AN ASYMPTOTIC EXPANSION FOR A CLASS OF MULTIVARIATE NORMAL INTEGRALS

By
HAROLD RUBEN

TECHNICAL REPORT NO. 69
May 2, 1961

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH
AN ASYMPTOTIC EXPANSION FOR A CLASS OF MULTIVARIATE NORMAL INTEGRALS

by

Harold Ruben

TECHNICAL REPORT NO. 69
May 2, 1961

PREPARED FOR ARMY, NAVY AND AIR FORCE UNDER CONTRACT Nonr-225(52) (NR-342-022)
WITH THE OFFICE OF NAVAL RESEARCH

This work was sponsored by the Army, Navy and Air Force through the Joint Services Advisory Group for Research Groups in Applied Mathematics and Statistics by Contract Nonr-225(52) (NR-342-022)

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

APPLIED MATHEMATICS AND STATISTICS LABORATORIES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
AN ASYMPTOTIC EXPANSION FOR A CLASS OF MULTIVARIATE NORMAL INTEGRALS

by

Harold Ruben

1. Introductory Discussion and Summary.

Let \(x = (x_1, x_2, \ldots, x_n) \) be a normal random vector with zero expectation vector and with a variance-covariance matrix which has 1 for its diagonal elements and \(\rho \) for its off-diagonal elements. Consider the quantity

\[
(1.1) \quad I_n(h;\rho) = (2\pi)^{\frac{n}{2}} \left[1 + (n-1)\rho \right]^{-\frac{1}{2}} \int_h^{\infty} \cdots \int_h^{\infty} e^{-\frac{1}{2}Q(x)} \, dx_1 \cdots dx_n,
\]

where

\[
Q(x) = \left[(1 + (n-1)\rho)(1-\rho) \right]^{-1} \left[(1 + (n-2)\rho) \sum x_i^2 - 2\rho \sum_{j>i} x_ix_j \right]
\]

(1.2)

\[
= (1-\rho)^{-1} \left[\sum x_i^2 - \rho(1 + (n-1)\rho)^{-1} \left(\sum x_i^2 \right) \right].
\]

Thus \(I_n(h;\rho) \) is the probability that each of \(n \) normally distributed, equally correlated and standardized random variables with common correlation \(\rho \) shall not fall short of \(h \). Clearly \(1 - I_n(h;\rho) \) is also the distribution function of the random variable \(\max_i x_i \), and this supplies one application (cf. [3]) of \(I_n(h;\rho) \). A second application relates to the familiar one-factor model in factor analysis for the special case of equal weights [8]. Another situation in which knowledge of the distribution of \(I_n(h;\rho) \) is important is in some models of test design in psychology. Other applications will arise or probably exist at present.
In a previous paper [8] (see also [8] for further references), $I_n(h;\rho)$ was expressed as the product of the density function at the cut-off point $h = (h, h, \ldots, h)$ and an infinite power series in h. In this paper it will be shown for $h > 0$ that $I_n(h;\rho)$ can be expressed asymptotically as the product of the density function at h and an infinite series in negative powers of h. This result can be regarded as the generalization for $n > 1$ of the well-known asymptotic expansion of Mill's ratio

\[(1.3) \int_x^\infty e^{-\frac{t^2}{2}} dt / e^{-\frac{x^2}{2}} \sim x^{-1}(1 - x^{-2} + 1.3x^{-4} - 1.3.5x^{-6} + \ldots)(x > 0). \]

2. The Asymptotic Development of $I_n(h;\rho)$.

Under the transformation

\[y_i = [1 + (n - 1) \rho]^{-\frac{1}{2}} \sum_{j=1}^{n} b_{ij} x_j, \]

\[y_i = (1 - \rho)^{-\frac{1}{2}} \sum_{j=1}^{n} b_{ij} x_j \quad (i = 2, 3, \ldots, n), \]

where $((b_{ij}))$, $i, j = 1, 2, \ldots, n$, is orthogonal with $b_{ij} = n^{-\frac{1}{2}}$ ($j = 1, 2, \ldots, n$), (1.1) reduces to

\[(2.2) \quad I_n(h;\rho) = (2\pi)^{-\frac{1}{2}n} \int_R \cdots \int_R e^{-\frac{1}{2} \sum y_i^2} dy_1 \cdots dy_n \]

with R defined by
\[(2.3) \quad R: \left[1 + (n-1) \rho \right]^{\frac{1}{2}} \left[n(1-\rho) \right]^{-\frac{1}{2}} \sum_{j=2}^{n} b_{ij} y_j \geq (1-\rho)^{-\frac{1}{2}} h \]
\[(i = 1, 2, \ldots, n) \]

[8]. \(R \) is a polyhedral half-cone in \(\mathbb{R} \)-space with vertex at the point \((r_0, 0, 0, \ldots, 0) \), where

\[(2.4) \quad r_0 = \left[n/(1 + (n-1) \rho) \right]^{\frac{1}{2}} h, \]

such that the angle between any two faces of the cone is arc \(\cos - \rho \); further the axis of the cone passes through the origin in \(\mathbb{R} \)-space.

