x \to +\infty \), so that \(\epsilon(x) < 0 \). It is assumed also that \(\epsilon(x) \) is slowly varying. If \(\rho = 0 \), we assume \(\phi(x) \) varies rapidly, to avoid overlap with case (i).

We prove the following two theorems, corresponding to the two cases.

Theorem 1. In case (i), there exists \(\{\tau_n\} \), satisfying

\[
(2.9) \quad \tau_n = n[\rho + \epsilon(\tau_n)]
\]

such that
\begin{equation}
\lim_{n \to \infty} \frac{\mu'_n}{\sqrt{2\pi}} \tau_n g_n(\tau_n) = 1
\end{equation}

where

\[\ln g_n(\tau_n) = n \ln \phi(\tau_n) - \tau_n ; \]

\begin{equation}
\lim_{n \to \infty} \frac{\mu'_n}{\phi(\tau_n) \mu_n} = 1 .
\end{equation}

Theorem 2. In case (ii), there exists \(\{\tau_n\} \) satisfying

\begin{equation}
\tau_n = n[\rho + \epsilon(\tau_n)] \lambda(\tau_n)
\end{equation}

such that

\begin{equation}
\lim_{n \to \infty} \frac{\mu'_n}{\sqrt{2\pi}} \frac{\tau_n}{(1-\rho)} g_n(\tau_n) = 1 \quad \text{if} \quad 0 \leq \rho < 1
\end{equation}

\begin{equation}
\lim_{n \to \infty} \frac{\mu'_n}{\sqrt{-2\pi \tau_n / \epsilon(\tau_n)}} g_n(\tau_n) = 1 \quad \text{if} \quad \rho = 1 .
\end{equation}

with \(\ln g_n(\tau_n) = n \lambda(\tau_n) - \tau_n . \)

\begin{equation}
\lim_{n \to \infty} \ln[\mu'_n / \mu'_n] / \lambda(\tau_{n+1}) = 1 , \quad \text{if} \quad 0 \leq \rho < 1
\end{equation}

or if \(\rho = 1 \) and \(\tau_{n+1} / \tau_n \to 1 .\)

\begin{equation}
\lim_{n \to \infty} \ln[\mu'_n / \mu'_n] / [-\epsilon(\tau_{n+1}) \lambda(\tau_{n+1})] \to (L-1)/L , \quad \text{if} \quad \rho = 1
\end{equation}

and \(\tau_{n+1} / \tau_n \to L > 1 . \) If \(\tau_{n+1} / \tau_n \to +\infty , \) then the limit in (2.16) is 1.
Examples where $\frac{\tau_{n+1}}{\tau_n}$ converges to 1, $L(\infty)$, or $+\infty$ are given.

3. Proof of Theorem 1.

We have $-\ln[1 - F(x)] = \phi^{-1}(x)$, so that $F(x) = 1 - e^{-\phi^{-1}(x)}$ and

$$\mu_n = \int_0^\infty x^n \, dF(x) = n \int_0^\infty x^{n-1} [1 - F(x)] \, dx = n \int_0^\infty x^{n-1} e^{-\phi^{-1}(x)} \, dx.$$

Let $y = \phi^{-1}(x)$, so that $x = \phi(y)$. Then

$$\mu_n = n \int_0^\infty [\phi(y)]^{n-1} \phi'(y) \, e^{-y} \, dy = \int_0^\infty [\phi(y)]^n \, e^{-y} \, dy$$

on integrating by parts. Let

$$\ln g_n(y) = \ln[\phi(y)]^n \, e^{-y} = n \left\{ \rho \ln y + \int_1^y \frac{\varepsilon(u)}{u} \, du \right\} - y.$$

Then

$$\frac{d}{dy} \ln g_n(y) = n \left[\rho + \varepsilon(y) \right]/y - 1$$

and

$$\frac{d^2}{dy^2} \ln g_n(y) = -\frac{n}{y^2} \left\{ \rho + \varepsilon(y) \left[1 - \frac{y \varepsilon'(y)}{\varepsilon(y)} \right] \right\}.$$

Both $\varepsilon(y)$ and $y \varepsilon'(y)/\varepsilon(y) = y \frac{d}{dy} \ln|\varepsilon(y)|$ tend to 0 as $y \to \infty$ (noting (2.8)), so that for y sufficiently large, the right hand side of (3.4) is negative. Thus, the right hand side of (3.3) decreases as
\[y \text{ increases and there exists a unique positive real number } \tau_n \text{ such that } \ln g_n(y) \text{ attains a maximum at } y = \tau_n . \] From (3.3), it is seen that \(\tau_n \) satisfies \(n[\rho + \epsilon(\tau_n)] = \tau_n \). Furthermore, the sequence \(\{\tau_n\} \) increases monotonically since \(n[\rho + \epsilon(y)]/y \) decreases as \(y \) increases.

If \(\tau_{n+1} < \tau_n \), then we'd have

\[\frac{1}{n+1} = [\rho + \epsilon(\tau_{n+1})]/\tau_{n+1} > [\rho + \epsilon(\tau_n)]/\tau_n = \frac{1}{n}, \text{ a contradiction}. \] Thus, \(\tau_n \to L . \) Suppose \(L < \infty \). Then \(\epsilon(\tau_n) + \epsilon(L) \) as \(\tau_n \to L \). If \(\rho = 0 \), we would have \(1/n = \epsilon(\tau_n)/\tau_n + \epsilon(L)/L \), which is nonsense. If \(\rho > 0 \),

then \(\tau_n/n = \rho + \epsilon(\tau_n) \to \rho \), so that \(\tau_n = n\rho \to +\infty \). Finally, we claim that \(\tau_{n+1}/\tau_n \to 1 \). If \(\rho = 0 \), we have

\[0 \leq \tau_{n+1}/\tau_n - 1 = [(n+1)\epsilon(\tau_{n+1})]/(n\epsilon(\tau_n)) - 1 \leq (n+1)/n - 1 = \frac{1}{n} \to 0 , \]

using the fact that \(\epsilon(y) \downarrow 0 \) monotonically if \(\rho = 0 \). If \(\rho > 0 \),

\[\tau_{n+1}/\tau_n = [\rho + \epsilon(\tau_{n+1})]/[\rho + \epsilon(\tau_n)] + 1 . \]

Now let \(\delta > 0 \) be arbitrary (but less than 1) and write

\[(3.5) \quad \mu_n^* = \int_0^\infty g_n(y)dy = \tau_n \int_0^\infty g_n(\tau_n y)dy = \sum_{j=1}^4 I_{nj} \]

where

\[I_{n1} = \tau_n \int_0^{1-\delta} g_n(\tau_n y)dy , \quad I_{n2} = \tau_n \int_{1-\delta}^{1+\delta} g_n(\tau_n y)dy , \quad I_{n3} = \tau_n \int_{1+\delta}^4 g_n(\tau_n y)dy , \quad I_{n4} = \tau_n \int_4^\infty g_n(\tau_n y)dy . \]
We shall show that

\[(3.6) \quad \lim_{n \to \infty} \frac{I_{n^2}}{\sqrt{2\pi} \tau_n g_n(\tau_n)} = 1\]

and

\[(3.7) \quad \lim_{n \to \infty} \frac{I_{nj}}{\sqrt{2\pi} \tau_n g_n(\tau_n)} = 0, \text{ for } j = 1, 3, 4.\]

To prove (3.6), we proceed as follows. Expanding $\ln g_n(\tau_n x)$ in a Taylor's series about $x = 1$, we get

\[(3.8) \quad \ln g_n(\tau_n x) = \ln g_n(\tau_n) + \{n[\rho + \varepsilon(\tau_n)] - \tau_n\}(x-1)\]

\[\quad - n \left[\frac{d^2}{dx^2} \ln \phi(\tau_n x) \right]_{x=\theta_n} (x-1)^2/2\]

\[= \ln g_n(\tau_n) - n r_n(\theta_n)(x-1)^2/2\]

where

\[(3.9) \quad r_n(\theta_n) = [\rho + \varepsilon(\tau_n \theta_n) S(\tau_n \theta_n)]/\theta_n^2\]

with $S(x) = 1 - x \varepsilon'(x)/\varepsilon(x) \to 1$ as $x \to \infty$. Thus,

\[(3.10) \quad I_{n^2} = \tau_n g_n(\tau_n) \int_{1-\delta}^{1+\delta} \exp\{-n r_n(\theta_n)(x-1)^2/2\} dx\]

with $1 - \delta < \theta_n < 1 + \delta$. If $\rho > 0$, we have
\[
\frac{n r_n(\theta_n)}{\tau_n} \leq \frac{n \rho}{\tau_n (1-\delta)^2} + \frac{|\varepsilon(\tau_n \theta_n) S(\tau_n \theta_n)|}{(1-\delta)^2 [\rho + \varepsilon(\tau_n)]}
\]

and

\[
\frac{n r_n(\theta_n)}{\tau_n} \geq \frac{n \rho}{\tau_n (1+\delta)^2} - \frac{|\varepsilon(\tau_n \theta_n) S(\tau_n \theta_n)|}{(1+\delta)^2 [\rho + \varepsilon(\tau_n)]}
\]

so that

\[(3.11) \quad (1+\delta)^{-2} \leq \lim \inf \frac{n r_n(\theta_n)}{\tau_n} \leq \lim \sup \frac{n r_n(\theta_n)}{\tau_n} \leq (1-\delta)^{-2}.
\]

If \(\rho = 0 \), then

\[
\frac{n r_n(\theta_n)}{\tau_n} = \frac{n \varepsilon(\tau_n \theta_n)}{\tau_n \theta_n^2} S(\tau_n \theta_n) \leq \frac{\varepsilon[(1-\delta)\tau_n]}{(1-\delta)^2 \varepsilon(\tau_n)} [1 + |u(\tau_n \theta_n)|].
\]

where

\[(3.12) \quad u(x) = 1 - S(x) = x \varepsilon'(x)/\varepsilon(x),
\]

so that \(\lim \sup n r_n(\theta_n)/\tau_n \leq (1-\delta)^2 \). Similarly,

\(\lim \inf n r_n(\theta_n)/\tau_n \geq (1+\delta)^{-2} \), so that (3.11) holds for all \(\rho \geq 0 \).

From (3.10) and (3.11) it follows that

\[
\frac{1}{(1+\delta)^2} \leq \lim \inf \frac{I_{n2}}{\sqrt{2\pi} \tau_n g_n(\tau_n)} \leq \lim \sup \frac{I_{n2}}{\sqrt{2\pi} \tau_n g_n(\tau_n)} \leq \frac{1}{(1-\delta)^2}.
\]

Since \(\delta \) is arbitrary, (3.6) follows.
As for (3.7), we first show that \(I_{n1} / \sqrt{2\pi} \tau_n g_n(\tau_n) \to 0 \). We have

\[
(3.13) \quad \frac{I_{n1}}{\sqrt{2\pi} \tau_n g_n(\tau_n)} < \frac{(1-\delta)\tau_n g_n[(1-\delta)\tau_n]}{\sqrt{2\pi} \tau_n g_n(\tau_n)} = (1-\delta) e^{-n a_n}
\]

where

\[
n a_n = n \int_{(1-\delta)\tau_n}^{\tau_n} \frac{\varepsilon(u)}{u} du - \delta \tau_n - \frac{1}{2} \ln \tau_n - n \rho \ln(1-\delta).
\]

If \(\rho = 0 \), then \(\varepsilon(u) > 0 \) and

\[
n a_n \geq n \varepsilon(\tau_n) \ln(1-\delta)^{-1} - \delta \tau_n - \frac{1}{2} \ln \tau_n = \tau_n \ln(1-\delta)^{-1} - \frac{1}{2} \ln \tau_n
\]

\[
> \tau_n \delta^2 / 2 - \ln \tau_n / 2 = \tau_n \delta^2 [1 - (\ln \tau_n) / (\tau_n \delta)] / 2 \to \infty.
\]

If \(\rho > 0 \) and \(\varepsilon(y) > 0 \), then

\[
n a_n > n \varepsilon(\tau_n) \ln(1-\delta)^{-1} - \delta \tau_n - (\ln \tau_n) / 2 - n \rho \ln(1-\delta)
\]

\[
= n [\rho + \varepsilon(\tau_n)] \ln(1-\delta)^{-1} - \delta \tau_n + (\ln \tau_n) / 2
\]

\[
= \tau_n [\ln(1-\delta)^{-1} - \delta] - (\ln \tau_n) / 2 > \tau_n \delta^2 [1 - (\ln \tau_n) / (\tau_n \delta)] / 2 \to \infty.
\]

If \(\rho > 0 \) and \(\varepsilon(y) < 0 \), then

12
\[n a_n \geq n \rho \ln(1-\delta)^{-1} - \delta \tau_n - (\ln \tau_n)/2 \]
\[= n\{\rho \ln(1-\delta)^{-1} - \delta[\rho + \varepsilon(\tau_n)]\} - (\ln \tau_n)/2 \]
\[> n\rho \{\ln(1-\delta)^{-1} - \delta\} - (\ln \tau_n)/2 \]
\[> n\rho \delta^2/2 - (\ln \tau_n)/2 > \tau_n \delta^2 [1 - (\ln \tau_n)/\tau_n \delta^2]/2 \rightarrow \infty. \]

Thus, the r.h.s. of (3.13) converges to zero.

