KINGMAN'S SUBADITIVE ERGODIC THEOREM

BY

J. MICHAEL STEELE

TECHNICAL REPORT NO. 324
SEPTEMBER 3, 1982

PREPARED UNDER CONTRACT
N00014-76-C-0475 (NR-042-267)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any purpose of the United States Government
Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
KINGMAN'S SUBADITIVE ERGODIC THEOREM

By

J. Michael Steele

TECHNICAL REPORT NO. 324

September 3, 1982

Prepared Under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Kingman's Subadditive Ergodic Theorem

By

J. Michael Steele

The objective of this note is to give a proof of Kingman's subadditive ergodic theorem which is perhaps simpler and more direct than those previously given ([2], [3], [4], [5], [6], [7], [11]).

Theorem. Suppose T is a measure preserving transformation of the probability space $(\Omega, \mathcal{F}, \mu)$ and that $\{g_n, 1 \leq n < \infty\}$ is a sequence of integrable functions which satisfy

$$g_{n+m}(x) \leq g_n(x) + g_m(T^n x). \tag{1}$$

With probability one we then have the existence of the limit

$$\lim_{n \to \infty} g_n(x)/n = g(x) \geq -\infty,$$

where $g(x)$ is an invariant function.

Proof. We first check that $g(x) = \liminf g_n(x)/n$ is an invariant function. Since $g_{n+1}(x)/n \leq g_1(x)/n + g_n(Tx)/n$ we see $g(x) \leq g(Tx)$ which gives $\{g(x) > \alpha\} \subseteq T^{-1}\{g(x) > \alpha\}$. The fact that T is measure preserving then implies $\{g(x) > \alpha\} = T^{-1}\{g(x) > \alpha\}$ up to null sets. This implies g is measurable with respect to the invariant σ-field and hence is invariant. The function $\phi(x) = \max(t, g(x))$ where $t \in (-\infty, 0)$ is also invariant.
For $\epsilon > 0$, set $A_\epsilon = \{x: g^\infty_\epsilon (x) \leq \ell (\phi (x) + \epsilon)\}$ and note that
\[
\mu (\bigcup_{\epsilon=1}^\infty A_\epsilon) = 1,
\]
so we can choose N such that for $B(N) = (\bigcup_{k=1}^N A_\epsilon)^c$ we have \(\mu (B(N)) \leq \epsilon\).

Now, by Birkhoff's ergodic theorem, \(\frac{1}{n} \sum_{k=1}^n 1_B(N)(T^k x)\) converges a.s. to \(E(1_B(N) | G)\) where G is the invariant field of T; so by Chebyshev's inequality
\[
\mu (\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^n 1_B(N)(T^k x) \geq \lambda) \leq \epsilon / \lambda.
\]

Setting
\[
C_M = \{x: \frac{1}{n} \sum_{k=1}^n 1_B(N)(T^k x) \leq 2n\lambda, \quad \forall n \geq M\}
\]
we have for M sufficiently large that \(\mu (C_M) \geq 1 - 2\epsilon / \lambda\).

For any $x \in C_M$ and $n \geq M$ we obtain a decomposition for the integer set $[0, n)$ into three classes of intervals by the following algorithm:

Begin with $k = 0$. If k is the least integer in $[0, n)$ not in an interval already constructed then we consider $T^k x$. If $T^k x \in B(N)^c$ then there is an $\ell \leq N$ so that $g^\ell_k (T^k x) \leq \ell (\phi (T^k x) + \epsilon) \leq \ell (\phi (x) + \epsilon)$ and we take $[k, k+\ell)$ as an element of our decomposition provided $k+\ell \leq n$. If $T^k x \in B(N)$ we take the singleton interval $[k, k+1)$.

This algorithm provides a decomposition of some $[0, n')$ with $n'-N \leq n' \leq n$, and it is extended to a decomposition of $[0, n)$ by adding as many singletons as necessary.
Thus for any \(x \in C_M \) we have a decomposition of \([0,n)\) into a set of \(u \) intervals \([\tau_i, \tau_{i+1}]\), \(1 \leq \tau_i \leq N \), for which
\[
g_{0_i}^{\tau_i}(T^{-x}) \leq \ell_i(\phi(x) + \varepsilon)\]

with a set of \(v \) singletons \([\sigma_i, \sigma_{i+1}]\) for which \(1_{B(N)}(T^{-x}) = 1 \), and a set of \(w \) singletons contained in \((n-N,n)\).