\(I_n(h; \rho) \) is, then, the probability measure under an \(n \)-dimensional spherical normal distribution with unit standard deviation in any direction of a regular, symmetrically oriented polyhedral half-cone with common dihedral angle arc \(\cos - \rho \), and with vertex at a distance \(r_0 \) from the center of the distribution. Let \(P \) be any point within the cone distant \(r \) from the center of the distribution, \(\xi \) from the axis of the cone and \(x \) from the vertex of the cone in a direction parallel to the axis. The probability-mass of an infinitesimal element of volume \(d\tau \) at \(P \) is

\[(2.5) \quad (2\pi)^{\frac{n}{2}} e^{-\frac{1}{2} r^2} d\tau = (2\pi)^{\frac{n}{2}} e^{-\frac{1}{2} (r_0 + x)^2} dx \quad (2\pi)^{\frac{n-1}{2}} e^{-\frac{1}{2} r^2} dS, \]

where \(dS \) is the measure of an infinitesimal element in the \((n-1) \)-flat orthogonal to the axis of the cone and distant \(x \) from the vertex (cf. [5]). Consider the probability-mass in that portion of the cone (an infinitesimal
"slab" demarcated by two adjoining (n-1) flats orthogonal to the axis of the cone and distant \(x \) and \(x + dx \) from the vertex of the cone. It is easily shown that the intersection of the first of these two flats with the cone is a regular (n-1) dimensional simplex with centroid at the foot of the perpendicular from \(P \) to the axis of the cone and with edges of length

\[
\left[\frac{2n(1 + (n-1) \rho)}{(1-\rho)} \right]^{\frac{1}{2}} x.
\]

Let \(K_n(\beta) \) denote the probability measure under an \(N \)-dimensional spherical normal distribution with unit standard deviation in any direction of a regular \(N \)-dimensional simplex with centroid at the center of the distribution and with edges of length \(\beta \). Then according to (2.5) the probability measure of the infinitesimal slab is

\[
(2.6) \quad (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}(r_o^2+x)^2} \cdot K_{n-1} \left[\left(\frac{2n(1 + (n-1) \rho)}{1 - \rho} \right)^{\frac{1}{2}} x \right].
\]

consequently, the probability measure of the cone is

\[
I_n(h;\rho) = \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}(r_o^2+x)^2} K_{n-1} \left[\left(\frac{2n(1 + (n-1) \rho)}{1 - \rho} \right)^{\frac{1}{2}} x \right] dx
\]

\[
(2.7) \quad = (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}r_o^2} \int_{-\infty}^{\infty} e^{-r_o x} e^{-\frac{1}{2}x^2} K_{n-1}(\lambda x) \ dx,
\]

where
\[\lambda = \lambda_n(\rho) \]

\[= \left[2n(1 + (n-1)\rho)/(1-\rho) \right]^{1/2} \]

and \(r_0 \) is given by (2.4). Formula (2.7) which is of considerable intrinsic interest may be used also to develop the required asymptotic expansion of \(I_n(h;\rho) \) for \(h > 0 \).

The \(K \)-functions are closely related to Godwin's \(G \)-function [1], [2] introduced in connection with the distribution of the absolute mean deviation in normal samples, and some further statistical applications of the functions have been discussed in [4] and [5]. Clearly, \(K_N(x) \) is bounded by 1. Again, it has been shown elsewhere [7] that \(K_N(x) \) has a power series expansion with infinite radius of convergence. Consequently, Watson's lemma [9] (p. 236) may be used to obtain a valid asymptotic expansion for the integral in (2.7) by expanding \(\exp(-x^2/2)K_{n-1}(\lambda x) \) in its Taylor series at \(x = 0 \) and integrating term by term. In fact, let

\[\psi_n(x) = \psi_n(x;\lambda) = e^{-x^2/2}K_{n-1}(\lambda x) = \sum_{i=0}^{\infty} c_{n-1,i} x^i/i! , \]