Next we show that \(I_{n3}/\sqrt{2\pi} \ln \tau_n g_n(\tau_n) \rightarrow 0. \) We proceed as in (3.8)-(3.10), but with \(I_{n2} \) replaced by \(I_{n3} \) and \(1 - \delta < \theta_n < 1 + \delta \) replaced by \(1 + \delta < \theta_n < 4 \). It then is easily seen that for \(\rho > 0 \),

\[n r_n(\theta_n)/\tau_n > (n\rho/16 \tau_n) - |\varepsilon(\tau_n \theta_n)| S(\tau_n \theta_n)|/(1+\delta)^2[\rho + \varepsilon(\tau_n)] + 1/16 \]

while if \(\rho = 0 \),

\[n r_n(\theta_n)/\tau_n > \frac{\varepsilon(4\tau_n)}{16 \varepsilon(\tau_n)} \left\{ 1 - |u(\tau_n \theta_n)| \right\} + \frac{1}{16}, \]

using (2.1). Thus, for all \(n \) sufficiently large,

\[I_{n3}/\sqrt{2\pi} \ln \tau_n g_n(\tau_n) \leq \frac{\tau_n}{2\pi} \int_{1+\delta}^{4} e^{-\tau_n(x-1)^2/64} dx \rightarrow 0. \]

Finally, we show that \(I_{n4}/\sqrt{2\pi} \ln \tau_n g_n(\tau_n) \rightarrow 0. \) But
\[I_{n/4n}^{\sqrt{2\pi}} \tau_n g_n(\tau_n) = \sqrt{\frac{\tau_n}{2\pi}} \int_4^{\infty} [g_n(\tau_n y)/g_n(\tau_n)] dy, \]

and

\[\ln[g_n(\tau_n y)/g_n(\tau_n)] - \tau_n = n \left(\ln y + \int_{\tau_n}^{\tau_n y} \frac{\epsilon(u)}{u} du \right) - \tau_n y \]

\[= \int_{\tau_n}^{\tau_n y} \frac{n[\rho + \epsilon(u)]}{u} du - \tau_n y \]

\[= \tau_n \left\{ \int_{\tau_n}^{\tau_n y} \frac{n[\rho + \epsilon(u)]}{\tau_n u} du - y \right\} \]

\[= - \tau_n y k_n(y) \]

where

\[k_n(y) = 1 - \frac{n}{\tau_n y} \int_{\tau_n}^{\tau_n y} \frac{\rho + \epsilon(u)}{u} du = 1 - \frac{\int_{\tau_n}^{\tau_n y} \frac{\rho + \epsilon(u)}{u} du}{[\rho + \epsilon(\tau_n)]y}. \]

If \(\epsilon(x) > 0 \), then \(k_n(y) \geq 1 - e^{-1} \), since \(1 - k_n(y) \leq [\ln y/y] \leq e^{-1} \) for all \(y \). If \(\epsilon(x) < 0 \), then

\[1 - k_n(y) \leq \{ \rho \ln y/[(\rho + \epsilon(\tau_n)]y \} < 2 \ln y/y \leq 2 e^{-1}, \] for all \(y \),

provided we choose \(n \) such that \(\epsilon(\tau_n) > -\rho/2 \) (which we can do, noting that if \(\epsilon(x) < 0 \), then \(\rho > 0 \) and \(\epsilon(\tau_n) \to 0 \)). Thus, for all \(y \) and \(n \) sufficiently large, \(k_n(y) \geq 1 - 2 e^{-1} \). Hence,
\[
I_{n4}/\sqrt{2\pi} \tau_n g_n(\tau_n) \leq \frac{\tau_n}{2\pi} \tau_n \int_4^\infty e^{-k\tau_n y} dy = (2\pi k\tau_n)^{-1/2} e^{(1-4k)\tau_n} \to 0
\]

since \(1 - 4k < 0\).

This completes the proof of (3.7) and hence of (2.10). To prove (2.11), we have

\[
\mu_{n+1} / \mu_n \phi(\tau_n) = (\tau_{n+1}/\tau_n)^{1/2} \frac{g_{n+1}(\tau_{n+1})}{g_n(\tau_n)} \phi(\tau_n) = A_n B_n
\]

with \(A_n = (\tau_{n+1}/\tau_n)^{1/2} + 1\) and

\[
B_n = \ln\left[g_{n+1}(\tau_{n+1})/g_n(\tau_n) \phi(\tau_n)\right] = (n+1)\left[\ln \phi(\tau_{n+1}) - \ln \phi(\tau_n)\right] - (\tau_{n+1} - \tau_n)
\]

\[
= (n+1) \left[\rho \ln \frac{\tau_{n+1}}{\tau_n} + \int_\tau^{\tau_{n+1}} \frac{\epsilon(y)}{y} dy \right] - \left[(n+1)\left[\rho + \epsilon(\tau_{n+1})\right] - n[\rho + \epsilon(\tau_n)]\right].
\]

To show \(B_n \to 0\), we note that

\[
\ln \phi(y) = \rho \ln y + \int_1^Y \frac{\epsilon(u)}{u} du, \quad \frac{d}{dy} \ln \phi(y) = [\rho + \epsilon(y)]/y
\]

and

\[
\frac{d^2}{dy^2} \ln \phi(y) = -\frac{1}{y} [\rho + \epsilon(y)]/y - \epsilon'(y)
\]

so that
\[- \int_{\tau_n}^{\tau_{n+1}} y \frac{d^2}{dy^2} \ln \phi(y) dy = \int_{\tau_n}^{\tau_{n+1}} \left[\frac{\rho + \epsilon(y)}{y} - \epsilon'(y) \right] dy \]

\[= \rho \ln \frac{\tau_{n+1}}{\tau_n} + \int_{\tau_n}^{\tau_{n+1}} \frac{\epsilon(y)}{y} dy - \left[\epsilon(\tau_{n+1}) - \epsilon(\tau_n) \right] \]

\[= (n+1)^{-1} B_n + (n+1)^{-1} [\rho + \epsilon(\tau_n)] . \]

Hence,

\[B_n = -(n+1) \int_{\tau_n}^{\tau_{n+1}} y \frac{d^2}{dy^2} \ln \phi(y) dy - [\rho + \epsilon(\tau_n)] . \]

However,

\[- \int_{\tau_n}^{\tau_{n+1}} y \frac{d^2}{dy^2} \ln \phi(y) dy < - \tau_{n+1} \int_{\tau_n}^{\tau_{n+1}} \frac{d}{dy} \ln \phi(y) dy \]

\[= - \tau_{n+1} \left[\frac{d}{dy} \ln \phi(y) \right]_{\tau_n}^{\tau_{n+1}} = \tau_{n+1}/n(n+1) . \]

Similarly,

\[- \int_{\tau_n}^{\tau_{n+1}} y \frac{d^2}{dy^2} \ln \phi(y) dy > \frac{\tau_n}{n(n+1)} . \]

Thus,

\[0 \leq \frac{\tau_n}{n} - [\rho + \epsilon(\tau_n)] < B_n < \frac{\tau_{n+1}}{n} - [\rho + \epsilon(\tau_n)] \to 0 . \]

This completes the proof of (2.11) and hence of Theorem 1.
4. **Proof of Theorem 2.**

We have \(-\ln[1-F(x)] = \lambda^{-1}(\ln x)\), so that \(F(x) = 1 - e^{-\lambda^{-1}(\ln x)}\)

and

\[
u_n' = n \int_{1}^{\infty} x^{n-1} e^{-\lambda^{-1}(\ln x)} \, dx = n \int_{0}^{\infty} e^{ny-\lambda^{-1}(y)} \, dy
\]

\[(4.1)\]

\[= n \int_{0}^{\infty} \lambda'(y) e^{n\lambda(y)-y} \, dy = \int_{0}^{\infty} e^{n\lambda(y)-y} \, dy,
\]

the last equality being obtained through an integration by parts. Let

\[
(4.2) \quad \ln g_n(y) = n\lambda(y) - y = ny^\rho \exp\left\{ \int_{1}^{y} \frac{\varepsilon(u)}{u} \, du \right\} - y.
\]

Then

\[
(4.3) \quad \frac{d}{dy} \ln g_n(y) = n\lambda'(y) - 1 = n[\rho + \varepsilon(y)] \frac{\lambda(y)}{y} - 1
\]

and

\[
(4.4) \quad \frac{d^2}{dy^2} \ln g_n(y) = n\lambda''(y) = \frac{n\lambda(y)}{y^2} \left\{ y \varepsilon'(y) - [\rho + \varepsilon(y)][1-\rho - \varepsilon(y)] \right\}
\]

\[= -n\lambda(y)[\rho(1-\rho) + b(y)]/y^2
\]

where

\[
(4.5) \quad b(y) = \varepsilon(y)[1 - 2\rho - \varepsilon(y) - u(y)].
\]
(u(y) is given by (3.12)). Since ε is slowly varying, and $\varepsilon(y) \to 0$, it follows from (2.8) that $b(y) \to 0$ as $y \to \infty$. If $\rho = 0$, then $\varepsilon(y) > 0$ and $b(y) > 0$. If $0 < \rho < 1$, then for y sufficiently large $b(y) < -\rho(1-\rho)$. If $\rho = 1$, $\varepsilon(y) < 0$ and $b(y) < 0$. Thus, $\frac{d^2}{dy^2} \ln g_n(y)$ is negative for all y sufficiently large for $0 \leq \rho \leq 1$.

Hence, $\frac{d}{dy} \ln g_n(y)$ decreases monotonically (to zero) as $y \to \infty$ and so there exists a unique positive real number τ_n at which (4.3) vanishes and $\ln g_n(y)$ attains a maximum at $y = \tau_n$. Clearly, τ_n satisfies

$$
\tau_n = n[\rho + \varepsilon(\tau_n)]\lambda(\tau_n).
$$

Since $\frac{d}{dy} \ln g_n(y)$ decreases monotonically, it follows that $\{\tau_n\}$ increases monotonically (for if τ_{n+1} were less than τ_n, we'd have $n^{-1} = [\rho + \varepsilon(\tau_{n+1})]/\tau_n < [\rho + \varepsilon(\tau_{n+1})]/\tau_{n+1} = (n+1)^{-1}$). It is easy to see that $\tau_n \to \infty$. The asymptotic behavior of $\{\tau_n\}$ and

$$
\max_y \ln g_n(y) = n \lambda(\tau_n) - \tau_n
$$

depends on ρ, as follows:

(4.6) If $\rho = 0$, $\tau_n = n\varepsilon(\tau_n)\lambda(\tau_n)$; $\tau_n^{-1} \lambda(\tau_n) = L(\tau_n)\tau_n^{-1} \to 0$ (using 2.2);

and $\tau_n^{-1}[n \lambda(\tau_n) - \tau_n] = [1 - \varepsilon(\tau_n)]/\varepsilon(\tau_n) \to \infty$.

(4.7) If $0 < \rho < 1$, $\tau_n = n[\rho + \varepsilon(\tau_n)]\lambda(\tau_n)$; $\tau_n^{-1} \lambda(\tau_n) = n^{-1}[\rho + \varepsilon(\tau_n)] \to 0$;

and $\tau_n^{-1}[n\lambda(\tau_n) - \tau_n] = [1 - \rho - \varepsilon(\tau_n)]/[\rho + \varepsilon(\tau_n)] \to (1-\rho)/\rho$.

