STORAGE POLICY FOR INCOMPLETE RECORD-KEEPING

By
HERMAN CHERNOFF and GIDEON SCHWARZ

TECHNICAL REPORT NO. 71
July 2, 1961

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH
STORAGE POLICY FOR INCOMPLETE RECORD-KEEPING

by

Herman Chernoff and Gideon Schwarz

TECHNICAL REPORT NO. 71

July 2, 1961

PREPARED FOR ARMY, NAVY, AND AIR FORCE UNDER

CONTRACT Nonr-225(52) (NR-342-022)

WITH THE OFFICE OF NAVAL RESEARCH

This work was sponsored by the Army, Navy, and Air Force through the Joint Services Advisory Group for Research Groups in Applied Mathematics and Statistics by Contract Nonr-225(52) (NR-342-022)

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

APPLIED MATHEMATICS AND STATISTICS LABORATORIES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA
1. **Introduction**

Let us consider a depot which stores and supplies a certain item. When a demand or request for this item is submitted, it is met by the depot. The transaction is recorded and the balance (the amount recorded to be in storage) is diminished by the amount supplied. However, it is possible that, by oversight, the transaction fails to be recorded.

When the balance falls below a certain number called the **reorder point** the item is inventoried and an order is placed to restock the item to a level considered to be a full supply. Because of possible failures to record transactions it may be that the **stock** (amount of the item actually on hand) is considerably less than the balance. Thus there may fail to be sufficient stock to supply the demand even though the recorded balance is greater than the reorder point. In that case the stock is reordered but the inability to supply the demand leads to a loss whose average value may be substantial.

If the reorder point is low, the unfilled demand may prove costly. On the other hand, if it is high, there will be unnecessarily frequent inventories and reorderings which also lead to considerable cost. It is desirable to evaluate the expected cost per transaction and to see how it depends on the choice of the reorder point. This evaluation can then be
applied to find an optimal reorder point. Approximate evaluations are presented graphically in the figures at the end of this paper.

In section 2, the problem of finding an optimal reorder point is presented formally and the graphs which indicate approximations to the solution are described.

The remaining sections are devoted to presenting the formulae used to obtain the graphs and their derivations. Two distinct cases are treated in the derivations. The case where the demand is constant is treated in section 3. For the other case the demand is a random variable with known mean and variance. The derivations cover sections 4, 5 and 6. The results are summarized in section 6. The numbered equations of sections 5 and 6 may be used to evaluate the expected cost per transaction.

2. Formal Description of the Problem and Results

Let s represent a full supply of the item and let b^* be the reorder point. Suppose that successive demands for the item may be regarded as independent observations on a random variable X with mean μ and variance σ^2.

Suppose that each transaction may fail to be recorded with probability p^* and such failures are independent events. Finally let the cost of reordering be one and the average cost of failing to supply a demand be c (plus one for reordering).

Using these assumptions, we may evaluate an approximation to L, the average cost per transaction. In the graphs at the end of this paper we present L as a function of b^* when $\mu = 1$ for various values of c, p^* and s. In each case the minimizing value of b^* and L_{min} the corresponding value of L are indicated.
Note that \(L \) is unaffected if stocks are measured in units obtained by selecting \(\mu = 1 \). If one prefers to use another unit, this statement implies that \(L \) is unaltered when \(\mu, \sigma, s \) and \(b^* \) are replaced by \(1, \sigma/\mu, s/\mu \) and \(b^*/\mu \) respectively.

We shall find the following terms useful. Let \(N \) represent the average number of transactions before reordering. Let \(P \) be the probability that starting with a full supply, there will be an unfilled demand before reordering. Let \(p = 1 - p^* \) be the probability of recording a transaction and \(b = s - b^* \). Finally we shall use \(\varphi \) and \(\Phi \), to represent the density and cumulative distribution functions for the normal distribution with mean \(0 \) and standard deviation one.

3. **The case of fixed-size demands**

Let us assume that each demand is for just one unit, and that the probability of a transaction being recorded is \(p = 1 - p^* \), independently of the recording of other transactions. The storage center will fail to satisfy the \(s + 1 \)st demand if and only if fewer than \(b = s - b^* \) demands out of the first \(s \) demands were recorded. Equivalently, this occurs whenever no more than \(b - 1 \) transactions were recorded before the \(b^* \)th omission. As \(p^* \) is the probability of an omission, the number of recordings preceding the \(b^* \)th omission has a Laplace (Negative Binomial [1]) distribution with parameters \(p^* \) and \(b^* \). Denoting the sum of the \(n \) first terms in this distribution by \(Y(n, b^*) \) we obtain

\[
P = Y(b-1, b^*)
\]
for the probability of being caught with our supply empty.

So far no approximations have been made. However, when we come
to evaluate the second aspect of employing a certain reorder point, namely
the average frequency of reordering to which it leads, the exact result
involves means of truncated Laplace distribution, and for the sake of
simplicity we apply the following approximations:

If reordering were always due to the stock records reaching the reorder
point, the average number N of transactions until reordering would be
$b/P = (s-b*)/(1-p*)$. The true average number is less than that, but
never less than b. Also N can never exceed s. Thus we have a graph
of N as a function of b^* enclosed in the following triangle.
As we shall see that the best choice of \(b^* \) is either zero, or else it is a value for which the probability of running out is quite small. In that case we may approximate \(N \) by \((s-b^*)/p \). Hence using this approximation for all \(b^* \) except at 0, where we shall use the true value \(N = s \), yields results which are rather accurate for the optimal reorder points. Consequently this approximation furnishes an accurate estimate of the optimal reorder point.