1 The center of the distribution is interior or exterior to the half-cone according as to whether it is within or without the half-cone, corresponding to the cases \(h > 0 \) and \(h < 0 \). The integral formula for \(I_n(h;\rho) \) in (2.7) is valid for all \(h \), but for the asymptotic expansion developed subsequently (equ. (2.22)) \(h > 0 \). (The case \(h < 0 \) is not likely to be of practical interest, while \(I_n(0;\rho) \) is known to be equal to the normed measure of a regular \((n-1) \)-dimensional spherical simplex with common dihedral angle \(\arccos \rho \). The reader is referred to [9] where tables of each normed measure are provided for \(n = 1(1)51 - 1 \) and \(\rho = 1/1, i = 1(1)12 \).)
where the $c_{n-1,i}$ are functions of λ (and therefore of ρ). Then (2.7) gives with the aid of Watson's lemma,

\[(2.10) \quad I_{\lambda} (h; \rho) \sim (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}r_0^2} \sum_{i=0}^{\infty} c_{n-1,i} r_0^{i+1} \]

This is the required formula. It should be noted that the probability density in the original distribution at the point (h, h, \ldots, h) is

\[(2.11) \quad (2\pi)^{-\frac{1}{2}} \left[1 + (n-1) \rho \right]^{-\frac{1}{2}} \left[1 - (1-\rho) \right]^{-\frac{1}{2}(n-1)} e^{-\frac{1}{2}r_0^2} \]

thereby justifying the assertion at the end of the introductory Section.

It now remains to determine the coefficients $c_{n-1,i}$ in (2.10). On differentiating (2.9) j times at $x = 0$ we obtain after some simplification

\[c_{n-1+2k} = \psi_n^{(n-1+2k)} (0)\]

\[(2.12) \quad = \sum_{s=0}^{k} (-\frac{1}{2})^{k-s} \frac{(n-1+2k)!}{(k-s)!} \lambda^{n-1+2s} a_{n-1,n-1+2s},\]

\[c_{n-1,m} = 0 \quad (m = 0, 1, 2, \ldots, n - 2),\]

where $\psi_n^{(n-1+2k)} (0)$ is the $(n - 1 + 2k)$th derivative of $\psi_n (x)$ at $x = 0$ and the a's are defined by

\[K_N (x) = \sum_{j=0}^{\infty} a_{N,j} x^j \quad (N = 0, 1, 2, \ldots)\]
\[a_{N,j} = k_N^j(0)/j! \]. In the derivation of (2.12) use has been made of the fact that

\begin{align*}
 a_{N,j} &= 0 \quad (j = 0, 1, 2, \ldots, N - 1), \\
 a_{N,N+2r+1} &= 0 \quad (r = 0, 1, 2, \ldots).
\end{align*}

(2.13)

Formula (2.13) in its turn derives by induction from the following recursion relationship between the \(a \)'s proved elsewhere [7]:

\[a_{N,s} = (2s)^{-1} \left[\left(N + 1 \right)/\left(Nn \right) \right]^{1/2(s-1)/2} \sum_{q=0}^{\left[(s-1)/2 \right]} \left[-4N(N + 1) \right]^{-q} a_{N-1,s-1-2q}/q! \]

\[(s = 1, 2, \ldots) \],

\[\left[(s-1)/2 \right] \text{ denoting, as usual, the integral part of } (s-1)/2 \]. Though (2.14) may be exploited to derive explicit expressions for the non-negative \(a \)'s these are more easily obtained recursively by repeated application of (2.14) on noting that

\begin{align*}
 a_{0,j} &= 0 \quad (j = 1, 2, \ldots), \\
 &= 1 \quad (j = 0).
\end{align*}

(2.15)

This yields for the first three non-negative \(a_{n-1,j} \),

\[a_{n-1,n-1} = \frac{1}{n^2} \frac{n^2}{\left[2 \right]^{n-1} \frac{1}{2^{n-1}} \frac{1}{(n - 1)!}} \],

(2.16)
\((2.17) \quad a_{n-1,n+1} = -\frac{\frac{1}{2}}{2^{n-1} \pi \frac{1}{2}(n-1)} \frac{1}{4(n+1)!} \)

\((2.18) \quad a_{n-1,n+3} = \frac{\frac{1}{2}}{2^{n-1} \pi \frac{1}{2}(n-1)} \frac{(n-1)(n^2 + 7n - 6)}{32n} \frac{1}{(n+3)!} \)

((2.14) shows that the non-negative \(a \)'s oscillate in sign).

