APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
CALIFORNIA

ON MODELS FOR THE PROBABILITY OF FATIGUE FAILURE OF A STRUCTURE

By
EMANUEL PARZEN

TECHNICAL REPORT NO. 45
April 17, 1959

PREPARED UNDER CONTRACT N6onr-25140
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH
ON MODELS FOR THE PROBABILITY OF FATIGUE FAILURE OF A STRUCTURE.

by

EMANUEL PARZEN

TECHNICAL REPORT NO. 45
April 17, 1959

This work was sponsored by the Army, Navy, and Air Force through the Joint Services Advisory Committee for Research Groups in Applied Mathematics and Statistics by Contract No. N6onr-25140 (NR 342-002).

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
CONTENTS

<table>
<thead>
<tr>
<th>Part I</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction.</td>
<td>1</td>
</tr>
<tr>
<td>2. The statistical nature of the fatigue life of materials.</td>
<td>2</td>
</tr>
<tr>
<td>3. Some possible probability laws for the number of load cycles to failure.</td>
<td>5</td>
</tr>
<tr>
<td>4. Models for probability laws.</td>
<td>10</td>
</tr>
<tr>
<td>5. Remark on the estimation of parameters.</td>
<td>15</td>
</tr>
<tr>
<td>6. The survivorship P-S-N diagram.</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. A definition of cumulative damage.</td>
<td>16</td>
</tr>
<tr>
<td>8. A definition of stress history of a structure.</td>
<td>22</td>
</tr>
<tr>
<td>9. A definition of probability of fatigue failure and design lifetime.</td>
<td>24</td>
</tr>
</tbody>
</table>

Bibliography. | 26 |
Figure 1. | 28 |
Figure 2. | 29 |
SUMMARY

This paper represents an attempt by a person trained in probability theory to survey some of the problems involved in evaluating structural safety. Part I of the present paper is a review of the probabilistic considerations involved in evaluating the strength of materials, and the construction of so called S-N curves. In Part II we briefly advance a probabilistic model for the life before fatigue failure of a structure.
ON MODELS FOR THE PROBABILITY OF FATIGUE FAILURE OF A STRUCTURE. */

by

EMANUEL PARZEN

1. Introduction. **/

N.J. Hoff [11] has summarized the arguments in favor of the view that the safety of an aircraft needs to be established by means of probabilistic considerations, utilizing statistical data on the loads to be encountered by the aircraft, and on the strength values of the material of which it is composed. Only by use of the theory of probability can the airplane designer develop a design philosophy which will enable him to take into account static failure due to a rare excessive load, fatigue failure, and failure due to creep deformations.

This paper represents an attempt by a person trained in probability theory to survey some of the problems involved in evaluating structural safety. Part I of the present paper is a review of the probabilistic considerations involved in evaluating the strength of materials, and the construction of so-called S-N curves. In Part II we briefly advance a probabilistic model for the life before fatigue failure of a structure. The ideas involved in Part II are rather involved. We regret that, due to the pressure of time, our presentation in Part II is hardly more than an outline of the ideas involved.

*/

**/
Numbers in brackets refer to the references listed in the bibliography.
Part I

2. The statistical nature of the fatigue life of materials.

Let a specimen of a material be subjected to a large number of applications of a load at a given level of stress (the weight per unit of surface is called stress). The breaking strength, or fatigue life, of a material at a stress level s is defined to be the number $N(s)$ of load applications of stress s that have been applied to the material in order for it to break. That, for a given stress level s, $N(s)$ is a random variable is an experimentally very well determined fact; different specimens, tested under carefully controlled conditions, do not break after exactly the same number of load applications but rather break at widely scattered numbers of load applications. Alternately phrased, if one were to build a number of airplane wings to the same specifications and fly them under identical conditions the number of miles flown before failure of the wings would not be the same for all the airplane wings. The reader should note that the units in which the fatigue life of an item are expressed are at the disposal of the investigator; the fatigue life may just as well be defined as the number of miles flown or the number of hours in service, as the number of load applications at a certain stress level.

Let us consider here the number $N(s)$ of load applications at stress level s that a specimen of material sustains before breaking. To obtain the probability distribution of $N(s)$, one should test a large number of specimens at stress level s and obtain a histogram such as is sketched
in Figure 1. The x-axis in Figure 1 is divided into a number of intervals (centered at values $x_1, x_2, ...$) over which one draws a line representing the fraction of specimens tested whose observed fatigue life $N(s)$ lies in the interval. If we denote by $\hat{f}(x_1)$ the fraction of specimens whose observed fatigue lives are contained in the interval centered at x_1, then $\hat{f}(x_1)$ may be taken as an estimate of the probability that the random variable $N(s)$ will have an observed value in the interval centered at x_1.