(4.8) If $\rho = 1$, $\tau_n = [1 + \varepsilon(\tau_n)]\lambda(\tau_n)$; $\tau_n^{-1} \lambda(\tau_n) \to 0$; and

$\tau_n^{-1}[n \lambda(\tau_n) - \tau_n] = -\varepsilon(\tau_n)/(1 + \varepsilon(\tau_n)) \to 0$. However,
\[n \lambda(\tau_n) - \tau_n = -\varepsilon(\tau_n)\tau_n/\left[1+\varepsilon(\tau_n)\right] \to \infty, \text{ using (2.2), recalling that} \]
\[\varepsilon(x) \text{ is slowly varying.} \]

As in the proof of Theorem 1, let

\[(4.9) \quad \mu'_n = \int_0^\infty g_n(y)dy = \tau_n \int_0^\infty g_n(\tau_n y)dy = \sum_{j=1}^4 I_{nj}, \]

but with \(I_{n3} = \tau_n \int_{1+\delta}^{c_n} g_n(\tau_n y)dy \) and \(I_{n4} = \tau_n \int_{c_n}^\infty g_n(\tau_n y)dy \); \(c_n \)
will be specified later. Let

\[(4.10) \quad h_n(x) = \ln g_n(\tau_n x) = n \lambda(\tau_n x) - \tau_n x, \]

then

\[(4.11) \quad \begin{cases} h'_n(x) = n \frac{d}{dx} \lambda(\tau_n x) - \tau_n = n[\rho+\varepsilon(\tau_n)]\lambda(\tau_n x)/x - \tau_n \\ h''_n(x) = -n \lambda(\tau_n x)\rho(1-\rho) + b(\tau_n x)/x^2 \end{cases} \]

(noticing 4.5). Note that \(h'_n(1) = \ln g_n(\tau_n) \) and \(h''_n(1) = 0 \). We will now show that

\[(4.12) \quad \frac{I_{n2}}{\sqrt{2\pi} \tau_n/(1-\rho) g_n(\tau_n)} \to 1 \quad \text{if} \quad 0 \leq \rho < 1 \]

\[\frac{I_{n2}}{\sqrt{-2\pi} \tau_n/\varepsilon(\tau_n) g_n(\tau_n)} \to 1 \quad \text{if} \quad \rho = 1. \]

From (4.11), we see that

\[(4.13) \quad I_{n2} = \tau_n \int_{1-\delta}^{1+\delta} g_n(\tau_n x) = \tau_n g_n(\tau_n) \int_{1-\delta}^{1+\delta} \exp(h''_n(0_+)(x-1)^2/2)dx \]
with \(1 - \delta < \theta_n < 1 + \delta\). To prove (4.12), we first show that

\[
(4.14) \quad (1+\delta)^{-2} \leq \lim \inf \frac{[-h''(\theta_n)]}{\tau_n} \leq \lim \sup \frac{[-h''(\theta_n)]}{\tau_n} \leq (1-\delta)^{-2}.
\]

If \(\rho = 0\), from (4.5) and (4.11), we get

\[
-h''(\theta_n) = n \lambda(\tau_n \theta_n)^{-2} \varepsilon(\tau_n \theta_n)[1 - \varepsilon(\tau_n \theta_n) - u(\tau_n \theta_n)]
\]

\[
< \frac{n \lambda[(1+\delta)\tau_n]}{(1-\delta)^2} \varepsilon[(1-\delta)\tau_n][1 - \varepsilon(\tau_n \theta_n) - u(\tau_n \theta_n)]
\]

\[
= \frac{\tau_n}{(1-\delta)^2} \frac{\lambda[(1+\delta)\tau_n]}{\lambda(\tau_n)} [1 - \varepsilon(\tau_n \theta_n) - u(\tau_n \theta_n)]
\]

so that

\[
\lim \sup \frac{-h''(\theta_n)}{\tau_n} \leq (1-\delta)^{-2}, \quad \text{using (2.1) and (2.8)}.
\]

Similarly, \(\lim \inf \frac{-h''(\theta_n)}{\tau_n} \geq (1+\delta)^{-2}\).

If \(0 < \rho < 1\), then

\[
-h''(\theta_n) \leq n \lambda[(1+\delta)\tau_n]\{(\rho(1-\rho) + b(\tau_n \theta_n))/(1-\delta)^2
\]

\[
= \frac{n \lambda(\tau_n)}{(1-\delta)^2} \frac{\lambda[(1+\delta)\tau_n]}{\lambda(\tau_n)} \{(\rho(1-\rho) + b(\tau_n \theta_n))
\]

\[
= \frac{\tau_n}{[\rho + \varepsilon(\tau_n)](1-\delta)^2} \frac{\lambda[(1+\delta)\tau_n]}{\lambda(\tau_n)} \{(\rho(1-\rho) + b(\tau_n \theta_n))
\]

so that
\[
\lim \sup [-h''_n(\theta_n)/\tau_n] \leq (1-\rho)(1-\delta)^{-2}.
\]

Similarly, \(\lim \inf [-h''_n(\theta_n)/\tau_n] \geq (1-\rho)(1+\delta)^{-2}\).

If \(\rho = 1\), then from (4.5) and (4.11), and proceeding as above,

\[
-h''_n(\theta_n) \leq -\frac{n \lambda [(1+\delta)\tau_n] \varepsilon [(1-\delta)\tau_n]}{(1-\delta)^2 [1+\varepsilon(\tau_n) + u(\tau_n)]} \leq \frac{\tau_n \varepsilon(\tau_n)}{(1-\delta)^2 [1+\varepsilon(\tau_n)]} \leq \lambda(\tau_n) \varepsilon(\tau_n) \lambda((1+\delta)\tau_n) \varepsilon((1-\delta)\tau_n) \leq (1-\delta)^{-2}.
\]

so that

\[
\lim \sup [-h''_n(\theta_n)/\tau_n \varepsilon(\tau_n)] \leq (1-\delta)^{-2}.
\]

Similarly, \(\lim \inf [-h''_n(\theta_n)/\tau_n \varepsilon(\tau_n)] \geq (1+\delta)^{-2}\). This establishes (4.14) for all \(\rho \in [0,1]\). (4.12) now follows easily from (4.13) and (4.14), noting that \(h''_n(\theta_n) \to -\infty\) uniformly for \(\theta_n \in [1-\delta, 1+\delta]\) as \(n \to \infty\) or \(h''_n(\theta_n)/h''_n(1) \to 1\) uniformly as \(n \to \infty\). If \(0 \leq \rho < 1\), \(h''_n(1) = -(1-\rho)\tau_n\) while if \(\rho = 1\) we have \(h''_n(1) \sim \tau_n \varepsilon(\tau_n)\). But, also, \(h''_n(1) = -n \lambda''(\tau_n)\), so that (4.12) can alternatively be asserted as

\[
\lim_{n \to \infty} \frac{L_n^2/\alpha_n}{\tau_n} = 1
\]

where

\[
(4.15) \quad \alpha_n = \tau_n^{\sqrt{-2\pi/n\lambda''(\tau_n)}} g_n(\tau_n), \quad \text{with} \quad \lambda''(\tau_n) = \begin{cases}
(1-\rho)\tau_n, & 0 \leq \rho < 1 \\
\tau_n \varepsilon(\tau_n), & \rho = 1
\end{cases}.
\]

21
Next we show that \(I_{n_j}/\alpha_n \to 0 \), for \(j = 1, 3, 4 \). We have

\[
I_{n_1}/\alpha_n < (1-\delta)[-n \lambda''(\tau_n)]^{1/2} g_n[(1-\delta)\tau_n]/\sqrt{2\pi} g_n(\tau_n)
\]

\[
= \exp(-n)\{\lambda(\tau_n) - \lambda[(1-\delta)\tau_n] - \delta \tau_n/n - 1n[-n \lambda''(\tau_n)]/2n\},
\]

with \(c = (1-\delta)/\sqrt{2\pi} \). Let \(a_n \) denote the quantity in brackets. Then

\[
a_n = n \lambda(\tau_n)\{1 - \gamma_n(\delta) - \delta \tau_n/[n \lambda(\tau_n)] - 1n[-n \lambda''(\tau_n)]/2n \lambda(\tau_n)\}
\]

with

\[
\gamma_n(\delta) = \lambda[(1-\delta)\tau_n]/\lambda(\tau_n) = (1-\delta)\rho \exp\left\{-\int_{(1-\delta)\tau_n}^{\tau_n} \frac{\varepsilon(u)}{u} \, du\right\}.
\]

If \(\rho = 0 \), then

\[
a_n = \frac{\tau_n}{\varepsilon(\tau_n)} \left[1 - \gamma_n(\delta) - \delta \varepsilon(\tau_n) - \varepsilon(\tau_n)\ln \frac{\tau_n}{2 \tau_n}\right]
\]

\[
\geq \frac{\tau_n}{\varepsilon(\tau_n)} \left[1 - \exp\{\varepsilon(\tau_n)\ln(1-\delta)\} - \delta \varepsilon(\tau_n) - \varepsilon(\tau_n)\ln\tau_n/2\tau_n\right]
\]

\[
\geq \frac{1}{2} \tau_n \left[1 - \varepsilon(\tau_n)\right]\delta^2 - \ln \frac{\tau_n}{\tau_n} \to \infty,
\]

using (i) the fact that \(\gamma_n(\delta) \leq \exp[\varepsilon(\tau_n)\ln(1-\delta)] \), which is valid since \(\varepsilon(x) \downarrow 0 \) in this case, and (ii) the inequality

\[
1 - (1-x)^a - ax \geq a(1-a)x^2/2.
\]

(4.17)
If $0 < \rho < 1$, then

\[
na_n = \frac{\tau_n}{\|\rho+\varepsilon(\tau_n)\|} \left[1 - \gamma_n(\delta) - [\rho+\varepsilon(\tau_n)]\delta - [\rho+\varepsilon(\tau_n)]\ln[(1-\rho)\tau_n]/2\tau_n \right] \\
\geq \frac{\tau_n}{\|\rho+\varepsilon(\tau_n)\|} \left[1 - (1-\delta) - [\rho+\varepsilon(\tau_n)]\delta - [\rho+\varepsilon(\tau_n)]\ln[(1-\rho)\tau_n]/2\tau_n \right] \\
\geq \frac{\tau_n}{2\|\rho+\varepsilon(\tau_n)\|} \{\rho(1-\rho)\delta^2 - [\rho+\varepsilon(\tau_n)]\ln[(1-\rho)\tau_n]/\tau_n + V_n \} \to \infty
\]

using (4.17) again and where

\[V_n = -[\beta_n+\varepsilon(\tau_n)]\delta + [(2\rho-1)\beta_n]\beta_n\delta^2/2, \beta_n = \varepsilon((1-\rho)\tau_n)\).

Finally, if $\rho = 1$,

\[
na_n = \frac{\tau_n}{\|1+\varepsilon(\tau_n)\|} \left[1 - \gamma_n(\delta) - [1+\varepsilon(\tau_n)]\delta - [1+\varepsilon(\tau_n)]\ln[-\tau_n \varepsilon(\tau_n)]/2\tau_n \right] \\
\geq \frac{\tau_n}{\|1+\varepsilon(\tau_n)\|} \left[1 - (1-\delta) - [1+\varepsilon(\tau_n)]\delta - [1+\varepsilon(\tau_n)]\ln[-n\tau_n \varepsilon(\tau_n)]/2\tau_n \right] \\
\geq \frac{\tau_n}{2} \{\varepsilon(\tau_n)\delta^2 - [1+\varepsilon(\tau_n)]\ln[-\tau_n \varepsilon(\tau_n)]/\tau_n \} \\
= -\frac{\tau_n \varepsilon(\tau_n)}{2} \{\delta^2 - [1+\varepsilon(\tau_n)]\ln[-\tau_n \varepsilon(\tau_n)]/[\tau_n \varepsilon(\tau_n)] \} \to \infty,
\]

noting that in this case (i.e., $\rho = 1$), $\varepsilon(x) \to 0$ and recalling (4.8).

This completes showing that $I_{n1}/\alpha_n \to 0$, for $0 \leq \rho \leq 1$.