On applying (2.16), (2.17) and (2.18) in (2.12), the first three non-negative \(c \)'s are obtained:

\((2.19) \quad c_{n-1,n-1} = (n-1)! \lambda^{n-1} a_{n-1,n-1} \)

\[\frac{1}{2} \quad 2^{-n-1} - \frac{1}{2} \lambda^{n-1} \lambda^{n-1} \]

\((2.20) \quad c_{n-1,n+1} = (n+1)! \left\{ -\frac{1}{2} \lambda^{n-1} a_{n-1,n-1} + \lambda^{n+1} a_{n-1,n+1} \right\} \)

\[\frac{1}{2} \quad 2^{-n} - \frac{1}{2} \lambda^{n-1} \left\{ \frac{1}{2} n(n+1) \lambda^{n-1} + \frac{1}{4} \lambda^{n+1} \right\} \]
\[c_{n-1,n+3} = (n+3)! \left(\frac{1}{2} a_{n-1,n-1} - \frac{1}{2} a_{n-1,n+1} + \lambda^{n+3} a_{n-1,n+3} \right) \]

\[(2.21) \quad = \frac{1}{n^2} 2^{-(n-1)} \pi - \frac{1}{2(n-1)} \left(\frac{1}{3} n(n+1)(n+2)(n+3) \lambda^{n+1} + \frac{1}{12} (n+2)(n+3) \lambda^{n+1} \right. \]
\[\left. + \frac{1}{32} \frac{(n-1)(n^2 + 7n - 6)}{n} \right) \lambda^{n+3} \]

Thus from (2.10),

\[I_n(h; \rho) \sim (2\pi)^{-1/2} \left[\frac{1}{2} \frac{1}{\pi} e^{-\frac{1}{2} \rho^2} \left(c_{n-1,n-1} r_0^{-(n+1)} + c_{n-1,n+1} r_0^{-(n+3)} + c_{n-1,n+3} r_0^{-(n+5)} + \ldots \right) \right], \]

(2.22)

where the first three coefficients in the asymptotic expansion are given by (2.19), (2.20) and (2.21) (further coefficients may be obtained in the manner shown). A slightly more convenient form of (2.22) is

\[I_n(h; \rho) \sim \frac{1}{n^2} \pi \frac{1}{2} e^{-\frac{1}{2} \rho^2} \left(t/r_o \right)^{n-1} r_o^{-1} \]

\[(2.23) \quad \times \left[1 - \left(\frac{1}{2(n+2)} + t^2 \right) r_o^{-2} \right. \]
\[\left. + \left(\frac{1}{6(n+1)} + \frac{1}{2(n+2)} \right) t^2 + \frac{1}{2(n-1)}(n^2 + 7n - 6) n^{1/2} t^4 r_o^{-4} + \ldots \right], \]

where

\[t \equiv t_n(\rho) = \lambda/2 \]

\[(2.24) \quad = \left[n(1 + (n-1)/2(1 - \rho)^{1/2} \right] \]
and \((n)_m\) denotes \(n(n+1) \cdots (n+m-1)\). It will be noted that the present asymptotic expansion is particularly suitable for large \(r_0\) (i.e., the cut-off point is not near the center of the distribution) and algebraically small \(\rho\).

Finally, observe that for \(n = 1\) \((2.22)\) reduces to \((1.3)\), since \(\psi_0(x) = \exp(-x^2/2)\) and

\[
(2.25) \quad c_{0,2j} = (-\frac{1}{2})^j (2j)! / j!.
\]

(The polyhedral half-cone is here the interval \((h, \infty)\).) For \(n = 2\), \((2.22)\) reduces to

\[
(2.26) \quad I_2(h; \rho) \sim \pi^{-1} e^{-\frac{1}{2}t^2} e^{\frac{1}{2}r_0^2} \left[1 + \frac{15+10t^2+3t^4}{r_0^4} - \cdots \right].
\]

This agrees with a formula obtained previously [6] for the probability measure, \(W(h; \theta)\), under a standardized circular normal distribution of a sector of angle \(\alpha\), vertex at a distance \(h\) from the center of the distribution and with one arm of the sector passing through the latter point. The relationship between \(I_2\) and \(W\) is

\[
(2.27) \quad I_2(h; \rho) = 2W(h; \theta/2)
\]

where \(\theta = 2 \arctan t = 2 \arctan((1+\rho)/(1-\rho))^{\frac{1}{2}}\). It has been shown in [6] that the bivariate normal integral for arbitrary cut-off point may be expressed in terms of the difference of two \(W\)-functions (and therefore of two \(I_2\)-functions).
3. The Accuracy of the Asymptotic Expansion.