At this point it may be worthwhile to introduce some notation. The distribution function of a random variable X is a function $F(x)$ defined by

$$F(x) = \text{Prob}[X \leq x]$$

In words, $F(x)$ is the probability that an observed value of X will be less than or equal to the assigned number x. In fatigue studies one also considers the survival function of a random variable X which is a function $L(x)$ defined by

$$L(x) = 1 - F(x) = \text{Prob}[X > x].$$

In words, $L(x)$ is the probability that an observed value of X will exceed x. A random variable X is said to be continuous if there is a function $f(x)$, called the probability density function of X, such that
\[F(x) = \int_{-\infty}^{x} f(x') \, dx' \]

\[\text{Prob} \{ x < X \leq x + \Delta x \} = f(x) \, dx \]

The problem before us is that of obtaining the probability law of the random variable \(N(s) \), either by specifying its distribution function \(F(x) \) or its probability density function \(f(x) \). From a large number of observations of \(N(s) \) one may estimate the true probability density function \(f(x) \) by drawing a smooth function \(f(x) \) which "fits" the observed histogram \(f(x_1) \). This procedure does not lead to a closed analytical expression for the probability density function. To avoid this difficulty, one usually attempts to estimate the true probability density function \(f(x) \) of \(N(s) \) by first, on the basis of theoretical considerations, assuming that the true probability density function belongs to a specified family of probability density functions, which is indexed by a finite number of parameters. One then estimates the true probability density function by estimating the parameters.

The method of estimating the probability law by means of estimating the parameters of a pre-assigned family of probability density functions is to be especially preferred to merely fitting a curve to the observed histogram in cases where our interest is in determining the values of \(N(s) \) which have extremely small probability (\(10^{-3} \) to \(10^{-6} \)) of not being attained. The number of observations used to construct the histogram may only be of the
order of 10^2. By curve fitting alone one is not justified in extrapolating the histogram so as to find the values of $N(s)$ which have extremely small probabilities of being attained.

In the next section, we discuss various models which have been proposed for the probability law of the number of load cycles to failure.

To conclude this section, we define some statistical terminology which will be employed below. Given a random variable X with probability density function $f(x)$, the mode, median, and mean are measures of the location of the values of the random variable which are most likely to be observed, while the variance is a measure of the spread of the interval in which the observed value of the random variable is most likely to fall. The precise mathematical definitions of these concepts are as follows: the mode m_o is the point (if it exists) at which the probability density function $f(x)$ achieves its maximum, the median m_e is the point at which the distribution function $F(x)$ is equal to $1/2$, the mean m is defined by the integral

$$m = \int_{-\infty}^{\infty} x f(x) \, dx,$$

the variance σ^2 is defined by the integral

$$\sigma^2 = \int_{-\infty}^{\infty} (x-m)^2 f(x) \, dx.$$

3. Some possible probability laws for the number of load cycles to failure.

Several families of probability density functions have been suggested for the theoretical probability law of the random variable $N(s)$, the number
of load cycles to failure of a material specimen at stress level s. The most important of these are

1) the lognormal (or logarithmic-normal) distribution
2) the extreme value distribution
3) the Weibull (or third asymptotic extreme value) distribution
4) the Gamma (or χ^2) distribution.

All these distributions have the property that they are skewed in a manner similar to that of the histogram in Figure 1.

A random variable X which takes only positive values is defined to have a lognormal distribution with parameters μ and σ (where μ and σ are real constants such that $-\infty < \mu < \infty$ and $\sigma > 0$) if its probability density function is given by

$$f(x) = \frac{1}{x\sigma \sqrt{2\pi}} \exp \left\{ \frac{1}{2\sigma^2} (\log x - \mu)^2 \right\}, \quad x > 0$$

(1)

$$= 0 \quad , \quad x < 0$$

The lognormal distribution derives its name from the fact that a random variable X is lognormal if and only if $\log X$ is normally distributed with mean μ and variance σ^2. A random variable X which is lognormal with parameters μ and σ has
(2) \[\text{mode} = e^{\mu - \sigma^2} \]
\[\text{median} = e^\mu \]
\[\text{mean} = e^{\mu + (1/2)\sigma^2} \]
\[\text{variance} = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1) \]

For a proof of (2), see [1], p.8. Indeed, the reader should consult [1] for a complete discussion of the properties of the lognormal distribution.

A random variable \(X \) is defined to have an extreme value distribution with parameters \(u \) and \(\beta \) (where \(u \) and \(\beta \) are constants such that \(-\infty < u < \infty \) and \(\beta > 0 \)) if its distribution function is given by

(3) \[F(x) = 1 - \exp \left\{ -e^{-\left(\frac{x-u}{\beta}\right)} \right\} \]

or if its probability density function is given by

(4) \[f(x) = \exp \left\{ \left(\frac{x-u}{\beta}\right) - e^{-\left(\frac{x-u}{\beta}\right)} \right\} \]

The parameters \(u \) and \(\beta \) of the extreme value distribution play the role of location and scale parameters in much the same way that the mean \(m \) and variance \(\sigma^2 \) of the normal distribution are respectively measures of location and scale. The extreme value distribution with parameters \(u \) and \(\beta \) has
(5) mode = u
median = u + (.36651) \beta
mean = u + (.57722) \beta
variance = \frac{\pi}{\sqrt{6}} \beta

For a proof of these relations, and a complete discussion of the extreme value distribution the reader should consult the recent book by E.J. Gumbel [10].

