LONG UNIMODAL SUBSEQUENCES: A PROBLEM OF F.R.K. CHUNG

By

J. Michael Steele

TECHNICAL REPORT NO. 301

APRIL 2, 1981

Prepared Under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
LONG UNIMODAL SUBSEQUENCES:

A PROBLEM OF F.R.K. CHUNG

By

J. Michael Steele

I. Introduction.

Let \(p \) denote a permutation of \(\{1, 2, \ldots, n\} \) and call
\[\{a_1 < a_2 < \ldots < a_t\} \] a unimodal subsequence provided there is a
\(j \) such that

\[
p(a_1) < p(a_2) < \ldots < p(a_j) > p(a_{j+1}) > \ldots > p(a_t)
\]
or

\[
p(a_1) > p(a_2) > \ldots > p(a_j) < p(a_{j+1}) < \ldots < p(a_t).
\]

Let \(\ell(n) \) denote the expected length of the longest unimodal subsequence of a randomly permuted subsequence i.e. \(\ell(n) = \sum p(p)/n! \), where \(p(p) \) denotes the length of the longest unimodal subsequence of the
permutation \(p \).

F.R.K. Chung [1] conjectured that

\[
\lim_{n \to \infty} \frac{\ell(n)}{\sqrt{n}} = C \text{ exists}.
\]

The point of this note is to prove Chung's conjecture and show \(C = 2 \sqrt{2} \).
Actually, Chung's conjecture is slightly more general than this introductory version, and this more general conjecture is obtained by the same proof.
II. Proof of F.R.K. Chung's Conjecture.

Suppose \((X_i, Y_i), 1 \leq i < \infty\) are independent and uniformly distributed in \([0,1]^2\). For any \(A \subset [0,1]\) let

\[
I_n(A) = \max \{k: Y_{i_1} < Y_{i_2} < \ldots < Y_{i_k} \text{ with } X_{i_1} < X_{i_2} < \ldots < X_{i_k}, X_{i_j} \in A \text{ and } i_j \in [1,\ldots,n]\}
\]

and

\[
D_n(A) = \max \{k: Y_{i_1} > Y_{i_2} > \ldots > Y_{i_k} \text{ with } X_{i_1} < X_{i_2} < \ldots < X_{i_k}, X_{i_j} \in A \text{ and } i_j \in [1,2,\ldots,n]\}.
\]

Next set

\[
U_n = \max_{0 \leq t \leq 1} \{\max(I_n([0,t]) + D_n([t,1]), D_n([0,t]) + I_n([t,1]))\}.
\]

The desired proof will be obtained by applying known results to the random variable \(U_n\). To begin it is easy to check that

\[
EU_n = \lambda(n).
\]
Next we note that by the work of Hammersley [2] and Kesten [3] that almost surely and in L^1 we have the limits

\[
\lim_{n \to \infty} \frac{I_n(A)}{\sqrt{n}} = C \sqrt{\lambda(A)} \quad \text{and} \quad \lim_{n \to \infty} \frac{D_n(A)}{\sqrt{n}} = C \sqrt{\lambda(A)}
\]

where $\lambda(A)$ is the Lebesgue measure of $A \subset [0,1]$, and C is a universal constant. The work of Logan and Shepp [9] and Vershik and Kerov [5] established that $C = 2$.

For any N and $1 \leq k \leq N$ we define

\[
U_n^N(k) = \max\{I_n(0,k/n) + I_n((k-1)/N,1), D_n(0,k/N) + D_n((k-1)/N,1)\}
\]

and

\[
U_n^N = \max_{1 \leq k \leq N} U_n^N(k).
\]

Clearly, for all N, $U_n \leq U_n^N$ and by the above mentioned limit results we have

\[
\lim_{n \to \infty} \frac{U_n^N}{\sqrt{n}} = 2 \max_{1 \leq k \leq N} \left(\sqrt{k/N} + \sqrt{(N-k+1)/N} \right),
\]

where the limit is almost sure and in L^1. The arbitrariness of N then shows

\[
\limsup_{n \to \infty} \frac{U_n}{\sqrt{n}} \leq 2 \max_{0 < t < 1} \left(\sqrt{t} + \sqrt{1-t} \right) = 2\sqrt{2} \quad \text{a.s.},
\]

so by Fatou's lemma we get

\[
\limsup_{n \to \infty} \frac{\mathcal{L}(n)}{\sqrt{n}} \leq 2\sqrt{2}.
\]

For the opposite direction note the trivial bound

\[
U_n \geq I_n\left(\left[0,\frac{1}{2}\right)\right] + D_n\left(\left[\frac{1}{2},1\right]\right)
\]

so

\[
\liminf_{n \to \infty} \frac{\mathcal{L}(n)}{\sqrt{n}} \geq \liminf_{n \to \infty} E(I_n\left[0,\frac{1}{2}\right] + D_n\left[\frac{1}{2},1\right]) = 2\sqrt{2}
\]

which completes the proof.
III. The Generalization.

Instead of allowing the subsequence to make "one turn" as in the unimodal case, one can consider subsequences which make \(k \) turns. Explicitly, let \(L_k(n) \) be the expected length of the longest subsequence \(S \) of a random permutation with the following property:

- \(S \) can be decomposed into \(k+1 \) segments which are monotone and which alternate between increasing and decreasing.

The method of the preceding section can be used easily to show

\[
\lim_\limits{n \to \infty} \frac{L_k(n)}{\sqrt{n}} = 2\sqrt{k+1};
\]

all one has to do is define the proper analogue \(U_n(k) \) of \(U_n \) and argue as before. One should also note that the preceding bounds also prove the almost sure and \(L^1 \) convergence of \(U_n(k)/\sqrt{n} \) to \(2\sqrt{k+1} \).
References

Title: Long Unimodal Subsequences: A Problem of F.R.K. Chung

Author: J. Michael Steele

Performing Organization:
Department of Statistics
Stanford University
Stanford, CA 94305

Controlling Office:
Office Of Naval Research
Statistics & Probability Program Code 436
Arlington, VA 22217

Report Date: April 2, 1981

Number of Pages: 5

Abstract:
Let $\ell(n)$ be the expected length of the longest unimodal subsequence of a random permutation. It is proved here that $\ell(n)/\sqrt{n}$ converges to $2\sqrt{2}$. This settles a conjecture of F.R.K. Chung.