In this section we obtain an upper bound to the error induced by taking the first \(m \) terms of the asymptotic expansion as an approximation to \(I_n(h; \rho) \). In particular, this allows a weaker upper bound to be obtained, to the effect that the above error is numerically not greater than the \((m+1)\)th term of the expansion for all \(h \).

Let \(\phi \) be the angle between the axis of the half-cone and the line joining any point \(P \) and the vertex of the cone. Then (using the notation of Section 2)

\[
r^2 = r_o^2 + \xi^2 + 2r_o \xi \cos \phi ,
\]

and the probability-mass of an infinitesimal volume-element of content \(d\tau \) as \(P \) is

\[
(2\pi)^{-\frac{1}{2n}} \exp\left[-\frac{1}{2}r^2\right] d\tau = (2\pi)^{-\frac{1}{2n}} \cdot \exp\left[-\frac{1}{2}(r_o^2 + \xi^2 + 2r_o \xi \cos \phi)\right] \xi^{n-1} d\xi d\omega ,
\]

(3.1)

where \(d\omega \) is the solid angle subtended at the center of the distribution by the volume-element (or, equivalently, the surface-content of an infinitesimal element on the surface of a unit sphere whose center coincides with the center of the distribution). Thus the probability-mass of the half-cone is

\[
(3.2) \quad I_n(h; \rho) = (2\pi)^{-\frac{1}{2n}} e^{-\frac{1}{2}r^2} \int_0^\infty \int_0^{2\pi} e^{-(r_o \cos \phi)\xi} \xi^{n-1} e^{-\frac{1}{2}\xi^2} d\xi d\omega ,
\]

11
where \(\Omega \) is the \((n-1)\)-dimensional regular spherical simplex (with common dihedral angle \(\arccos \rho \)) formed by the intersection of the half-cone and the surface of the unit sphere. Again, if

\[
G_{n-1}(\xi) = \xi^{n-1} e^{-\frac{\xi^2}{2}}
\]

then the derivatives of \(G_{n-1}(\xi) \) at the origin, \(G_{n-1}^{(q)}(0) \), are given by

\[
G_{n-1}^{(n-1+2i)}(0) = (-1)^i \frac{(n-1+2i)!}{2^i i!} \quad (i = 0, 1, 2, \ldots)
\]

with all other derivatives vanishing. Therefore, repeated integration by parts yields

\[
(3.3) \quad \int_0^\infty e^{-\left(r_o \cos \phi\right)\xi} G_{n-1}(\xi) d\xi = \sum_{i=0}^{m-1} (-1)^i \frac{(n-1+2i)!}{2^i i!} \frac{1}{(r_o \cos \phi)^{n+2i}} + R_m(r_o \cos \phi),
\]

where

\[
R_m(r_o \cos \phi) = (r_o \cos \phi)^{-n+2m-2} \int_0^\infty e^{-\left(r_o \cos \phi\right)\xi} G_{n-1}^{(n+2m-2)}(\xi) d\xi
\]

\[
(3.4)
\]

\[
= (r_o \cos \phi)^{-n+2m-1} \int_0^\infty e^{-\left(r_o \cos \phi\right)\xi} G_{n-1}^{(n+2m-1)}(\xi) d\xi
\]

after a further single integration by parts. On using (3.3) and (3.4) in (3.2),

12
\[I_n(h; \rho) = (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}r_o^2} \left\{ \sum_{i=0}^{m-1} \frac{(-1)^i (n-1+2i)!}{2^i i!} \alpha_{n,i} r_o^{-(n+2i)} \right\} + \int_{\Omega} R_m(r_o \cos \theta) \, d\omega \right\}, \]

(3.5)

where

\[\alpha_{n,i} = \int_{\Omega} \sec^{n+2i} \theta \, d\omega. \]

(3.6)

In (3.5), the error after \(m \) terms is

\[E_m = (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}r_o^2} \int_{\Omega} R_m(r_o \cos \theta) \, d\omega. \]

(3.7)

An upper bound to \(|E_m| \) can be obtained from an upper bound to \(R_m(r_o \cos \theta) \) in (3.4). The latter upper bound is itself obtained by deriving first an upper bound to \(\xi^{(n+2m-1)} \) for \(\xi \geq 0 \). If, then,

\[|\xi^{(n+2m-1)}| \leq A_{n-1,2m}, \]

(3.8)

(3.4) gives for \(r_o > 0 \)

\[|R_m(r_o \cos \theta)| < A_{n-1,2m} (r_o \cos \theta)^{-(n+2m)}, \]