We now show that $I_{n4}/\alpha_n \to 0$. From (4.9), we have
\[
I_{n4}/\alpha_n = \left[\tau_n/\alpha_n\right] \int_{c_n}^{\infty} g_n(\tau_n x) dx \\
= \sqrt{n} \frac{\lambda''(\tau_n)/2\pi}{\lambda'(\tau_n)} e^{\tau_n} \int_{c_n}^{\infty} \exp\{n[\lambda(\tau_n x) - \lambda'(\tau_n)] - \tau_n x\} dx.
\]

Write

\[
n[\lambda(\tau_n x) - \lambda'(\tau_n)] - \tau_n x = -\tau_n x \{1 - n[\lambda(\tau_n x) - \lambda'(\tau_n)]/\tau_n x\}
\]

\[
= -\tau_n x k_n(x).
\]

where

\[
1 - k_n(x) = n[\lambda(\tau_n x) - \lambda'(\tau_n)]/\tau_n x
\]

\[
= \frac{n}{\tau_n x} \left[\frac{\lambda(\tau_n x)}{\lambda'(\tau_n)} - 1 \right] = \left[x^\rho \exp\left\{ \int_{\tau_n}^{\tau_n x} \frac{\varepsilon(u)}{u} du \right\} - 1 \right] / (\rho + \varepsilon(\tau_n)) x
\]

We shall bound \(k_n(x) \) from below.

If \(\rho = 0 \), then \(\varepsilon(u) \downarrow 0 \), so that

\[
1 - k_n(x) < [e^{\varepsilon(\tau_n)} - 1]/\varepsilon(\tau_n) = [x^{\varepsilon(\tau_n)} - 1]/\varepsilon(\tau_n) \equiv f_n(x).
\]

The maximum value of \(f_n(x) \) occurs at \(x' = [1 - \varepsilon(\tau_n)]^{1/\varepsilon(\tau_n)} \), at

which \(f_n(x') = [1 - \varepsilon(\tau_n)]^{1/\varepsilon(\tau_n)} /[1 - \varepsilon(\tau_n)] \to e^{-1} \). Thus, for any \(\eta > 0 \) there exists a \(N \) such that for all \(n > N \), \(1 - k_n(x) < e^{-1} + \eta \), i.e., \(k_n(x) > 1 - e^{-1} - \eta \), so that if we take \(\eta = 1/2 \), say, then
\[k_n(x) > \frac{1}{2} - e^{-1} = k > 0 \text{, at least for } n > N. \text{ Then} \]

\[I_{n4}/c_n \leq \int_{2\pi}^{\infty} e^{\tau_n} \int_{c_n}^{-\tau_n x} e^{-\tau_n x} dx \]

\[= e^{-\tau_n (kc_n - 1)} \int_{2\pi}^{\infty} \frac{dx}{\tau_n} \to 0 \]

if we choose \(c_n \) such that \(kc_n - 1 > 0 \), i.e., if \(c_n > 1/k \). We take \(c_n = 2/k \).

If \(0 < \rho < 1 \), then

\[1 - k_n(x) = \left[\frac{\lambda(\tau_n x)}{\lambda(\tau_n)} - 1 \right] / [\rho + \delta(\tau_n)] \to (x^\rho - 1)/\rho x = f(x), \]

since \(\lambda \) varies regularly with exponent \(\rho \). The maximum value of \(f(x) \) occurs at \(x_0 = 1/(1-\rho)^{1/\rho} \), at which \(f(x_0) = (1-\rho)^{1/\rho}/(1-\rho) < 1 \) for \(0 < \rho < 1 \). Thus, for all \(x > x_0 \) and \(n \) sufficiently large, \(1 - k_n(x) < f(x_0) + \eta \), or \(k_n(x) > 1 - f(x_0) - \eta > \delta > 0 \) if we take \(\eta < 1 - (1-\rho)^{1/\rho}/(1-\rho) - \delta \). Then

\[I_{n4}/c_n \leq \sqrt{\frac{(1-\rho)}{2\pi}} e^{\tau_n} \int_{2\pi}^{\infty} e^{-\tau_n x} dx \]

\[= \frac{1}{\delta} \sqrt{\frac{(1-\rho)}{2\pi}} e^{-\tau_n (1-\theta c_n)} \to 0 \]

if we choose \(1 - \theta c_n > 0 \), or \(c_n > 1/\theta \). Take \(c_n = 2/\theta \); we can let \(\theta = [1-f(x_0)]/2 \).
Finally, if \(p = 1 \), let \(x_n \) be such that \(\ln L(x_n) = \int_1^{x_n} \frac{\varepsilon(y)}{y} \, dy = \ln[(1-\delta)/n] \); this is possible since \(\lambda(x) = x \, L(x) \to +\infty \) with \(L(x) \to 0 \) as \(x \to \infty \). We prove the following lemma about \(\{x_n\} \).

Lemma 4.1. \(\{x_n\} \uparrow +\infty \) and \(\{x_n/\tau_n\} \to +\infty \).

Proof. We have

\[
\tau_n = n[1+\varepsilon(\tau_n)]\lambda(\tau_n) = n[1+\varepsilon(\tau_n)]\tau_n \exp\left\{ \int_1^{\tau_n} \frac{\varepsilon(y)}{y} \, dy \right\}
\]

which implies that

\[
\int_1^{\tau_n} \frac{\varepsilon(y)}{y} \, dy = -\ln(n[1+\varepsilon(\tau_n)])
\]

Thus,

\[
\int_1^{x_n} \frac{\varepsilon(y)}{y} \, dy = \int_1^{x_n} \frac{\varepsilon(y)}{y} \, dy - \int_1^{\tau_n} \frac{\varepsilon(y)}{y} \, dy = \ln(1-\delta) + \ln[1+\varepsilon(\tau_n)] < 0
\]

which implies \(x_n > \tau_n \) since \(\varepsilon(y) < 0 \). Clearly, \(\int_1^{x_n} \frac{\varepsilon(y)}{y} \, dy + \ln(1-\delta) \)

as \(n \to \infty \). But

\[
\varepsilon(\tau_n)\ln \frac{x_n}{\tau_n} = \int_1^{x_n} \frac{\varepsilon(y)}{y} \, dy \leq \varepsilon(x_n)\ln \frac{x_n}{\tau_n}.
\]

Let \(0 < \gamma < -\ln(1-\delta) \), so that \(\ln(1-\delta) + \gamma < 0 \). From above it follows that there exists \(N \) such that for all \(n > N \),

\[
\varepsilon(\tau_n)\ln \frac{x_n}{\tau_n} < \ln(1-\delta) + \gamma
\]

26
i.e., \(\ln \frac{x_n}{\tau_n} > \ln(1-\delta)+\gamma \to \infty \), since \(\varepsilon(\tau_n) \to 0 \). Thus, \(\frac{x_n}{\tau_n} \to \infty \).

We now show that \(I_{n4}/\alpha_n \to 0 \) if we choose \(c_n = \frac{x_n}{\tau_n} \). We have

\[
I_{n4}/\alpha_n = \frac{\tau_n}{\alpha_n} \int_{x_n/\tau_n}^{\infty} g_n(\tau_n x) dx
\]

\[
= \frac{\sqrt{-\frac{\tau_n}{\varepsilon(\tau_n)}}}{\sqrt{2\pi}} \int_{x_n/\tau_n}^{\infty} g_n(\tau_n x) dx
= \frac{[1+\varepsilon(\tau_n)]}{\sqrt{-2\pi \tau_n \varepsilon(\tau_n)}} \int_{x_n/\tau_n}^{\infty} g_n(\tau_n x) dx
\]

\[
\leq \frac{[1+\varepsilon(\tau_n)]}{\tau_n \sqrt{-2\pi \varepsilon(\tau_n)}} \int_{x_n}^{\infty} e^{-\delta x} dx
= \frac{[1+\varepsilon(\tau_n)]}{\delta \tau_n \sqrt{-2\pi \varepsilon(\tau_n)}} e^{-\delta x_n} \to 0 ,
\]

using \(g_n(\tau_n) = n \lambda(\tau_n) - \tau_n = -\tau_n \varepsilon(\tau_n)/(1+\varepsilon(\tau_n)) \) (see 4.8), and the fact that for all \(x > x_n \),

\[
n \lambda(x-x) = n x \exp\left\{ \int_1^{x} \frac{\varepsilon(y)}{y} dy \right\} - x < n x \exp\left\{ \int_{x_n}^{x} \frac{\varepsilon(y)}{y} dy \right\} = -\delta x .
\]

This completes showing \(I_{n4}/\alpha_n \to 0 \) for \(0 \leq \rho \leq 1 \).

At this point, we summarize the choices of \(c_n \) in \(I_{n3} \) and \(I_{n4} \):

\[
c_n = \begin{cases}
2/k = 2/[,5-e^{-1}] & \text{if } \rho = 0 \\
2/\theta = 4/[1-(1-\rho)^{1-\rho}] & \text{if } 0 < \rho < 1 \\
X_n/\tau_n & \text{if } \rho = 1
\end{cases}
\]

We still need to show that \(I_{n3}/\alpha_n \to 0 \). If \(\rho = 0 \),

27
then \(c_n = 2/k \) and

\[
I_{n3}/\alpha_n = \frac{\tau_n}{\sqrt{2\pi}} \frac{\int_{1+\delta}^{2/k} g_n(\tau_n x) dx}{\int_{1+\delta}^{2/k} e^{(-x)^2/2} dx} = \frac{\tau_n}{2\pi} \int_{1+\delta}^{2/k} e^{(-x)^2/2} dx
\]

on paralleling the calculation of \(I_{n2} \) in (4.10), (4.11), and (4.13); now, \(1 + \delta < \theta_n < 2/k \). As for \(h_n''(\theta_n) \) we have

\[
-h_n''(\theta_n) > k^2 n \lambda[(1+\delta)\tau_n] \epsilon[2\tau_n/k] \{\delta(\theta_n - \theta_n) - \epsilon(\theta_n - \theta_n)/4
\]

\[
= \left[\frac{k^2 \lambda(\tau_n) \epsilon(\tau_n)}{4} \right] \frac{\lambda[(1+\delta)\tau_n] \epsilon[2\tau_n/k]}{\lambda(\tau_n) \epsilon(\tau_n)} [1+o(1)]
\]

so that \(\lim \inf \{-h_n''(\theta_n)/\tau_n\} > k^2/4 \). Hence, for all \(n \) sufficiently large, \(h_n''(\theta_n) \leq -k^2 \tau_n/2 \), so that

\[
I_{n3}/\alpha_n \leq \frac{\tau_n}{2\pi} \int_{1+\delta}^{2/k} e^{-k^2(x-1)^2/8} dx = 0.
\]

A similar calculation shows that \(I_{n3}/\alpha_n \to 0 \) for \(0 < \rho < 1 \). If \(\rho = 1 \), we need to show that

\[
I_{n3}/\alpha_n = \frac{\tau_n}{\alpha_n} \int_{1+\delta}^{x_n/\tau_n} g_n(\tau_n x) dx
\]

\[
= \frac{-\tau_n \epsilon(\tau_n)}{2\pi} \int_{1+\delta}^{x_n/\tau_n} e^{-k^2(x-1)^2/2} dx
\]

where now \(1 + \delta < \theta_n < x_n/\tau_n \). We first show that \(h_n''(\theta_n) \to -\infty \), uniformly for \(\theta_n \epsilon[1+\delta, x_n/\tau_n] \). We have
\[-h''(\theta_n) = -n \lambda(\tau_n \theta_n)[1+\varepsilon(\tau_n \theta_n)+u(\tau_n \theta_n)]/\theta_n^2.\]

Clearly, \(\omega_n = 1+\varepsilon(\tau_n \theta_n)+u(\tau_n \theta_n) \to 1\) for \(\theta_n = 1+\delta\) and \(x_n/\tau_n\) and is bounded above and below by its values at these two points. Thus,

\[-h''(\theta_n) \geq n \lambda[(1+\delta)\tau_n][-\varepsilon(x_n)](1+o(1))/\tau_n^2/x_n^2\]

\[= [-x_n \varepsilon(x_n)](x_n/\tau_n)n(1+\delta)\exp\left\{\int_1^{(1+\delta)\tau_n} \varepsilon(y)/y \, dy\right\}\]

\[\geq [-x_n \varepsilon(x_n)](1-\delta)^2 = z_n^2, \quad z_n = \sqrt{-x_n \varepsilon(x_n)}(1-\delta).\]

Here, we used the fact that for all \(n\) sufficiently large, \(x_n \geq (1+\delta)\tau_n\) (which follows from Lemma 4.1) and

\[n(1+\delta)\exp\left\{\int_1^{(1+\delta)\tau_n} \varepsilon(y)/y \, dy\right\} \geq n(1+\delta)\exp\left\{\int_1^{x_n} \varepsilon(y)/y \, dy\right\} = 1-\delta^2.\]

Hence,

\[I_n^3/\mathcal{A}_n \leq \int_{1+\delta}^{x_n/\tau_n} e^{-2(x-1)^2/2} \, dx < \frac{1}{1-\delta} \int_{-\infty}^{\infty} \frac{e^{-u^2/2}}{\sqrt{2\pi}} \, du \to 0\]

since \(-x \varepsilon(x)\) varies regularly and is easily shown to be monotonically increasing, so that \([-\tau_n \varepsilon(\tau_n)\] \leq [-x_n \varepsilon(x_n)\).