A random variable \(X \), which takes only values greater than some number \(\epsilon \), is defined to have a Weibull distribution with parameters \(v \) and \(k \) (where \(v \geq \epsilon \) and \(k > 1 \)) if its distribution function is given by

(6) \[F(x) = 1 - \exp \left\{ -\left(\frac{x-\epsilon}{v-\epsilon}\right)^k \right\}, \quad x \geq \epsilon \]
\[= 0, \quad x < \epsilon \]

or if its probability density function is given by

(7) \[f(x) = \frac{k}{v-\epsilon} \left(\frac{x-\epsilon}{v-\epsilon}\right)^{k-1} \exp \left\{ -\left(\frac{x-\epsilon}{v-\epsilon}\right)^k \right\}, \quad x > \epsilon \]
\[= 0, \quad x < \epsilon \]

The Weibull distribution has (see Gumbel [10], pp. 280-1)
\begin{align*}
\text{mode} &= \varepsilon + (v-\varepsilon)(1-\frac{1}{k})^{1/k} \\
\text{median} &= \varepsilon + (v-\varepsilon)(\log 2)^{1/k} \\
\text{mean} &= \varepsilon + (v-\varepsilon)\Gamma(1+\frac{1}{k}) \\
\text{variance} &= (v-\varepsilon)^2 \left[\Gamma(1+\frac{2}{k}) - \Gamma^2(1+\frac{1}{k}) \right]
\end{align*}

where \(\Gamma(x)\) is the Gamma function (defined in (10) below). For \(\varepsilon\) and \(v\) fixed, the mode, median, and mean of a Weibull distribution all tend to \(v\) as \(k\) tends to \(\infty\). Consequently, the parameter \(v\) may be taken as the parameter of location of Weibull distribution in preference to the usual characteristics of mode, median, or mean.

A random variable \(X\), which takes only positive values, is defined to have a Gamma distribution (or Pearson Type III distribution) with parameters \(r\) and \(\lambda\) (where \(r=1,2,\ldots\) and \(\lambda\) is a positive constant) if its probability density function is given by

\begin{align*}
\text{f}(x) &= \frac{\lambda^r}{\Gamma(r)} e^{-\lambda x} x^{r-1}, \quad x > 0 \\
&= 0, \quad x < 0
\end{align*}

where \(\Gamma(r)\) is the Gamma function defined by

\begin{align*}
\text{(10)} \quad \Gamma(r) &= \int_0^\infty x^{r-1} e^{-x} \, dx
\end{align*}
Note that $\Gamma(r) = (r-1)!$, if r is a positive integer. A random variable which is Gamma distributed with parameters r and λ has

\begin{align*}
\text{mode} &= \frac{r-1}{\lambda} \\
\text{median} &= \frac{c(r)}{\lambda} \\
\text{mean} &= \frac{r}{\lambda} \\
\text{variance} &= \frac{r}{\lambda^2}
\end{align*}

where $c(r)$ is the solution of

\begin{equation}
\int_0^{c(r)} y^{r-1} e^{-y} \, dy = \frac{1}{2} \Gamma(r)
\end{equation}

4. **Models for probability laws.**

We next discuss various theoretical probabilistic schemes which lead to the probability distributions just described.

Various probabilistic models which give rise to the lognormal distribution are summarized in [1], Chapter 3. The most important of these models is the theory of proportionate effort, first advanced by Kapteyn in 1903. Let X_1, X_2, \ldots, X_n, be a sequence of random variables which represent the magnitude at successive times of the size of a biological organism, a geological specimen, or a crack arising as a result of fatigue. Suppose that each magnitude X_n is related to its predecessor by the following rule:
\[
X_n - X_{n-1} = \epsilon_n X_{n-1}
\]

where \(\epsilon_1, \epsilon_2, \ldots, \epsilon_n, \ldots\) are independent random variables. In words, (1) says that the change \(X_n - X_{n-1}\) at each step in the development of the process under study is a random proportion \(\epsilon_n\) of the previous value \(X_{n-1}\).

From (1) it follows that

\[
X_n = (1 + \epsilon_n) X_{n-1} = (1 + \epsilon_n)(1 + \epsilon_{n-1}) \ldots (1 + \epsilon_2) X_1.
\]

From (2), one sees that for large \(n\), \(X_n\) is the product of a large number of independent factors. Therefore its logarithm \(\log X_n\) is the sum of a large number of independent terms, no one of which is dominant. The central limit theorem of probability theory then applies to assert that \(\log X_n\) is approximately normally distributed, from which it follows that \(X_n\) is lognormal.

The lognormal distribution has been advanced by Freudenthal and Gumbel ([7], p.317-8) as the distribution function of the extent of progressive damage. Let consecutive stress cycles \(S_1, S_2, \ldots, S_n, \ldots\) be applied to a specimen and let \(A_n\) be the disrupted area within the specimen after the application of the first \(n\) load cycles \(S_1, S_2, \ldots, S_n\).

If one assumes the law of proportionate effect,
then the extent A_n of damage after n stress cycles is approximately lognormal for large values of n. However if one is interested in the number $N(s)$ of stress cycles producing failure, it appears that the probability distribution of $N(s)$ is, insofar as theoretical considerations are concerned, more likely to be described by an extreme value or Weibull distribution rather than a lognormal distribution.

The extreme value distribution arises in the following way. Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent observations of a random variable X. Let $Y_1 = X_1$, $Y_2 = \max(X_1, X_2), \ldots, Y_n = \max(X_1, X_2, \ldots, X_n), \ldots$ and let $Z_1 = X_1$, $Z_2 = \min(X_1, X_2), \ldots, Z_n = \min(X_1, X_2, \ldots, X_n), \ldots$.