(3.9)

whence by (3.7)
\[|E_m| \leq (2\pi)^{\frac{1}{2}n} e^{-\frac{1}{2}r_o^2} A_{n-1,2m} \int_\Omega (r_o \cos \phi)^{-(n+2m)} d\omega \]

\[= A_{n-1,2m} (2\pi)^{\frac{1}{2}n} e^{-\frac{1}{2}r_o^2} \alpha_{n,m} r_o^{-(n+2m)}, \]

which is proportional to the \((m+1)\)th term of the series

\[\sum_{i=0}^{\infty} (-1)^i \frac{(n-1+2i)!}{2^{i+1} i!} \alpha_{n,i} r_o^{-(n+2i)}. \]

Consequently, (3.11) is a valid asymptotic expansion when \(r_o > 0\) of \(I_n(h;\rho)\). Moreover, the series (3.11) must be identical with the series (2.22), since a given function determines uniquely (if at all) a series of the form \(\sum c_p/r_o^p\), so that (3.10) provides an upper bound to the error in using (2.22).

We now proceed to determine a value\(^2/\) for \(A_{n-1,2m}\). Let

\[\xi^{n-1} = \beta_{n-1,0} H_0(\xi) + \beta_{n-1,1} H_1(\xi) + \cdots + \beta_{n-1,n-1} H_{n-1}(\xi), \]

where \(H_j(\xi)\) are the Tchebycheff-Hemite polynomials orthogonal to the weight function \(\exp(-\xi^2/2)\) and normalized so that the coefficient of \(\xi^j\) in \(H_j(\xi)\) is 1. On multiplying (3.12) by \(H_j(\xi) \exp(-\xi^2/2)\), and integrating over the real line, we find

\(^2/\) That \(A_{n-1,2m} < \infty\) is evident from the fact that all derivatives of \(G_{n-1}(\xi)\) are products of polynomials in \(\xi\) and \(\exp(-\xi^2/2)\).
\[\beta_{n-1,j} = \int_{-\infty}^{\infty} \xi^{n-1} H_j(\xi) e^{-\frac{1}{2} \xi^2} \int_{-\infty}^{\infty} H_j^2(\xi) e^{-\frac{1}{2} \xi^2} d\xi. \]

The value of the denominator in (3.13) is well-known to be \(\sqrt{2\pi} \cdot j! \). In order to evaluate the numerator, define

\[\gamma_{n-1,j} = \int_{-\infty}^{\infty} \xi^{n-1} H_j(\xi) e^{-\frac{1}{2} \xi^2} d\xi. \]

Integration by parts gives the recursion relationship

\[(3.14) \quad \gamma_{n-1,j} = (n-1) \gamma_{n-2,j-1}, \]

and on successive application of (3.14)

\[\gamma_{n-1,j} = (n-1)(n-2) \cdots (n-j) \gamma_{n-1-j,0} \]

\[= (n-1)(n-2) \cdots (n-j) \int_{-\infty}^{\infty} \xi^{n-1-j} e^{-\frac{1}{2} \xi^2} d\xi, \]

whence

\[\gamma_{n-1,j} = (n-1)(n-2) \cdots (n-j) \frac{1}{2^{(n-j)/2}} \Gamma \left(\frac{1}{2}(n-j) \right) \quad \text{for even } n-1-j, \]

\[(3.15) \quad = 0 \quad \text{for odd } n-1-j. \]
On substituting (3.15) in (3.13),

\[\beta_{n-1,j} = \frac{(n-1)!}{2^{n-j}(n-1)!} \left[\frac{1}{2}(n-1-j)! \right]! \]

\[= 0 \quad \text{(n-1-j even)}, \]

\[= 0 \quad \text{(n-1-j odd)}. \]

(3.16)

Reverting to (3.12),

\[G_{n-1}(\xi) = \xi^{n-1} e^{-\frac{1}{2}\xi^2} \]

\[= \sum_{j=0}^{n-1} \beta_{n-1,j} H_j(\xi) e^{-\frac{1}{2}\xi^2}, \]

and therefore

(3.17) \[G_{n-1}^{(n+1+2m)}(\xi) = \sum_{j=0}^{n-1} \beta_{n-1,j} H_{j+2m}(\xi) e^{-\frac{1}{2}\xi^2}, \]

on recalling that

(3.18) \[\frac{d^p}{d\xi^p} e^{-\frac{1}{2}\xi^2} = (-1)^p H_p(\xi) e^{-\frac{1}{2}\xi^2}. \]