This completes the proof that \(I_n^3/\mathcal{A}_n \to 0\) for \(0 \leq \rho \leq 1\) and hence of (2.13) and (2.14).
To prove (2.15) and (2.16), we proceed as follows. Suppose
\[\tau_{n+1}/\tau_n \to 1 \]
(we will show later that this is the case if \(0 \leq \rho < 1 \)
and for a class of slowly varying functions \(L \) in \(\lambda(x) = x L(x) \)).
If \(0 \leq \rho < 1 \), then from (2.13) we have

\[
\ln[\mu_{n+1}/\mu_n] = (n+1)\lambda(\tau_{n+1}) - n \lambda(\tau_n) - (\tau_{n+1} - \tau_n)
\]

\[
= n[\lambda(\tau_{n+1})] - \lambda(\tau_n)] - (\tau_{n+1} - \tau_n) + \lambda(\tau_{n+1})
\]

\[
= n[\lambda(\tau_{n+1}) - \lambda(\tau_n)] - [n[\rho+\varepsilon(\tau_{n+1})] \lambda(\tau_{n+1})]
\]

\[
- n[\rho+\varepsilon(\tau_n)] \lambda(\tau_n)] + [1-\rho-\varepsilon(\tau_{n+1})] \lambda(\tau_{n+1})
\]

\[
= n(1-\rho)[\lambda(\tau_{n+1}) - \lambda(\tau_n)] - n[\varepsilon(\tau_{n+1}) \lambda(\tau_{n+1}) - \varepsilon(\tau_n) \lambda(\tau_n)]
\]

\[
+ [1-\rho-\varepsilon(\tau_{n+1})] \lambda(\tau_{n+1})
\]

\[
= -n \int_{\tau_n}^{\tau_{n+1}} x \lambda''(x) dx + [1-\rho-\varepsilon(\tau_{n+1})] \lambda(\tau_{n+1}) .
\]

The latter equality is obtained as follows. We know from (4.3) that
\[x \lambda'(x) = [\rho+\varepsilon(x)] \lambda(x) \]
and from (4.4) that
\[x \lambda''(x) = \{x \varepsilon'(x) - [\rho + \varepsilon'(x)][1 - \rho - \varepsilon(x)]\} \lambda(x)/x \]
\[= \varepsilon'(x) \lambda(x) - [1 - \rho - \varepsilon(x)] \frac{[\rho + \varepsilon'(x)] \lambda(x)}{x} \]
\[= \varepsilon'(x) \lambda(x) - [1 - \rho - \varepsilon(x)] \lambda'(x) \]
\[= [\varepsilon'(x) \lambda(x) + \varepsilon(x) \lambda'(x)] - (1 - \rho) \lambda'(x) \]
\[= \frac{d}{dx} [\varepsilon(x) \lambda(x)] - (1 - \rho) \lambda'(x). \]

The equality now follows on integrating \(x \lambda''(x) \) from \(\tau_n \) to \(\tau_{n+1} \).

But

\[-n \int_{\tau_n}^{\tau_{n+1}} x \lambda''(x) dx < -n \int_{\tau_n}^{\tau_{n+1}} \lambda''(x) dx = -n \int_{\tau_n}^{\tau_{n+1}} \{\lambda'(\tau_{n+1}) - \lambda'(\tau_n)\} \]

\[= -n \int_{\tau_n}^{\tau_{n+1}} \left\{ \frac{1}{n+1} - \frac{1}{n} \right\} = \frac{\tau_{n+1}/(n+1)}{n} . \]

Similarly,

\[-n \int_{\tau_n}^{\tau_{n+1}} \lambda''(x) dx > \frac{\tau_{n+1}}{(n+1)} . \]

Therefore,

\[\frac{\ln[(\mu'_{n+1}/\mu'_n)]}{\lambda(\tau_{n+1})^n} < \frac{\tau_{n+1}}{(n+1)\lambda(\tau_{n+1})^n} + 1 - \rho - \varepsilon(\tau_{n+1}) = 1 \]

31
since $\tau_{n+1}/[(n+1)\lambda(\tau_{n+1})] = \rho + \varepsilon(\tau_{n+1})$. Also,

$$\ln \left[\frac{\mu_{n+1}'/\mu_n'}{\lambda(\tau_{n+1})} \right] = \frac{\tau_n}{(n+1)\lambda(\tau_{n+1})} + 1 - \rho - \varepsilon(\tau_{n+1})$$

$$= \frac{\tau_n [\rho + \varepsilon(\tau_{n+1})]}{\tau_{n+1}} + 1 - \rho - \varepsilon(\tau_{n+1}) + \rho + 1 - \rho = 1.$$

Now suppose $\rho = 1$ and $\tau_{n+1}/\tau_n \rightarrow 1$. From (2.14), we have

$$\ln \left[\frac{\mu_{n+1}'/\mu_n'}{\lambda(\tau_{n+1})} \right] \approx (n+1)\lambda(\tau_{n+1}) - n \lambda(\tau_n) - (\tau_{n+1} - \tau_n) + \frac{1}{2} \ln c_n$$

$$= -n \int_{\tau_n}^{\tau_{n+1}} X \lambda''(x) dx - \varepsilon(\tau_{n+1}) \lambda(\tau_{n+1}) + \frac{1}{2} \ln c_n$$

where $c_n = \tau_{n+1} \varepsilon(\tau_n)/\tau_n \varepsilon(\tau_{n+1})$. Since $\varepsilon(x)$ is a slowly varying function, it can be represented as $\varepsilon(x) = a(x) \exp\left\{ \int_1^x \frac{\psi(y)}{y} dy \right\}$ where $a(x) \rightarrow a < \infty$ and $\psi(y) \rightarrow 0$ as $y \rightarrow \infty$. Therefore,

$$\ln \frac{\varepsilon(\tau_{n+1})}{\varepsilon(\tau_n)} = \ln \frac{a(\tau_{n+1})}{a(\tau_n)} + \int_{\tau_n}^{\tau_{n+1}} \frac{\psi(y)}{y} dy \rightarrow 0$$

since $a(\tau_{n+1})/a(\tau_n) \rightarrow 1$ and $\left| \int_{\tau_n}^{\tau_{n+1}} \frac{\psi(y)}{y} dy \right| \leq \int_{\tau_n}^{\tau_{n+1}} \left| \frac{\psi(y)}{y} \right| dy$

$\leq \max[\psi(\tau_n), \psi(\tau_{n+1})] \ln \frac{\tau_{n+1}}{\tau_n} \rightarrow 0$ if τ_{n+1}/τ_n converges to a finite limit. Thus, $\ln \varepsilon(\tau_n)/\varepsilon(\tau_{n+1}) \rightarrow 0$; clearly, $\ln \tau_{n+1}/\tau_n \rightarrow 0$. It follows from (4.18) and (4.19) that $\ln[\mu_{n+1}'/\mu_n']/\lambda(\tau_{n+1}) \rightarrow 1$.

If $\rho = 1$ and $\tau_{n+1}/\tau_n \rightarrow L > 1$, then from (2.14) and (4.8),
\[
\ln \left[\frac{\mu'_n}{\mu'_n} \right] = (n+1) \lambda(\tau_{n+1}) - n \lambda(\tau_n) - (\tau_{n+1} - \tau_n) + \frac{1}{2} \ln c_n
\]

\[
= \frac{\tau_{n+1}}{1+\varepsilon(\tau_{n+1})} - \frac{\tau_n}{1+\varepsilon(\tau_n)} - (\tau_{n+1} - \tau_n) + \frac{1}{2} \ln c_n
\]

\[
= - \frac{\tau_{n+1} \varepsilon(\tau_{n+1})}{1+\varepsilon(\tau_{n+1})} + \frac{\tau_n \varepsilon(\tau_n)}{1+\varepsilon(\tau_n)} + \frac{1}{2} \ln c_n
\]

so that

\[
\frac{\ln \left[\frac{\mu'_n}{\mu'_n} \right]}{-\tau_{n+1} \varepsilon(\tau_{n+1})} \approx \frac{1}{1+\varepsilon(\tau_{n+1})} - \frac{\tau_n \varepsilon(\tau_n)}{\varepsilon(\tau_{n+1})[1+\varepsilon(\tau_n)]} - \frac{\ln c_n}{2 \tau_{n+1} \varepsilon(\tau_{n+1})}.
\]

Consider

\[
0 < \frac{0 < \ln c_n}{-\tau_{n+1} \varepsilon(\tau_{n+1})} = \ln \left(\frac{\tau_{n+1} \varepsilon(\tau_n)}{\tau_n \varepsilon(\tau_{n+1})} \right) / -\tau_{n+1} \varepsilon(\tau_{n+1})
\]

\[
= -\int_{\tau_n}^{\tau_{n+1}} \left(\frac{1}{y} - \frac{\varepsilon'(y)}{\varepsilon(y)} \right) dy / \int_{\tau_n}^{\tau_{n+1}} \frac{d}{dy} [y \varepsilon(y)] dy
\]

\[
= \int_{\tau_n}^{\tau_{n+1}} \frac{1}{y} \left[1 - \frac{\varepsilon'(y)}{\varepsilon(y)} \right] dy / \int_{\tau_n}^{\tau_{n+1}} \{ -\varepsilon(y) \} \left[1 + \frac{\varepsilon'(y)}{\varepsilon(y)} \right] dy
\]

\[
\leq \int_{\tau_n}^{\tau_{n+1}} \left[1 - u(y) \right] dy / \int_{\tau_n}^{\tau_{n+1}} \left[-\varepsilon(y) \right] \left[1 + u(y) \right] dy
\]

where \(u(y) = y \varepsilon'(y)/\varepsilon(y) \to 0 \) as \(y \to \infty \); \(u(y) < 0 \). Thus, for any \(\delta > 0 \) there exists \(N \) such that \(1 - u(y) < 1 + \delta \) and \(1 + u(y) > 1 - \delta \).