The random variables Y_n and Z_n are the extreme values (respectively the maximum and the minimum) of the sample of independent observations X_1, X_2, \ldots, X_n. The asymptotic distribution (that is, the distribution for large values of n) of the extreme values Y_n and Z_n can be shown to be one of several types, depending on the behaviour of the distribution function of the parent random variables $X_1, X_2, \ldots, X_n, \ldots$. A complete discussion of the asymptotic distribution of extreme values is given in the book of E.J. Gumbel [10].

What we have called here the extreme value distribution is more precisely called by Gumbel the Type I asymptotic distribution of extreme values.

What we have called here the Weibull distribution is more precisely called by Gumbel the Type III asymptotic distribution of extreme values.
The extreme value distribution is the asymptotic distribution of the minimum of a large sample of independent observations X_1, X_2, \ldots, X_n of a random variable X whose distribution function $F(x)$ behaves, as x tends to $-\infty$, exponentially in the sense that

$$
(4) \quad \lim_{x \to -\infty} \frac{\mathrm{d}}{\mathrm{d}x} \frac{F(x)}{f(x)} = 0
$$

where $f(x)$ is the probability density function of X.

The Weibull distribution is the asymptotic distribution of the minimum of a large number of independent observations X_1, X_2, \ldots, X_n of a random variable X which cannot take values less than some lower limit ϵ.

It should be pointed out that if one knows the exact distribution of the independent observations X_1, X_2, \ldots, X_n, then one can write down an exact expression for the distribution of their extreme values. The virtue of the theory of extreme values is that it provides an approximate method for evaluating under a minimum of assumptions, the distribution of the maximum and minimum values in a sample.

Epstein [5] and Freudenthal and Grumbel [8] have stated the physical assumptions under which one may expect the breaking strength of material to possess either an extreme value distribution or a Weibull distribution. Roughly speaking, the assumptions are that the strength of specimen is determined by the worst flaw among the large number of flaws present in the specimen. Flaws are assumed to be distributed randomly.
throughout the material. The size of flaws is assumed to obey a probability
distribution of type suitable for the application of the asymptotic theory
of extreme values.

The extreme value and Weibull distributions can also be derived from
another point of view, based on the notion of failure rate. Let T be a
random variable representing the service life to failure of a specified
item of equipment. Let $F(x)$ be the distribution function of T, and let
$f(x)$ be its probability density function. We define a function $\mu(x)$,
called the intensity function, or hazard function, or conditional rate of
failure function, by

\[
\mu(x) = \frac{f(x)}{1-F(x)}
\]

In words, $\mu(x) \, dx$ is the conditional probability that the item will fail
between x and $x + dx$, given that it has survived a time T greater
than x.

For a given hazard function $\mu(x)$ the corresponding distribution
function is

\[
1 - F(x) = (1 - F(x_0)) \, e^{-\int_{x_0}^{x} \mu(z) \, dz}
\]

where x_0 is an arbitrary value of x, since (5) can be rewritten

\[
\frac{d}{dx} \ln [1 - F(x)] = -\mu(x)
\]
If \(F(\varepsilon) = 0 \), then

\[
1 - F(x) = e^{-\int_{\varepsilon}^{x} \mu(z) \, dz}, \quad x > \varepsilon
\]

The extreme value distribution corresponds to the hazard function

\[
\mu(t) = \frac{1}{\beta} e^{\left(\frac{t-u}{\beta}\right)}, \quad \varepsilon = -\infty
\]

The Weibull distribution corresponds to the hazard function

\[
\mu(t) = k\left(\frac{t-\varepsilon}{v-\varepsilon}\right)^{k-1}
\]

Birnbaum and Saunders [2] have shown how to modify the foregoing scheme so as to obtain a model which leads to the Gamma distribution.

5. **Remark on the problem of estimation of parameters.**

At this point in this paper it would be natural to discuss the problem of estimation of the parameters of the probability laws described in the foregoing. In order to keep the paper down to reasonable size, we must omit such a discussion, and refer the reader to the books of Aitchison and Brown [1], Gumbel [10], and Cramér [4].

6. **The Survivorship P-S-N diagram.**

Having determined the probability distribution of the number \(N(s) \) of load cycles to failure at stress, for various levels of stress, it is
most convenient to present this information graphically on a diagram, such as Figure 2, which we may call the survivorship P-S-N diagram.

The survivorship P-S-N diagram is obtained in the following way. For a given stress level s and number P such that $0 \leq P \leq 1$, define the quantity $N(s,P)$ to be the number of load cycles at stress level s which a specimen has probability P of surviving; in symbols,

\begin{equation}
\text{Prob}[N(s) > N(s,P)] = P
\end{equation}

Now for various values of P (say for $1 - P = 0, 10^{-5}, 10^{-3}, 10^{-2}, 10^{-1}, .5$) plot the function $N(s,P)$ as a function of s. In this way one obtains the survivorship P-S-N curve.

The survivorship P-S-N curve for a given value of P can be estimated from empirical test data, by letting $N(s,P)$ be the number of load cycles at stress level s survived by a proportion P of the specimens tested. However, for values of P very close to 0 or 1, and small sample sizes, $N(s,P)$ can only be obtained by assuming that the probability law of $N(s)$ belongs to some finite parameter family whose parameters are estimated from the observations.

Part II

7. A definition of cumulative damage.

The problem in practice is not the behavior of materials under repeated applications of loads of a given stress level, but rather the behavior of materials under a large number of applications of loads of varying magnitude.
A cumulative damage hypothesis is a concept which attempts to relate the behavior of a specimen under load cycles of varying stress amplitude to its behavior under load cycles of constant stress amplitude.