An upper bound to \[|H_{j+2m}(\xi)| e^{-\frac{1}{2}\xi^2} \] in (3.17) is readily deduced from the identity

\[e^{-\frac{1}{2}\xi^2} = \int_{-\infty}^{\infty} e^{i\xi x} \left(\frac{\xi}{2\pi} \right)^p e^{-\frac{1}{2}\xi^2} dx \]
for real \(\xi \). Hence on applying (3.18),

\[
(-1)^p H_p(\xi) e^{-\frac{1}{2}\xi^2} = \int_{-\infty}^{\infty} (ix)^p e^{ix} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^2} \, dx ,
\]

from which we obtain

\[
|H_p(\xi)| e^{-\frac{1}{2}\xi^2} \leq (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} |x|^p e^{-\frac{1}{2}x^2} \, dx
\]

(3.19)

\[
= \pi^{-\frac{1}{2}} 2^{\frac{1}{2}p} \Gamma \left[\frac{1}{2}(p + 1) \right] .
\]

Thus from (3.16), (3.17) and (3.19),

(3.20)

\[
|G_{n-1}^{(n-1+2m)}(\xi)| \leq \pi^{-\frac{1}{2}} \sum_j \frac{(n-l)!}{2^{\frac{l}{2}(n-l-j)}} \frac{2^{m+j}}{\Gamma[m + \frac{1}{2}(j + 1)]} \frac{1}{[\frac{1}{2}(n-l-j)]!j!}
\]

\[
\sum_j \text{denoting summation over all non-negative integral } j \leq n-1 \text{ such that } n-1-j \text{ is even.}
\]

If \(n \) is odd, set \(j = 2i \) in (3.20). Then

\[
|G_{n-1}^{(n-1+2m)}(\xi)| \leq \pi^{-\frac{1}{2}} \frac{(n-1)/2}{\Gamma\left[\frac{1}{2}(n-1-2i)\right]} \frac{n-1!}{\left[\frac{1}{2}(n-1)\right]!(2i)!} \cdot 2^{m+i} \Gamma(m + i + \frac{1}{2}) ,
\]

17
and, on using the duplication formula for the gamma function in the form

\[-\frac{1}{2} \pi \Gamma(m + i + \frac{1}{2}) = (2m + 2i)! / \{(m + i)! \cdot 2^{2m+2i}\}, \]

the latter inequality simplifies to

\[|G_{n-1}^{(n-1+2m)}(\xi)| \leq \frac{(n-1)!}{m + \frac{1}{2}(n-1)} \sum_{i=0}^{(n-1)/2} \frac{(2m + 2i)!}{(m + i)! \cdot (2i)!} \frac{1}{(\frac{n-1}{2} - i)!} \]

(3.21)

\[(n = 1, 3, \ldots) .\]

Similarly, if \(n \) is even, set \(j = 2i + 1 \) in (3.20). Then

\[|G_{n-1}^{(n-1+2m)}(\xi)| \leq \pi \frac{1}{2} \frac{(n-2)/2}{\sum_{i=0}^{\frac{1}{2}(n-2-2i)}} \frac{(n-1)!}{2^{\frac{1}{2}(n-2-2i)} \left[\frac{1}{2}(n-2) - i\right]! \cdot (2i+1)!} \]

(3.22)

\[\cdot \frac{m+i+\frac{1}{2}}{\Gamma(m + i + 1)}, \]

and, on using gamma duplication formula in the form

\[-\frac{1}{2} \pi \Gamma(m + i + 1 + \frac{1}{2}) = (2m + 2i + 1)! / \{(m + i + \frac{3}{2})! \cdot 2^{2m+2i+1}\}, \]

the last inequality reduces to
\[|a_{n-1}^{(n-1+2m)}(\xi)| \leq \frac{(n-1)!}{m+\frac{1}{2}(n-1)!} \sum_{i=0}^{\frac{n-2}{2}} \frac{(2m + 2i + 1)!}{\Gamma(m + i + \frac{3}{2})(2i + 1)!} . \]

\((3.23) \)

\[\cdot \frac{1}{(\frac{n-2}{2} - 1)!} \quad (n = 2, 4, \ldots) . \]

Formulae (3.21) and (3.23) provide the required inequalities in the sense that their right-hand members (refer to (3.8)) may be substituted for \(A_{n-1,2m} \) in (3.10) to supply the desired upper bound for the error after \(m \) terms. A weaker upper bound may be obtained by noting that in (3.21)

\[\frac{(n-1)! (2m+2i)!}{(2i)!} = (n-1)! (2i+1)(2i+2) \cdots (2m+2i) \]

\[\leq (n - 1 + 2m)! , \]

whence \(^3\)

\[|a_{n-1}^{(n-1+2m)}(\xi)| \leq \frac{(n - 1 + 2m)!}{2^m m!} \cdot \frac{\frac{1}{2}(n+1)}{\frac{1}{2}(n-1)} \]