Also, \(-y \varepsilon(y) \uparrow +\infty \), so that for \(\tau_n < y < \tau_{n+1} \),

\[-\tau_n \varepsilon(\tau_n) < -y \varepsilon(y) < -\tau_{n+1} \varepsilon(\tau_{n+1}) \], so that

\[-\tau_n \varepsilon(\tau_n)/y < -\varepsilon(y) < -\tau_{n+1} \varepsilon(\tau_{n+1})/y \]. Therefore, for \(n > N \),
\[
\ln c_n / [-\tau_{n+1} \epsilon(\tau_{n+1})] < (1+\delta) / [-\tau_n \epsilon(\tau_n)] (1-\delta) \to 0 \text{ as } n \to \infty.
\]

If \(\lim \tau_{n+1} / \tau_n = L < \infty \), then it is easily shown that
\(\epsilon(\tau_{n+1}) / \epsilon(\tau_n) \to 1 \), so that \(\tau_{n+1} \epsilon(\tau_{n+1}) / \tau_n \epsilon(\tau_n) \to L \). In this case,
\[
\ln [u_{n+1}^i / u_n^i] / [-\tau_{n+1} \epsilon(\tau_{n+1})] \to 1 - L^{-1} = (L-1)/L.
\]

If \(L = +\infty \), we claim that \(\tau_{n+1} \epsilon(\tau_{n+1}) / \tau_n \epsilon(\tau_n) \to \infty \) also. To see this, we have

\[
\frac{1}{a_n} \frac{\lambda(\tau_n) \epsilon(\tau_n)}{\lambda(\tau_{n+1}) \epsilon(\tau_{n+1})} = \frac{\tau_{n+1} \epsilon(\tau_{n+1})}{\tau_n \epsilon(\tau_n)} \exp \left\{ \int_{\tau_n}^{\tau_{n+1}} \left[\frac{\epsilon(y)}{y} \right] dy \right\}
\]

\[
= \exp \left\{ \int_{\tau_n}^{\tau_{n+1}} \left[\frac{1}{y} + \frac{\epsilon'(y)}{\epsilon(y)} + \frac{\epsilon(y)}{y} \right] dy \right\}
\]

\[
= \exp \left\{ \int_{\tau_n}^{\tau_{n+1}} y^{-1} \left[1 + \epsilon(y) + \frac{\epsilon'(y)}{\epsilon(y)} \right] dy \right\}
\]

where \(a_n = (n+1)[1+\epsilon(\tau_{n+1})]/n[1+\epsilon(\tau_n)] \to 1 \). Both \(\epsilon(y) \) and \(y \epsilon'(y)/\epsilon(y) \) are negative and converge to zero as \(y \to \infty \), so that for any \(\delta > 0 \) there exists \(N \) such that

\[
1 + \epsilon(y) + y \frac{\epsilon'(y)}{\epsilon(y)} < 1 - \delta \text{ for all } n > N, \text{ for } \tau_n < y < \tau_{n+1}.
\]

Thus,

\[
\frac{\lambda(\tau_{n+1}) \epsilon(\tau_{n+1})}{\lambda(\tau_n) \epsilon(\tau_n)} \geq a_n \exp \{ (1-\delta) [\ln(\tau_{n+1}/\tau_n)] \} = a_n (\tau_{n+1}/\tau_n)^{1-\delta} \to +\infty.
\]

But

34
\[
\lambda(\tau_{n+1}) \frac{\tau_n}{\lambda(\tau_n) \tau_{n+1}} = a_n \exp\left\{ \frac{\tau_{n+1}}{\tau_n} \frac{\varepsilon(y)}{y} \right\} \to 1 \text{ as } n \to \infty ,
\]

so that \(\lambda(\tau_{n+1})/\lambda(\tau_n) \sim \tau_{n+1}/\tau_n \). This proves the claim above. Thus, if \(\tau_{n+1}/\tau_n \to \infty \),

\[
\ln[\mu^I_{n+1}/\mu^I_n]/[-\tau_n \varepsilon(\tau_{n+1})] \to 1 .
\]

This completes the proof of (2.15) and (2.16) and hence of Theorem 2.

5. \underline{Examples}.

To illustrate the application of the results here, we now present several examples.

A. Slowly Varying Functions.

We let \(\phi(x) = \exp\{ \int_1^x \frac{\varepsilon(y)}{y} dy \} \) where \(\varepsilon(y) \downarrow 0 \) as \(y \to \infty \). As examples we have

1. \(\phi(x) = (\ln x)^\beta \), \(\varepsilon(x) = \beta/\ln x \) for \(x \geq e \) and \(0 \) for \(x \leq e \).

2. \(\phi(x) = (\ln \ln x)^\beta \equiv (\ell x)^\beta \), \(\varepsilon(x) = \beta/[(\ln x)(\ln \ln x)]^{-1} \), \(x \geq e^2 \)

and \(0 \) for \(x \leq e^2 \).

3. \(\phi(x) = (\ell_k x)^\beta \), \(\varepsilon(x) = \beta/[(\ln x)(\ln \ln x)...(\ln \ln \ln x)] \equiv \beta/[(\ell x)(\ell_2 x)...(\ell_k x)] \), for \(x \geq e(k) \)

4. \(\phi(x) = \exp\{ (\ln x)^\beta \} \), \(\varepsilon(x) = \beta/(\ln x)^{1-\beta} \), for \(x \geq e \) and \(0 < \beta < 1 \).

If \(\phi(x) \) is a slowly varying function, then Theorem 1 applies; we have

\(\tau_n = n[\rho + \varepsilon(\tau_n)] = n \varepsilon(\tau_n) \),
\[\mu_n^1 = \sqrt{2\pi \tau_n} g_n(\tau_n) = \sqrt{2\pi \tau_n} [\phi(\tau_n)]^n e^{-\tau_n} \]

and

\[\mu_{n+1}^1 / \mu_n^1 = \phi(\tau_n), \]

from (2.9)-(2.11).

To use Theorem 1, we need to approximate \(\tau_n \); the following lemma is useful in this regard.

\textbf{Lemma 5.1.} Let \(\phi(x) = \exp\left[\int_1^x \frac{\varepsilon(y)}{y} \right] \), with \(\varepsilon(y) \downarrow 0 \) as \(y \to \infty \) and \(\tau_n = n \varepsilon(\tau_n) \). Let \(\tau_{n1} = n, \tau_{n2} = n \varepsilon(\tau_{n1}), \ldots, \tau_{nk} = n \varepsilon(\tau_{nk-1}) \).

Then for all \(k \geq 1, \tau_n, 2k \cdash \tau_n \leq \tau_{n2k-1} \).

\textbf{Proof.} Let \(f(x) = n \varepsilon(x)/x \). Then \(f(n) = n \varepsilon(n)/n = \epsilon(n) < 1 \), so that \(\tau_n < n = \tau_{n1}, \tau_{n2} = n \varepsilon(n) < n = \tau_{n1} \), so that

\[f(\tau_{n2}) = n \varepsilon(\tau_{n2})/\tau_{n2} = \varepsilon(\tau_{n2})/\varepsilon(\tau_{n1}) > 1 \]

and hence \(\tau_n > \tau_{n2} \). Continuing, \(\tau_{n3} = n \varepsilon(\tau_{n2}) > n \varepsilon(\tau_{n1}) = \tau_{n2} \) so that

\[f(\tau_{n3}) = n \varepsilon(\tau_{n3})/\tau_{n3} = n \varepsilon(\tau_{n3})/n \varepsilon(\tau_{n2}) < 1 \]

and hence \(\tau_n < \tau_{n3} \). Continuing in this manner, it can be shown that

(a) \(\tau_{n1} > \tau_{n3} > \ldots > \tau_{n, 2k+1} \ldots \), (b) \(\tau_{n2} < \tau_{n4} < \ldots < \tau_{n, 2k} \), and

(c) for any \(k \), \(\tau_{n, 2k} < \tau_{n, 2k+1} \). Also, by induction, we can show
that \(f(\tau_{n,2k+1}) < 1 \), \(f(\tau_{n,2k}) > 1 \). The result follows from these facts.

Example 1. \(\phi(x) = \ln x \), so that \(\phi^{-1}(y) = e^y \) and \(1 - e(y) = e^{-e^y} \);
also \(\varepsilon(y) = 1/\ln y \) and \(\tau_n \) satisfies \(\tau_n = n \varepsilon(\tau_n) = n/\ln \tau_n \). By Lemma (5.1), we have \(\tau_{n1} = n \), \(\tau_{n2} = n/\ln n \), \(\tau_{n3} = n/[\ln \frac{n}{\ln n}] = n/([\ln n - \ln \ln n], \tau_{n4} = n/[\ell_1 n - \ell_2 n + \ell_3 n], \ldots, \tau_{nk} = n/\left[\sum_{j=1}^{k-1} (-1)^j \ell_j n\right] \). In particular, we have

\[
\tau_{n2} = n/\ln n < \tau_n < n/[\ln n - \ln \ln n] = \tau_{n3}
\]

and

\[
1 \leq \frac{\tau_n}{[n/\ln n]} \leq \frac{n/[\ln n - \ln \ln n]}{[n/\ln n]} = \ln n/[\ln n - \ln \ln n] + 1
\]

so that \(\tau_n \sim n/\ln n \). Thus,

\[
\mu'_n \approx \sqrt{2\pi n/\ln n} \{\ln[n/\ln n]\}^n e^{-n/\ln n}
\]

and

\[
\frac{\mu'_{n+1}}{\mu'_n} \approx \phi(\tau_n) = \ln[n/\ln n] = \ln n - \ln \ln n \approx \ln n.
\]

Example 2. \(\phi(x) = \ln \ln x \), \(\phi^{-1}(y) = e^y \), \(\varepsilon(y) = [(\ln y)(\ln \ln y)]^{-1} \), for \(y \geq e^2 \); \(\tau_n \) satisfies \(\tau_n = n \varepsilon(\tau_n) = n/[(\ln \tau_n)(\ln \ln \tau_n)] \).

By Lemma 5.1, we find that
\[n / [(\ln n)(\ln \ln n)] < \tau_n < n / [(\ln n - \lambda_2 n - \lambda_3 n)[\ln(\ln n - \lambda_2 n - \lambda_3 n)] \]

so that \(\tau_n \sim n / [(\ln n)(\ln \ln n)] \). Thus,

\[\mu_n' = \sqrt{2\pi} n / [(\ln n)(\ln \ln n)] \{1 + n / [(\ln n)(\ln \ln n)] \}^n e^{-n / [\ln n][\ln \ln n]} \]

and

\[\mu_{n+1}' / \mu_n' = \ln n / [\ln n][\ln \ln n] \approx \ln \ln n . \]

Example 3. \(\phi(x) = \lambda_k(x) = \ln \ln \ldots \ln x \), for \(x \geq e_k \) and 0 for \(x < e_k \). \(\varepsilon(y) = \{(\lambda_1 y)(\lambda_2 y)\ldots(\lambda_k y)\}^{-1} \) and \(\tau_n = n \varepsilon(\tau_n) \); by Lemma 5.1 we find that \(\tau_n \) lies between \(\tau_{n1} \) and \(\tau_{n2} \) with \(\tau_{n1} = n \varepsilon(n) \) and \(\tau_{n2} = n \varepsilon(\tau_{n1}) \) with \(\tau_n \approx \tau_{n1} \).

As a generalization of Examples 1 and 2 above, we find

\[\mu_{n+1}' / \mu_n' \approx \lambda_k n = \ln \ln \ldots \ln n . \]

It is easily seen that \(\phi^{-1}(y) = e_k(y) \) where \(e_1(y) = e^y \), \(e_2(y) = e^{e^y} \), and, in general, \(e_k(y) = e_{k-1}(e^y) \).

Example 4. \(\phi(x) = e^{(\ln x)^\beta} \), \(0 < \beta < 1 \); \(\varepsilon(y) = \beta / (\ln x)^{1-\beta} \),

\[\tau_{n1} = n \varepsilon(n) = n \beta / (\ln n)^{1-\beta}, \quad \tau_{n2} = n \varepsilon(\tau_{n1}) = n \beta / [\ln n \beta - (1-\beta)\ln \ln n]^{1-\beta} \]

and \(\tau_{n1} < \tau_n < \tau_{n2} \); \(\tau_n / \tau_{n1} \rightarrow 1 \), so \(\tau_n \sim \tau_{n1} \). Also,

\[\phi^{-1}(y) = e^{(\ln y)^{1/\beta}} \], so \(1-F(y) = e^{-e^{(\ln y)^{1/\beta}}} \). In this case,

\[\mu_{n+1}' / \mu_n' \approx \exp \{(\ln n)^\beta\} . \]
B. Regularly Varying Functions.

We let \(\phi(x) = x^\rho \exp\{\int_1^x \frac{\varepsilon(y)}{y} \, dy\} \), with \(\rho > 0 \); \(\varepsilon(y) \to 0 \) as \(y \to \infty \). \(\tau_n \) satisfies \(\tau_n = n[\rho + \varepsilon(y)] \) and \(\tau_n/n \to \rho \);
\[
\mu_n' = \sqrt{2\pi} \, \tau_n^{1/2} \phi(\tau_n) e^{-\tau_n^{1/2}} \quad \text{and} \quad \mu_{n+1}'/\mu_n' \approx \phi(\tau_n) .
\]

Example 5. \(\phi(x) = x^\rho \) (so that \(\varepsilon(y) \equiv 0 \)); \(\phi^{-1}(y) = y^{1/\rho} \), so that \(1 - F(x) = e^{-x^{1/\rho}} \). We have (exactly)
\[
\mu_n' = \int_0^\infty [\phi(x)]^n e^{-y} \, dy = \frac{1}{\rho} \int_0^\infty x^{(1-\rho)/\rho} e^{-x^{1/\rho}} \, dx = \Gamma(n\rho+1) ;
\]
the asymptotic approximation gives
\[
\mu_n' \approx \sqrt{2\pi} \, n\rho \, (n\rho)^n \, e^{-n\rho}
\]
which is the same as Stirling's approximation to the gamma function. It is easily seen that \(\mu_{n+1}'/\mu_n' \approx (n\rho)^\rho \).