Various cumulative damage hypotheses have been advanced by various authors (see contributions to [9],[14],[20]).

In this section we discuss a cumulative damage hypothesis which makes use of the ideas of a recently developed part of probability theory called renewal theory (an excellent review of renewal theory is given by W.L. Smith in [20]). It is a large sample theory which avoids making any assumptions about the probability law of \(N(s) \), the number of cycles to failure, and makes use only of the mean and variance of \(N(s) \). The material of this section is based partly on ideas of M.V. Johns, Jr. whom I take great pleasure in thanking for several helpful discussions. In deriving the crucial design formulas below we will make various interpretations of the mathematical operations we employ. It should be noted that the mathematical derivation given is capable of several possible physical interpretations other than the one given here.

Let \(s \) be a given stress level. We assume that the damage done to a given structure by a load application at stress level \(s \) is a random variable, denoted by \(Z(s) \). If the structure is subjected to \(n \) repeated loads at stress level \(s \), the total damage done is assumed to be the sum of \(n \) independent random variables \(Z_1(s), Z_2(s), \ldots, Z_n(s) \), each identically distributed as \(Z(s) \), where \(Z_j(s) \) denotes the damage done by the \(j \)-th load application.
Let us regard the strength of a structure as being a given number T. Let $N_T(s)$ be the number of cycles to failures if a structure of strength T is subjected to repeated load applications at stress level s. Then $N_T(s)$ may be defined as the smallest integer n such that

$$Z_1(s) + Z_2(s) + \ldots + Z_n(s) > T$$

It can be shown that one can obtain the probability law of $Z(s)$ from a knowledge, for all positive values of T, of the mean $E[N_T(s)]$ of $N_T(s)$ for all T by the following formula for the Laplace transforms. Define

$$\phi(u) = \int_0^\infty e^{-ux} P[Z(s) < x] \, dx$$

(2)

$$\psi(u) = \int_0^\infty e^{-uT} E[N_T(s)] \, dT$$

(3)

Then, for all $u > 0$

$$\phi(u) = \frac{\psi(u)}{1+u \psi(u)}$$

(4)

It should be noted that to obtain the probability law of the damage $Z(s)$ done by a single load application it is not necessary to know the probability law of the number $N_T(s)$ of load applications to failure.

For our purposes here, it will suffice to determine the mean and variance of $Z(s)$ from the mean and variance of $N_T(s)$ which presumably
can be measured in laboratory tests. The following limit theorems constitute basic results of renewal theory:

\[(5) \quad \lim_{T \to \infty} \frac{E[N_T(s)]}{T} = \frac{1}{E[Z(s)]} \]

\[(6) \quad \lim_{T \to \infty} \frac{\text{Var}[N_T(s)]}{T} = \frac{\text{Var}[Z(s)]}{E^3[Z(s)]} \]

From (5) and (6) it follows that for very large values of \(T \),

\[(7) \quad E[Z(s)] = \frac{T}{E[N_T(s)]} \]

\[(8) \quad \text{Var}[Z(s)] = \frac{\text{Var}[N_T(2)]}{E^3[N_T(s)]} T^2 \]

We next discuss how to use (7) and (8) to evaluate the cumulative damage to a structure due to a large number of load applications at varying stress amplitudes.

Let us consider a structure which has been subjected to a large number (say \(M \)) load cycles at varying stress amplitudes. More precisely, let \(s_1, s_2, \ldots, s_M \) be the successive stress amplitudes. Let \(Z_j \) denote the damage done to the structure by the \(j \)-th load application (which has stress \(s_j \)). The total damage \(D \) done to the structure is assumed to be the sum
(9) \[D = Z_1 + Z_2 + \ldots + Z_M \]

which has mean

(10) \[E[D] = \sum_{i=1}^{M} E[Z_i] \]

and variance

(11) \[\text{Var}[D] = \sum_{i=1}^{M} \text{Var}[Z_i] \]

assuming the random variables \(Z_1, \ldots, Z_M \) to be independent.

The number \(M \) of load cycles to which a structure is subjected in service is a random variable. In particular, let us assume that there are a finite number of stress amplitudes \(s_1, s_2, \ldots, s_r \) (written in increasing order) to which the structure is subject, and let \(M(s_1), M(s_2), \ldots, M(s_r) \) denote respectively the number of load cycles endured by the specimen at each of these stress amplitudes, where

(12) \[M(s_1) + \ldots + M(s_r) = M \]

Define \(D(s) \) to be the damage due to stresses of amplitude \(s \). Since the number \(M(s) \) of load applications at stress level \(s \) is a random variable, the mean and variance of \(D(s) \) is given by (see Feller [6], p.276)
\[(13) \quad \mathbb{E}[D(s)] = \mathbb{E}[M(s)] \mathbb{E}[Z(s)] \]

\[(14) \quad \text{Var}[D(s)] = \mathbb{E}[M(s)] \text{Var}[Z(s)] + \mathbb{E}[M(s)]^2 \mathbb{E}^2[Z(s)] \]

Further one may show

\[(15) \quad \text{Cov}[D(s_1), D(s_2)] = \text{Cov}[M(s_1), M(s_2)] \mathbb{E}[Z(s_1)] \mathbb{E}[Z(s_2)] \]