By (1) and this decomposition of \([0,n)\) we have on \(C_M \),

\[
g_n(x) \leq \sum_{i=1}^{u} g_{0_i}^{\tau_i}(T^{-x}) + \sum_{i=1}^{v} g_{1}(T^{-x}) + \sum_{i=1}^{w} g_{1}(T^{n-i}x) \leq (\phi(x) + \varepsilon) \sum_{i=1}^{u} \ell_i + \sum_{i=1}^{v} g_{1}(T^kx)1_{B(N)}(T^kx) + \sum_{i=1}^{n} |g_{1}(T^{n-i}x)| .
\]

Since

\[
\sum_{k=1}^{\infty} \mu(|g_{1}(T^kx)| > \delta k) = \sum_{k=1}^{\infty} \mu(|g_{1}(x)| > \delta k) < \infty , \text{ for all } \delta > 0,
\]

the Borel-Cantelli lemma implies \(g_{1}(T^kx)/k \to 0 \) a.s.. From this one easily sees that almost surely

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |g_{1}(T^{n-i}x)| = 0 .
\]

Also, by Birkhoff's ergodic theorem we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g_{1}(T^kx)1_{B(N)} = E(g_{1}1_{B(N)} | \Omega) .
\]
Finally \(n \geq \sum_{i=1}^{u} \lambda_i \geq n - N - 2 \varepsilon n \) so from (2), (3), (4) we have on \(C_M \) that

\[
\limsup_{n \to \infty} \frac{g_n(x)}{n} \leq \phi(x) + 3\varepsilon + E(g_1 l_{B(N)} | \mathcal{G}) .
\]

For \(N \to \infty, l_{B(N)} \to 0 \) a.s. so by dominated convergence

\[
E(g_1 l_{B(N)} | \mathcal{G}) \to 0 \text{ a.s.}
\]

Therefore, by the arbitrariness of \(\varepsilon, t, \lambda, N, \) and \(M \) we have with probability one that

\[
\limsup_{n \to \infty} \frac{g_n(x)}{n} \leq \liminf_{n \to \infty} \frac{g_n(x)}{n} ,
\]

which completes the proof of convergence.

Remarks. (1). The preceeding proof was motivated by the recent proofs of the Birkhoff ergodic theorem and the Shannon-MacMillan-Breiman theorem given by Paul Shields [8]. That work is in part devoted to the simplification and exposition of some recent work of Ornstein and Weiss [7].

(2). Inspection of the preceeding proof shows that it suffices to assume that just \(g_1^+ \in L^1 \), instead of \(g_n \in L^1 \), for all \(n \). That the subadditive ergodic theorem persists under this condition was already observed in Kingman [5, p. 885].

(3). David Aldous has shown that Kingman's subadditive ergodic theorem can be used to give a very brief proof of the ergodic theorem for Banach space due to Maurier [8]. If \(\{X_i\} \) is a stationary process with values in a Banach space \(F \), we first note there is no loss in assuming \(E(X_1 | \mathcal{G}) = 0 \) where \(\mathcal{G} \) is the invariant \(\sigma \)-algebra. Also, we can find a linear operator \(\theta \) on \(F \) with finite dimensional range such that \(\|X_1 - \theta X_1\| \leq \varepsilon \). Now
Birkhoff's ergodic theorem (applied to linear functionals) shows that
\[\frac{1}{n} \sum_{i=1}^{n} \theta(X_i) \] converges a.s. and in \(L^1 \) to \(E\theta(X_1) \). The \(L^1 \) convergence guarantees \(\lim \frac{1}{n} \sum_{i=1}^{n} E|S_i - E\theta(X_1)| \leq \varepsilon \) from which it follows that \(\lim E||S_n/n|| = 0 \). But since \(||S_n|| \) is a subadditive process \(||S_{n}/n|| \) converges a.s., and now necessarily converges a.s. to zero.

(4) Andrés del Junco has pointed out that there is a useful device of Akcoglu and Sucheston \([1]\) which can be used to circumvent the estimations of the last two terms in equation (2). The idea is that
\[g_m' = g_m(x) - \sum_{i=0}^{m-1} g_i(T^i x) \] defines a (negative) subadditive process. The last two terms in equation (2) applied to \(g_m' \) would then simply not appear.

The proof given above was retained in order to maximize conceptual simplicity (at the cost of a little extra computation).

Acknowledgement. I would like to thank Paul Shields for making available to me his manuscript \([10]\). I also owe a debt David Aldous, Andrés del Junco and Joe Marchou for their comments on an earlier draft and their permission to incorporate the remarks given above.
References

Report Title:
KINGMAN'S SUBADDITIONAL ERGODIC THEOREM

Authors:
J. Michael Steele

Performing Organization:
Department of Statistics
Stanford University
Stanford, CA 94305

Contract or Grant Number(s):
N00014-76-C-0475

Program Element, Project, Task Area & Work Unit Numbers:
NR-042-267

Report Date:
September 3, 1982

Number of Pages:
6

Security Classification:
UNCLASSIFIED

Distribution Statement:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

Keywords:
Ergodic theorem; subadditive ergodic theorem.

Abstract:
A simple proof of Kingman's subadditive ergodic theorem is given.