Example 6. \(\phi(x) = x^\rho/(\ln x)^\beta \), with \(\rho > 0 \), \(-\infty < \beta < \infty \); also, \(\phi^{-1}(y) \approx y^{1/\rho}(\ln y)^{-\beta/\rho} \) and \(\tau_n = n\rho \). Finally,
\[
\mu_{n+1}'/\mu_n' \approx (n\rho)^\rho (\ln n)^\beta = (n\rho)^\rho (\ln n)^\beta .
\]

Examples 1 through 6 show that \(\mu_{n+1}'/\mu_n' \) can be asymptotically equal to the following:
\[\ldots, k^n, k^{n-1} n, \ldots, \ell_2 n = \ln \ln n, \ell_1 n = \ln n,\]
\[\ldots, n/\ln n, n/\ln \ln n, \ldots, n/\ell_k n, \ldots\]
\[\ldots, n_1, n^2, \ldots, n^k, \ldots, n^\rho (\rho > 0).\]
\[\ldots, n \ln n, n \ln \ln n, \ldots, n \ell_k n, \ldots; \text{etc.}\]

We could take \(\phi(x) = \exp\{[\ell_k x]^{\beta}\}, -\infty < \beta < \infty\), if \(k \geq 2\), for example.

C. Rapidly Varying Functions.

We let \(\phi(x) = \exp[\lambda(x)]\), where \(\lambda(x) = x^\rho \exp[\int_1^x \frac{e(y)}{y} \, dy]\) with
\[0 < \rho < 1; \text{ if } \rho > 1, \text{ the moments } \mu'_n \text{ are infinite for all } n. \text{ If} \]
\(\rho = 0, \varepsilon(x) \downarrow 0; \text{ if } 0 < \rho < 1, \text{ then } \varepsilon(x) \rightarrow 0; \text{ and if } \rho = 1, \text{ then} \]
\(\varepsilon(x) \uparrow 0.\) For \(x\) varying rapidly, \(\tau_n\) satisfies \(\tau_n = n[\rho + \varepsilon(\tau_n)]\lambda(\tau_n)\);
\[\mu'_n = \frac{\int_0^\infty e^{-\tau_n} \lambda(\tau_n)^n \, d\tau_n}{\mu_1^n} \text{ if } \rho < 1 \text{ and} \]
\[\mu'_n = \frac{\int_0^\infty e^{-\tau_n} \lambda(\tau_n)^n \, d\tau_n}{\mu_1^n} \text{ if } \rho = 1, \text{ etc.} \ (\text{See 4.8.).} \]

Example 7. \(\phi(x) = \exp\{\lambda(x)\}, \text{ with } \lambda(x) = \exp\{\int_1^x \frac{e(y)}{y} \, dy\}\]
\[= (\ln x)^\beta, \beta > 1.\]

Here, \(\varepsilon(x) = \beta/\ln x\) and \(\varepsilon(x) \lambda(x) = \beta(\ln x)^{\beta-1}\); \(\tau_n\) satisfies
\[\tau_n = n \varepsilon(\tau_n) \lambda(\tau_n) = n \beta(\ln \tau_n)^{\beta-1}. \text{ To approximate } \tau_n, \text{ define} \]
\[\tau_{11} = n \varepsilon(n) \lambda(n) = n \beta(\ln n)^{\beta-1} \text{, and, successively, } \tau_{nk} = n[\ln(\tau_{n,k-1})]^{\beta-1}, \]
k = 2, 3, \ldots. It is then easy to show that the sequence \(\{\tau_{nk}\}\) is
monotonically increasing with \(\tau_{nk} < \tau_n\), for all \(k\), and that
\[\tau_n < \tau_n^* = n \beta[\ln n + \ln(\ln n)]^{\beta-1}. \ (\text{To show this, we let}\]
f(x) = n e(x) \lambda(x)/x. \ Then \(f(\tau_{nk}) > 1, f(\tau_n^*) < 1\). \ Therefore, in
particular, \(\tau_{11} < \tau_n < \tau_n^*\) and

40
\[1 = \lim_{n \to \infty} \frac{\tau_n}{\tau_{n1}} \leq \lim_{n \to \infty} \frac{\tau_n}{1} \leq \lim_{n \to \infty} \frac{\tau_n^*}{\tau} = 1 \]

so that \(\tau_n \approx \tau_{n1} \). Thus, \(\tau_{n+1}/\tau_n \to 1 \), \(\varepsilon(\tau_{n+1})/\varepsilon(\tau_n) \to 1 \), and

\[
\mu_n' = \sqrt{2\pi n} \beta (\ln n)^{\beta-1} \exp\{n(\ln n)^\beta - \tau_{n1}\} \\
= \sqrt{2\pi n} \beta (\ln n)^{\beta-1} \exp\{n(\ln n)^\beta\}
\]

and \(\ln[\mu_{n+1}/\mu_n] \approx \lambda(\tau_n) \approx \lambda(\tau_{n1}) \sim (\ln n)^\beta \).

Finally, we note that \(\lambda^{-1}(y) = \exp\{y^{1/\beta}\} \), so that
\(\lambda^{-1}(\ln x) = \exp\{(\ln x)^{1/\beta}\} \) and hence

\[1 - F(x) = \exp\{-\exp[\ln x]^{1/\beta}\}; \text{ if } \beta = 1, \; 1 - F(x) = e^{-x}. \]

Example 8. (See Example 5, Section 1.) Let \(1 - F(x) = \exp\{-(\ln x)^2\} \), \(x \geq 1 \). We evaluate \(\mu_n' \) directly and then compare it with the asymptotic approximation. We have

\[
\mu_n' = n \int_1^\infty x^{n-1} \exp\{-(\ln x)^2\} dx = n \int_0^\infty (2y)^{-1} \exp\{n\sqrt{y} - y\} dy \\
= n \int_0^\infty \exp\{n \z - z^2\} dz = n e^{n^2/4} \int_0^\infty \exp\{-(z - n/2)^2\} dz \\
= n \sqrt{\pi} e^{n^2/4} \left[1 - \phi\left(-\frac{n}{\sqrt{2}} \right) \right]
\]

where \(\phi(x) = \int_{-\infty}^x (2\pi)^{-1/2} \exp\{-z^2/2\} dz \); clearly, \(\phi(-\sqrt{2n}) \to 0 \) as \(n \to \infty \), so that
\[\mu_n' = n \sqrt{n} e^{n^2/4}. \]

As for the asymptotic approximation, we have

\[1 - F(x) = e^{-(\ln x)^2} = e^{-\lambda^{-1}(\ln x)} \Rightarrow \lambda^{-1}(x) = x^2 \Rightarrow \lambda(y) = \sqrt{y}. \]

Thus, \(\lambda \) is a regularly varying function of index \(\rho = 1/2 \), with \(\varepsilon(y) \equiv 0 \); \(\tau_n \) satisfies \(\tau_n = n[\rho + \varepsilon(\tau_n)]\lambda(\tau_n) = \frac{n}{2} \sqrt{\tau_n} \), so that
\[\tau_n = n^2/4; \quad \lambda(\tau_n) = \sqrt{\tau_n} = n/2; \quad n \lambda(\tau_n) - \tau_n = n^2/2 - n^2/4 = n^2/4, \]

and \(\sqrt{2\pi} \tau_n/(1-\rho) = n \sqrt{\pi} \). Thus, from (2.13), we obtain
\[\mu_n' = n \sqrt{n} \exp\{n^2/4\}, \]
so that the asymptotic approximation is "asymptotic" to the direct value.

More generally, if \(1 - F(x) = \exp\{-((\ln x)^2\} \), with \(\beta > 1 \), we find, following the calculations above, that

\[\mu_n' = \sqrt{2\pi} \beta(n/\beta)^{\beta/(\beta-1)}/(\beta-1) \exp\{n(\beta-1)(n/\beta)^{1/(\beta-1)}/\beta\} \]

and

\[\ln[\mu_{n+1}'/\mu_n'] = \lambda(\tau_n) = (n/\beta)^{1/(\beta-1)}. \]

If we set \(\beta = 1 + 1/k \), \(k \) a positive integer, then

\[\ln[\mu_{n+1}'/\mu_n'] = [k n/(k+1)]^k = (n^k e^{-1}), \text{ for } k \text{ large.} \]

Example 9. Let \(\lambda(x) = x/(1+\ln x)^A \), with \(A > 0 \). Then
\(\varepsilon(x) = -A/(1+\ln x) \). In this example, \(\rho = 1 \) and \(\tau_n \) satisfies

\[
\tau_n = n[1 + \varepsilon(\tau_n)] \lambda(\tau_n) = n[1 + \varepsilon(\tau_n)] \tau_n / (1 + \ln \tau_n)^A
\]

so that \(\tau_n \) satisfies

\[
n[1 + \varepsilon(\tau_n)] / (1 + \ln \tau_n)^A = 1 = n[1 - A / (1 + \ln \tau_n)].
\]

(i) Suppose \(A = 1 \) and let \(u_n = 1 + \ln \tau_n \). Then we have

\[
n[1 - 1/u_n] \frac{1}{u_n} = 1 \quad \text{or} \quad u_n^2 - n u_n + n = 0,
\]

from which we find that \(u_n = [n + \sqrt{n^2 - 4n}] / 2 \). Then \(\tau_n = \exp[u_n - 1] \).

We next show that \(\ln \tau_{n+1} / \tau_n \to 1 \), so that \(\tau_{n+1} / \tau_n \to L = e \). We have

\[
\ln \tau_{n+1} / \tau_n = u_{n+1} - u_n = \left((n+1) + \sqrt{(n+1)^2 - 4(n+1)} - [n + \sqrt{n^2 - 4n}] / 2 \right)
\]

\[
= \frac{1}{2} + (2n-3) / 2[\sqrt{(n+1)^2 - 4(n+1)} + \sqrt{n^2 - 4n}] - 1.
\]

Hence,

\[
\lambda(\tau_n) = \tau_n / (1 + \ln \tau_n) = u_n^{-1} \exp[u_n - 1].
\]

Also,

\[
\ln g_n(\tau_n) = n \lambda(\tau_n) - \tau_n = (n - u_n / u_n) \exp(u_n - 1)
\]

\[
= u_n^{-2} \exp(u_n - 1),
\]

43
and

\[-\tau_n \varepsilon(\tau_n) = u_n^{-2} \exp(u_n - 1) \quad \text{and} \quad -\tau_n / \varepsilon(\tau_n) = u_n \exp(u_n - 1).\]

Consistent with (2.14) and (2.16), we find that

\[
\mu_n^1 = \left[-2\pi \frac{\tau_n}{\varepsilon(\tau_n)} \right]^{1/2} g_n(\tau_n) \\
= 2\sqrt{\pi} \left(u_n e^u \right)^{1/2} \exp\{u_n - 1\} \exp(u_n - 1) \\
= 2\sqrt{\pi} \left(u_n e^u \right)^{1/2} \exp\{u_n - 1\} \\
= 2\sqrt{\pi} \left(u_n e^u \right)^{1/2} \exp\{u_n - 1\} \\
= 2\sqrt{\pi} \left(u_n e^u \right)^{1/2} \exp\{u_n - 1\}.
\]

and

\[
\ln[\mu_n^{1}/\mu_n^1] = -\tau_{n+1} \varepsilon(\tau_{n+1}) = (1 - e^{-1})u_n^{1/2} \exp(u_n - 1).
\]

(ii) Suppose that \(A \neq 1 \). \(\tau_n \) now satisfies

\[
n[1 - A/(1 + \ln \tau_n)]/(1 + \ln \tau_n)^A = 1 \equiv n(1 - A/u_n)/u_n^A
\]

where \(u_n = 1 + \ln \tau_n \).