Assume that the total damage is the sum

\[(16) \quad D = D(s_1) + \ldots + D(s_2). \]

One may show that D has mean and variance

\[(17) \quad \mathbb{E}[D] = \sum_i \mathbb{E}[M(s_i)] \mathbb{E}[Z(s_i)] \]

\[(18) \quad \text{Var}[D] = \sum_i \mathbb{E}[M(s_i)] \text{Var}[Z(s_i)] + \text{Var}[\sum_i M(s_i) \mathbb{E}[Z(s_i)]] \]

In view of (17), (18), (7) and (8) we finally obtain that

\[(19) \quad \mathbb{E}[D] = T \sum_i \frac{\mathbb{E}[M(s_i)]}{\mathbb{E}[N_T(s_i)]} \]
(20) \[
\text{Var}[D] = T^2 \sum_i \text{E}[M(s_i)] \frac{\text{Var}[N_T(s_i)]}{\text{E}^2[N_T(s_i)]} \\
+ T^2 \text{Var}[\sum_i \frac{M(s_i)}{\text{E}[N_T(s_i)]}]
\]

In order to use these expressions for the mean and variance of the damage \(D\), we now turn our attention to the problem of determining the mean and variance of \(M(s)\).

8. A definition of stress history of a structure.

The notion is now well established that airplane behavior in rough air can be studied by means of the theory of stationary stochastic processes. In particular, it has been shown that gust velocities (encountered at a given time and place) may be considered a Gaussian stationary process. An excellent discussion of how the theory of Gaussian processes may be used to determine the stress history of a structure is given by Press [16]. We here only sketch the ideas involved.

The statistical properties of the peaks of a Gaussian process have been studied, by Rice [19] and Cartwright and Longuet-Higgins [3]. One may use these results to obtain a formula for \(\text{E}[M(s)]\), the excited number of load applications at stress amplitude \(s\) that an airplane endures per unit time due to gust loads. For a stationary Gaussian process \(y(t)\) with mean 0 and power spectrum \(\Phi(\omega)\), the expected number of maxima of height \(y\) per unit time is given by
(1) \[v(y) = N_1 \frac{y}{\sigma} e^{-y^2/2\sigma^2} \]

where

(2) \[N_1 = \frac{1}{2\pi} \left[\int_0^\infty \omega \phi(\omega) \, d\omega \right]^{1/2} \]

and

(3) \[\sigma^2 = \int_0^\infty \phi(\omega) \, d\omega = \text{E}[y^2(t)] \]

is the mean square value of \(y(t) \). Equation (1) is valid if the gust velocity spectrum is narrow. This assumption can be relaxed, using the work of Cartwright and Longuet-Higgins [3].

If we regard the successive stress amplitudes to which an airplane is subject as being proportional to the heights of the successive peak gust velocities encountered by the airplane, then the expected number of load applications of stress amplitude \(s \) endured by the plane in the course of \(L \) units of flying time is

(4) \[\text{E}[M(s)] = L \, N_1 \frac{s}{\sigma} e^{-y^2/2\sigma^2} \]

where now \(\sigma^2 \) is equal to the mean square of the gust velocity \(y(t) \) multiplied by the proportionality factor which converts gust velocities
into stresses.

Unfortunately it is more difficult to obtain expressions for the variance $\text{Var}(M(s))$ and the covariances $\text{Cov}(M(s_1), M(s_2))$. Consequently we will assume that these terms do not contribute decisively to equation (20) of Section 7, and can be accounted for by, say, doubling the first term in that equation.

9. A definition of probability of fatigue failure and design lifetime.

In view of the foregoing considerations, the relative damage endured by a structure after L time units of flight, defined as the ratio D/T of the damage endured by it to its strength T, has mean and variance

\begin{align}
\text{E}\left[\frac{D}{T} \right] &= LN_1 \int_0^\infty ds \frac{s}{\sigma} e^{-s^2/2\sigma^2} \frac{1}{\text{E}[N(s)]} \\
\text{Var} \left[\frac{D}{T} \right] &= 2LN_1 \int_0^\infty ds \frac{s}{\sigma} e^{-s^2/2\sigma^2} \frac{\text{Var}[N(s)]}{\text{E}^2[N(s)]}
\end{align}

where N_1 is the expected number of peak gust velocities per unit time, σ^2 is the mean square stress per unit time (defined in the preceding section), and $\text{E}[N(s)]$ and $\text{Var}[N(s)]$ are respectively the mean and variance of the number $N(s)$ of load applications to failure at stress amplitude s.

Assuming asymptotic normality of the relative damage, the probability of failure of the structure, defined as
(3) \[\text{Prob}\left[\frac{D}{T} \geq 1 \right] = \frac{1}{\sqrt{2\pi}} \int_{\eta}^{\infty} e^{-\frac{1}{2} y^2} \, dy, \quad \eta = \frac{1 - \mu[D]}{(\text{Var}[D])^{1/2}} \]

can be computed, from a knowledge of the mean and variance given by (1) and (2).

The probability in equation (1) depends on the strength of the material composing the airplane, as measured in S-N tests, on the gust history which it is expected the plane will encounter, and on the design lifetime \(L \) of the plane. Given any pre-assigned probability of fatigue failure which it is designed to guarantee, the designer can choose the design lifetime \(L \) accordingly.
BIBLIOGRAPHY

Figure 1. Frequency histogram for fatigue test results on 75 S-T aluminum
(taken from A.O. Pugsley [18] who plotted it from data in [7]).