\((3.24) \)

\[\leq \frac{(n - 1 + 2m)!}{2^m m!} \quad (n = 1, 3, \ldots) , \]

\(^3\) There are \((n + 1)/2\) terms in the series (3.21), and to obtain (3.24) the largest term of these \((n + 1)/2\) terms is substituted for each term.
since \(\frac{1}{2^{(n+1)}} \leq 1 \) for all odd \(n \). Similarly, for \(n \) even, observe that in (3.23)

\[
(n-1)! \cdot (2m+2i+1)! / (2i+1)! = (n-1)! \cdot (2i+2)(2i+3) \cdots (2m+2i+1)
\]

\[
\leq (n - 1 + 2m)!
\]

whence

\[
|g_{n-1}^{(n-1+2m)}(\xi)| \leq \frac{(n - 1 + 2m)!}{2^m \Gamma(m + 3/2)} \cdot \frac{1}{2^n(n-1)} \cdot \frac{n!}{2^m m!} \cdot \frac{1}{2^n(n-1)} \leq \frac{(n - 1 + 2m)!}{2^m m!}
\]

(3.25)

\[
(n = 2, 4, \ldots)
\]

since \(n/2^{(n+1)} < 1 \) for all even \(n \). An upper bound to \(|g_{n-1}^{(n-1+2m)}(\xi)| \) is thus \((n - 1 + 2m)!/2^m m! \) for all \(n \). This upper bound may be substituted for \(A_{n-1,2m} \) in (3.10), thereby proving that the numerical error after \(n \) terms is less than the absolute value of the \((m + 1) \)th term. It should be noted, however, that according to (3.25) this can be improved for even \(n \) by replacing \(A_{n-1,2m} \) by \((n - 1 + 2m)! / (2^m \Gamma(m + 3/2)) \).
REFERENCES

<table>
<thead>
<tr>
<th>Stanford University</th>
<th>Technical Bureau Distribution List</th>
<th>Contract No. 650-20-69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Frankford Arsenal</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Library Branch, 570, Bag. 40 Bridge and Trancy Streets</td>
<td>Philadelphia 37, Pennsylvania</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Rock Island Arsenal</td>
<td>Rock Island, Illinois</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Rock Island Arsenal</td>
<td>Rock Island, Illinois</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Redstone Arsenal (ORDN-CQ)</td>
<td>Huntsville, Alabama</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>White Sands Proving Ground (ORDN-M-TIN) Las Cruces, N. Mexico</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>White Sands Proving Ground Las Cruces, N. Mexico</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Ordnance Weapons Command</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Ordnance Weapons Command</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Rock Island, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Wright Air Development Center</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Western Development Division, WCCIT</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Inglewood, California</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Chief, Research Division</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Office of Research & Development</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Office of Chief of Staff</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>U.S. Army</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Chief, Computing Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Ballistic Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Aberdeen Proving Ground, Maryland</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>National Security Agency</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>AFB 286</td>
<td>1</td>
</tr>
<tr>
<td>MDA</td>
<td>Office of Technical Services</td>
<td>2</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Department of Commerce</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Technical Information Officer</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Naval Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Naval Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Technical Director</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>University Electronic Proving Ground</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Lincoln Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Department of Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td>Michigan State University</td>
<td>1</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>135 East Lansing, Michigan</td>
<td>1</td>
</tr>
</tbody>
</table>

March 31, 1961
Dr. Merle M. Andrew, Chief Mathematics
Division Air Force Office of
Scientific Research
Washington 25, D. C. 1

Mr. James J. Fleming, Head
Operational Research Branch
U. S. Naval Research Laboratory
Washington 25, D. C. 1

Mr. Fred Frishman, Chairman
Army Research Office
Arlington Hall Station
Arlington, Virginia 1

Mrs. Dorothy M. Gilford
Logistics and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, D. C. 3

Dr. Robert Lundegard
Logistics and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, D. C. 1

Dr. Clifford Maloney
Applied Sciences Division
Chemical Corps, U. S. Army
Fort Detrick, Maryland 1

Mr. R. H. Noyes
Office of Technical Plans, USASRDL
Fort Monmouth, New Jersey 1

Major Oliver A. Shaw, Jr.
Office of Scientific Research
Air Force - Room 2718, Temp. X
Washington 25, D. C. 2

Dr. Horace M. Trent, Head
Applied Mathematics Branch
U. S. Naval Research Laboratory
Washington 25, D. C. 1

Mr. J. Weinstein
Institute for Exploratory Research
USASRDL
Fort Monmouth, New Jersey 1