Let \(f(x) = n[1 - A/x]/x^A \). Then

\[
f(n^{1/A}) = n[1 - A/n^{1/A}] 1/n < 1 \quad \text{(true for all} \ A > 0)\]

and, for all \(\varepsilon > 0 \),

\[
f[(n-\varepsilon)^{1/A}] = n[1 - A/(n-\varepsilon)^{1/A}]/(n-\varepsilon) > 1 ,
\]

if \(A < 1 \).
Thus, if \(A < 1 \), \((n-\varepsilon)^{1/A} - 1 < \ln \tau_n < n^{1/A} - 1\). If \(A > 1 \) and \(\varepsilon > 0 \) is chosen so that \(\varepsilon < 1/A \), then

\[
f(n^{1/A-\varepsilon}) = n[1 - A/n^{1/A-\varepsilon}]/n^{1-A\varepsilon} > 1
\]

so that for \(A > 1 \),

\[
n^{1/A-\varepsilon} - 1 < \ln \tau_n < n^{1/A}.
\]

We can now show that \(\tau_{n+1}/\tau_n \to e = L \) if \(A > 1 \) and \(\tau_{n+1}/\tau_n \to \infty \) if \(A < 1 \), using the inequalities above. More precise bounds on \(\ln \tau_n \) are necessary to approximate \(\mu'_n \) and \(\ln(\mu'_n/\mu'_n) \) — we content ourselves here to have shown that it is possible for \(\tau_{n+1}/\tau_n \to L > 1 \) finite and \(\tau_{n+1}/\tau_n \to \infty \).

Example 10. Let \(\lambda(x) = x \exp\{- (1 + \ln x)^{1/2}\} \). Then

\[
\varepsilon(x) = -\frac{1}{2} (1 + \ln x)^{-1/2}
\]

and \(\tau_n \) satisfies

\[
n[1 - 1/2\nu_n] e^{-\nu_n} = 1
\]

where \(\nu_n = \sqrt{A + \ln \tau_n} \). Let \(f(x) = n[1 - \frac{1}{2x}]e^{-x} \). then

\[
f(\ln n - \frac{1}{2\ln n}) < 1 \quad \text{and} \quad f(\ln n - \frac{1}{\ln n}) > 1,
\]

so that

\[
\ln n - \frac{1}{\ln n} < \nu_n < \ln n - \frac{1}{2\ln n}
\]
or

\[(\ln n - \frac{1}{\ln n})^2 - 1 < \ln \tau_n < (\ln n - \frac{1}{2\ln n})^2 - 1.\]

Using this inequality, it can be shown that \(\frac{\tau_{n+1}}{\tau_n} \to 1\).

Summarizing, Examples 9 and 10 demonstrate that \(\frac{\tau_{n+1}}{\tau_n}\) can converge to 1, e, and \(\infty\), if \(\rho = 1\). Whether or not other limiting values are possible is unknown; we conjecture that these are the only ones possible.

Example 11. Recalling that \(\ell_1 x = \ln x\), \(\ell_2 x = \ln \ln x\), etc., and \(e_1 x = e^x\), \(e_2 x = \exp(e^x)\), etc., we let \(\lambda(x) = \ell_k x\), for \(x \geq e_k(1)\). Then

\[\epsilon(x) = -[(\ell_1 x)(\ell_2 x)\ldots(\ell_k x)]^{-1}\]

and \(\tau_n\) satisfies the equation

\[n[1+\epsilon(\tau_n)]\lambda(\tau_n) = n[1 - \{((\ell_1 \tau_n)(\ell_2 \tau_n)\ldots(\ell_k \tau_n))^{-1}\}/\ell_k \tau_n = 1.\]

Letting \(f(x) = n[1+\epsilon(x)]/\ell_k x\), it is not hard to show that

\[f(\ell_k(n)) < 1 \quad \text{and} \quad f[\ell_k\{n[1+\epsilon(n)]\}] > 1\]

so that
\[\tau_{n1} = e_k \left\{ n \left[1 - \frac{1}{(\ell_1 \ n)(\ell_2 \ n) \cdots (\ell_k \ n)} \right] \right\} < \tau_n < e_k(n). \]

In fact, if we define \(\tau_{n2} = e_k \left\{ n[1+\varepsilon(\tau_{n1})] \right\}, \ldots, \tau_{nk} = e_k \left\{ n[1+\varepsilon(\tau_{n,k-1})] \right\}, \)
then the sequence \(\{\tau_{nk}\} \) is monotonically increasing with \(\tau_{nk} < e_k(n) \)
for all \(k \); this fact can be used to approximate \(\tau_n \) arbitrarily closely.

The inequalities above are, however, sufficient for our purpose here,
which is to provide a lower bound for \(\mu'_n \) and \(-\tau_{n+1} \varepsilon(\tau_{n+1})\). We have

\[
\ln g_n(\tau_n) = n \lambda(\tau_n) - \tau_n = \tau_n \left[(n/\ell_k \ \tau_n) - 1 \right] = \tau_n \left[n - \ell_k \ \tau_n / \ell_k \ \tau_n \right]
\geq \tau_{n1} n - n \left[1 - \left((\ell_1 \ n)(\ell_2 \ n) \cdots (\ell_k \ n) \right)^{-1} \right]
\]

\[= \frac{\tau_{n1}}{[\ell_1 \ n](\ell_2 \ n) \cdots (\ell_k \ n)]. \]

Also, \(-\tau_n /[\varepsilon(\tau_n)] > \tau_{n1} \left[(\ell_1 \ \tau_{n1})(\ell_2 \ \tau_{n1}) \cdots (\ell_k \ \tau_{n1}) \right] \) and

\[-\tau_n \ \varepsilon(\tau_n) > \frac{\tau_{n1}}{[\ln n)(\ln \ln n) \cdots (\ell_k \ n)]. \]

Thus,

\[\mu'_n \approx \sqrt{-2\pi} \frac{\tau_n}{\varepsilon(\tau_n)} g_n(\tau_n) \]

\[> \sqrt{2\pi} \frac{\tau_{n1}}{[\ell_1 \ \tau_{n1})(\ell_2 \ \tau_{n1}) \cdots (\ell_k \ \tau_{n1})]} \frac{\tau_{n1}}{[\ell_1 \ n)(\ell_2 \ n) \cdots (\ell_k \ n)]} \]

and

47
\[
\ln(\mu'_{n+1}/\mu'_{n}) = -\tau_{n+1} \varepsilon(\tau_{n+1}) > \tau_{n1}/[\langle \kappa_1 n \rangle \langle \kappa_2 n \rangle \cdots \langle \kappa_k n \rangle].
\]

For example, if \(k = 3 \), we have, explicitly,

\[
\ln(\mu'_{n+1}/\mu'_{n}) = \frac{n[1 - \frac{1}{(\ln n)(\ln \ln n)(\ln \ln \ln n)}]}{e^{\frac{e^\varepsilon}{(\ln n)(\ln \ln n)(\ln \ln \ln n)}}}.
\]

6. Some Comments.

Additional examples of growth rates may be constructed, noting the following. Suppose \(Y_i, i = 1, \ldots, k \) are random variables with distribution functions \(F_{Y_i} \) such that the moments of \(F_{Y_i} \) have growth rates \(\mu'_n = \phi_i(\tau_n) \). Then the random variable \(Y = \prod_{i=1}^{k} Y_i \) has moments \(\mu'_{n+1}/\mu'_{n} = \prod_{i=1}^{k} \phi_i(\tau_n) \) if the \(\{Y_i\} \) are independent. For example, let \(1 - F_{Y_1}(y) = \exp(-e^y) \), corresponding to having \(\mu'_{n+1}/\mu'_{n} = \ln n = \phi_i(\tau_n) \), and \(1 - F_{Y_2}(y) = \exp(2\ln y) \), leading to \(\mu'_{n+1}/\mu'_{n} = \exp(2n+1) \). Then \(Y = Y_1 Y_2 \) has moments such that \(\mu'_{n+1}/\mu'_{n} = (\ln n) \exp(2n+1) \).

Distribution functions \(F \) which have moments which grow "relatively" fast are frequently cited as ones where the moment sequence \(\{\mu'_n\} \) fails to determine \(F \) uniquely. For example, the distribution function \(F \) in Example 5 of Section 5 when \(\rho = 1/4 \) has moments \(\mu'_n = \Gamma(4n+1) \).

It is known that this sequence does not determine \(F \) uniquely — it can be shown, for example, that

\[
\int_0^{\infty} x^n \exp(-x^{1/4}) \, dx = \int_0^{\infty} x^n [1 - \sin(x^{1/4})] \exp(-x^{1/4}) \, dx.
\]
and \(1-F^*(x) = \left[1 - \sin(x^{1/4}) \right] \exp\{-x^{1/4}\} \) corresponds to a distribution function having the same moments as \(F \). Furthermore, if \(1-F(x) \) is such that \(1-F(x) \geq \exp\{-x^{1/4}\} \), then \(F \) cannot be determined by its moments since we can then add \(\left[1 - \sin(x^{1/4}) \right] \exp\{-x^{1/4}\} \) to \(1-F(x) \) to get another distribution function having the same moments as \(F \).

Thus, if \(\phi \) is a monotone increasing regularly varying function such that \(\phi^{-1} \) (which is also necessarily at least slowly varying) has index of regular variation \(0 \leq \rho \leq 1/4 \) or is slowly varying \((\rho = 0)\), then \(1-F(x) = \phi^{-1}(x) \) cannot be uniquely determined by its moments. For example, if \(\phi(x) = \exp\{\lambda(x)\} \), with \(\lambda(x) = x^\rho L(x) \), \(0 \leq \rho \leq 1 \), then \(1-F(x) = \exp\{-\phi^{-1}(x)\} \), is not determined by its moments. Thus, we have introduced here a class of distributions not determined by its moments, thereby explicitly adding to the existing store of such examples.
References

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
 289

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
 GROWTH RATES OF MOMENT SEQUENCES

5. TYPE OF REPORT & PERIOD COVERED
 TECHNICAL REPORT

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
 WILLIAM L. HARKNESS

8. CONTRACT OR GRANT NUMBER(s)
 NO0014-76-C-0475

9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Department of Statistics
 Stanford University
 Stanford, CA 94305

10. PROGRAM ELEMENT, PROJECT, TASK
 AREA & WORK UNIT NUMBERS
 NR-042 267

11. CONTROLLING OFFICE NAME AND ADDRESS
 Office of Naval Research
 Statistics and Probability Program Code 436
 Arlington, Virginia 22217

12. REPORT DATE
 JULY 30 1980

13. NUMBER OF PAGES
 50

14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)

15. SECURITY CLASS. (OF THIS REPORT)
 UNCLASSIFIED

15a. SECURITY CLASS. (OF THIS PAGE)
 UNCLASSIFIED

16. DISTRIBUTION STATEMENT (OF REPORT)
 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 29, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

 Growth rates of moment sequences; moment rations, regularly and rapidly varying functions.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

 PLEASE SEE REVERSE SIDE.
GROWTH RATES OF MOMENT SEQUENCES

General properties of growth rates of moment sequences \(\{ \mu'_n \} \) of non-negative random variables are presented. Then asymptotic results on moment sequences are derived for two classes of distribution functions. Explicitly, let \(\phi \) be a monotone increasing twice differentiable regularly varying function at infinity with \(\phi(+\infty) = +\infty \) and index of variation \(\rho \geq 0 \). If we define the distribution function \(F \) by \(-\ln[1 - F(x)] = \phi^{-1}(x) \), then it is shown that the \(n^{\text{th}} \) moment \(\mu'_n \) and the ratio \(\mu'_{n+1}/\mu'_n \) are such that

\[
\mu'_n = \int_0^\infty [\phi(y)]^n e^{-y} \, dy \quad \text{and} \quad \frac{\mu'_{n+1}}{\mu'_n} \sim \phi(\tau_n),
\]

where \(\tau_n \) satisfies the equation \(n\phi'(\tau_n)/\phi(\tau_n) = 1 \). A second class of distributions functions is defined by setting \(-\ln[1 - F(x)] = \phi^{-1}(\ln x) \), where now \(\rho \leq 1 \). In this case, the \(n^{\text{th}} \) moment of \(F \) is given by \(\mu'_n = \int_0^\infty e^{\nu(y)} - y \, dy \); the asymptotic behavior of \(\mu'_{n+1}/\mu'_n \) is determined, also. Finally, several examples are given to illustrate the possible different asymptotic growth rates of moments.