Fatigue lives at ±30,000 lbs/in² in 10^6 cycles
Figure 2. SCHEMATIC P-S-N DIAGRAMS

N = NUMBER OF CYCLES TO FAILURE
Commanding Officer
Office of Naval Research
Navy No. 100
Fleet Post Office
New York, N.Y. 2

Commanding Officer
Office of Naval Research
Branch Office
1000 Geary St.
San Francisco 9, Calif. 1

Technical Information Officer
Naval Research Lab.
Washington 25, D.C. 6

Miss Besse B. Day
Bureau of Ships, Code 310-B
Dept. of the Navy
Washington 25, D.C. 1

Dr. Joseph A. Greenwood
Bureau of Aeronautics (QC-11)
Dept. of the Navy
Washington 25, D.C. 1

Dr. William R. Pabst
Quality Control Division
Bureau of Ordnance
Dept. of the Navy
Washington 25, D.C. 1

Mr. H. M. Rosenblatt
Statistics Branch, QC Division
Bureau of Ordnance
Dept. of the Navy
Bldg. T-3, Room 1042
Washington 25, D.C. 1

Mr. H. Weingarten
Special Project Office
Bureau of Ordnance
Dept. of the Navy
Washington 25, D.C. 1

Chief, Research Division
Office of Research & Development
Office of Chief of Staff
U. S. Army
Washington 25, D.C. 1

Commanding Officer
Diamond Ordnance Fuze Labs.
Washington 25, D.C. 1

Commanding General
Frankford Arsenal (ORDBA-LC)
Bridesburg Station
Philadelphia 37, Pa. 1

Commanding Officer
Picatinny Arsenal (ORDBA-K)
Dover, N.J. 1

Commanding General
Rock Island Arsenal
Rock Island, Ill. 1

Commanding General
Redstone Arsenal (ORDDW-QC)
Huntsville, Ala. 1

Commanding Officer
Watertown Arsenal (OMRO)
Watertown 72, Mass. 1

Commanding Officer
Attn: W.A. Labs.
Watertown Arsenal
Watertown 72, Mass. 1

Commanding Officer
Watervliet Arsenal
Watervliet, N.Y. 1

Dr. Clifford Maloney
Chief, Statistics Branch
Chemical Corps Biological
Warfare Labs.
Fort Detrick, Md. 1
Mr. Silas Williams
Office, DC/S for Logistics
Dept. of the Army
Washington 25, D.C.

Chief, Computing Laboratory
Ballistic Research Lab.
Aberdeen Proving Ground, Md.

Technical Director
Combat Development Dept.
Army Electronic Proving Ground
Fort Huachuca, Ariz.

Commanding General
White Sands Proving Ground
(ORDBS-TP-TIB)
Las Cruces, New Mexico

Commanding General
Attn: Paul C. Cox,
Ordnance Mission
White Sands Proving Ground
Las Cruces, New Mexico

Commanding Officer
Attn: Inspection Division
Springfield Armory
Springfield, Mass.

Commanding General
Attn: Technical Documents Center
Signal Corps Engineering Labs.
Fort Monmouth, N.J.

Commanding Officer
Signal Corps Electronic Research
Unit, EDL
9560 Technical Service Unit
P.O. Box 205
Mountain View, Calif.

Commanding Officer
9550 Technical Service Unit
Army Liaison Group, Project Michigan
Willow Run Research Center
Ypsilanti, Mich.

Director
National Security Agency
Attn: Remp-1
Fort George G. Meade, Maryland

Commanding Officer
Engineering Res. & Dev. Labs.
Fort Belvoir, Va.

Director
Snow, Ice & Permafrost Research
Establishment
Corps of Engineers
1215 Washington Ave.
Wilmette, Ill.

Office, Asst. Chief of Staff, G-4
Research Branch, R & D Div.
Dept. of the Army
Washington 25, D.C.

Dr. Walter L. Deemer, Jr.
Operations Analysis Div., DCE/O
Hq., U. S. Air Force
Washington 25, D.C.

Dr. Knox T. Millsaps
Chief Scientist
Air Force Missile Dev. Center
Holloman Air Force Base,
New Mexico

Commander
Wright Air Dev. Center
Attn: ARL Tech. Library, WCRR
Wright Patterson A.F.R., Ohio

Dr. Paul Rider
Wright Air Dev. Center, WCRRM
Wright Patterson A.F.B., Ohio

Director of Operations
Operations Analysis Div., AF0OP
Hq., U. S. Air Force
Washington 25, D.C.

Commander
Western Dev. Div., WDSIT
P. O. Box 262
Inglewood, Calif.

Commander
HQ., AF Office of Scientific Research
Attn: Maj. O. A. Shaw, SROAM
P. O. Box 1395
Baltimore 3, Md.

Document Library
U. S. Atomic Energy Commission
19th & Constitution Aves., N. W.
Washington 25, D. C.

NACA
Attn: Mr. E. B. Jackson, Office of Aero Intelligence
1724 F St., N. W.
Washington 25, D. C.

National Appl. Mathematics Labs.
National Bureau of Standards
Washington 25, D. C.

Office of Technical Services
Dept. of Commerce
Washington 25, D. C.

Technical Information Service
Attn: Reference Branch
P. O. Box 62
Oak Ridge, Tenn.

Mr. Irving B. Altman
Inspection & QC Division
Office, Asst. Secretary of Defense
Room 2B870, The Pentagon
Washington 25, D. C.

Jet Propulsion Lab.
California Inst. of Tech.
Attn: A. J. Stosick
4800 Oak Grove Drive
Pasadena 3, Calif.

Institute of Statistics
North Carolina State College of A & E
Raleigh, N. C.

Director
Lincoln Laboratory
Lexington, Mass.

Armed Services Technical Info. Agency
Arlington Hall Station
Arlington 12, Va.

Commanding General
Ordnance Weapons Command
Attn: Research Branch
Rock Island, Ill.

Dr. Forman S. Acton
Dept. of Mathematics
Princeton University
Princeton, N. J.

Prof. T. W. Anderson
Center for Advanced Study in Behavioral Sciences
Stanford University

Dr. Merle M. Andrew
Chief, Mathematics Division
Air Force Office of Scientific Research
Washington 25, D. C.

Prof. Fred C. Andrews
Dept. of Mathematics
University of Oregon
Eugene, Ore.

Prof. Z. W. Birnbaum
Dept. of Mathematics
University of Washington
Seattle, Wash.

Dr. David Blackwell
Dept. of Mathematical Sciences
University of California
Berkeley 4, Calif.

Dr. Charles Ball
General Electric Co.
735 State St.
Santa Barbara, Calif.

Prof. William G. Cochran
Rooms 306-308
17 Dunster St.
Cambridge 38, Mass.
Librarian
The RAND Corporation
1700 Main St.
Santa Monica, Calif. 1

Dr. Joseph Daly
Bureau of the Census
Washington 25, D.C. 1

Prof. Paul Meyer
Dept. of Mathematics
Washington State College
Pullman, Wash. 1

Prof. J. Neyman
Dept. of Mathematical Statistics
University of California
Berkeley 4, Calif. 1

Mr. James J. Fleming, Head
Operational Research Branch
U. S. Naval Research Lab.
Washington 25, D.C. 1

Mr. Monroe Norden
College of Engineering
New York University
401 W. 205th St.
New York 34, N.Y. 1

Mrs. Dorothy M. Gilford, Head
Statistics Branch, Code 433
Office of Naval Research
Washington 25, D.C. 1

Mr. R. H. Noyes
Avionics Division
3Q400 Hexagon
Fort Monmouth, N.J. 1

Dr. Landis Gephart
Office of Ordnance Research
Box CM, Duke Station
Durham, N.C. 1

Prof. Edwin G. Olds
Dept. of Mathematics
College of Engineering & Science
Carnegie Inst. of Tech.
Pittsburgh 13, Pa. 1

Mr. Donald Guthrie
Dept. of Mathematics
U. S. Naval Postgraduate School
Monterey, Calif. 1

Prof. Stanley Reiter
Dept. of Mathematics
Purdue University
Lafayette, Ind. 1

Dr. Ivan Hersher
Office, Chief of Res. & Dev.
U. S. Army
Research Division, 3B382
Washington 25, D.C. 1

Prof. Herbert Robbins
Dept. of Mathematical Statistics
Columbia University
New York 27, N.Y. 1

Prof. Harold Hotelling
Dept. of Statistics
University of North Carolina
Chapel Hill, N.C. 1

Prof. Herman Rubin
Dept. of Mathematics
University of Oregon
Eugene, Oregon 1

Prof. Leo Katz
Dept. of Mathematics
Michigan State University
East Lansing, Mich. 1

Prof. Eugene Lukacs
Dept. of Mathematics
Catholic University
Washington, D.C. 1

Prof. Carl K. Kossack
Dept. of Mathematics
Purdue University
Lafayette, Ind. 1
Mr. Harold Gumbel
Technical Programs
Analysis Office
U. S. Naval Air
Missile Test Center
Pt. Mugu, California

Dr. Craig Magwire
Dept. of Mathematics
U. S. Naval Postgraduate School
Monterey, California

Dr. Milton Sobel
Bell Telephone Labs.
555 Union Blvd.
Allentown, Pa.

Prof. Herbert Solomon
Teachers College
Columbia University
New York 27, N.Y.

Mr. S. P. Steck
Statistics Division
Sandia Corporation
Sandia Base
Albuquerque, New Mexico

Dr. Horace M. Trent
Head, Appl. Mathematics Branch
Naval Research Lab.
Washington 25, D.C.

Dr. Donald Truax
Dept. of Mathematics
University of Kansas
Lawrence, Kansas

Prof. John W. Tukey
Dept. of Mathematics
Princeton University
Princeton, N.J.

Prof. W. Allen Wallis
Statistics Research Center
University of Chicago
Chicago 37, Ill.

Mr. Joseph Weinstein
Applied Physics Branch
Evans Signal Lab.
Fort Monmouth, N.J.

Dr. Irving Weiss
Bell Telephone Labs.
1600 Osgood St.
Andover, Mass.

Dr. F. J. Weyl
Director, Mathematical Sciences Division
Office of Naval Research
Washington 25, D.C.

Dr. John Wilkes
Office of Naval Research
Code 200
Washington 25, D.C.

Prof. Jacob Wolfowitz
Dept. of Mathematics
Cornell University
Ithaca, N.Y.

Additional copies for project leader and assistants and reserve for future requirements

-50-