The approximate overall average loss per transaction is now given for \(b^* > 0 \) by

\[
L = \frac{1 + cP}{N} = \frac{1 + cy(b-1,b^*)}{s - b^*} (1-p^*)
\]

When \(b^* = 0 \) we can avoid running out only by recording every single transaction, and we have

\[
L = \frac{1 + c[1 - (1-p^*)^s]}{s}
\]

The graph of \(L(b^*) \) can be easily drawn with the aid of a table of the cumulative binomial \(B(k,n) \) if we make use of the relation \(Y(k,n) + B(n-1, n+k) = 1 \) (see [2]). It is especially convenient due to the fact we need the values

\[
Y(s-b^*-1, b^*) = 1 - B(b^*-1, s-1)
\]

which, for fixed \(s \), are all found in the same table (see for instance [3]).
The graphs pertaining to the case of fixed-size demand were obtained with a desk computer and can be identified by the heading "\(\sigma = 0 \)."

4. Preliminaries for the general case

Let \(X_1, \ldots, X_n, \ldots \), and \(X^*, \ldots \) be independent identically distributed random variables with mean \(\mu \) and variance \(\sigma^2 \). They will represent the demands where each recorded transaction is labelled as an \(X \), and each omitted one is labelled as \(X^* \).

Let \(Z_r \) be the number of transactions that are recorded before the \(r \)th one that is not, and \(Z^*_r \) be the number that are not recorded before the \(r \)th one that is. Clearly \(Z_r \) and \(Z^*_r \) are dependent random variables, each of which has a negative binomial distribution.

Let \(R_a \) and \(R^*_a \) be defined by

\[
X_1 + X_2 + \cdots + X_{R_a} \geq a > X_1 + X_2 + \cdots + X_{R_a-1}
\]

and

\[
X^*_1 + X^*_2 + \cdots + X^*_{R^*_a} \geq a > X^*_1 + X^*_2 + \cdots + X^*_{R^*_a-1}
\]

For convenience we shall assume that an unfilled demand arises only if the total of forgotten transactions is at least \(b^* \). This assumption involves the neglect of an event whose probability approaches zero as \(b \) and \(b^* \) approach \(\infty \).

Then, the event of an unfilled demand is equivalent to

\[
V = \frac{Z_{R^*_b}}{R^*_b} - R_b < 0
\]

and to

\[V^* = Z_{R_b}^* - R_{h^*}^* \geq 0 . \]

If there is an unfilled demand, the total number of transactions leading to this demand is

\[W = R_{D^*}^* + Z_{R_b}^* . \]

On the other hand, if the reorder point is reached first, the total number of transactions before reordering is

\[W^* = R_b + Z_{R_b}^* . \]

The average cost associated with reordering is \(1 + cP(V < 0) \). The average number of transactions leading to reordering is

\[N = E(W|V < 0) \cdot P(V < 0) + E(W^*|V^* < 0) \cdot P(V^* < 0) \]

and the average cost per transaction is

\[L = [1 + cP(V < 0)]/N . \]

In the following sections we shall derive asymptotic expressions for \(P(V < 0) \), and \(N \).
5. Asymptotic Approximations

(a) Negative Binomial

If \(Z_r \) is the number of transactions that are recorded before the \(r^{th} \) that isn't,

\[
P(\text{Z}_r \leq z) = P(Y \leq z)
\]

where \(Y \) is the number of successes of an event with probability \(p \) out of \(z+r \) independent trials.

\[
\therefore P(\text{Z}_r \leq z) = \Phi \left(\frac{z-(r+z)p + \frac{1}{2}}{\sqrt{(r+z)p \cdot \frac{p^*}{2}}} \right)
\]

where \(\Phi \) is the cumulative normal distribution with mean 0 and variance 1. Furthermore \(Z_r / r \to p / p^* \) in probability. It follows that \(Z_r \) is approximately normally distributed with mean \(\frac{rp}{p^*} - \frac{1}{2p^*} \) and variance \(\sqrt{r[1+(p/p^*)] \frac{p}{p^*}} \) or more precisely

\[
Z_r = \left(\frac{rp}{p^*} - \frac{1}{2p^*} \right) + \epsilon_1 \sqrt{r(1 + \frac{p}{p^*}) \frac{p}{p^*}}
\]

where \(\epsilon_1 \) is asymptotically normal with mean 0 and variance 1 for large \(r \).

\[
\text{The } \frac{1}{2p^*} \text{ term is relatively small for large } r \text{ but was included to improve the approximation.}
\]
(b) The "waiting time" R_a

Applying the central limit theorem, we have

$$P(R_a \leq r) = P(X_1 + X_2 + \cdots + X_r \geq a)$$

$$= 1 - \Phi \left(\frac{a - r \mu}{\sqrt{r} \sigma} \right) = \Phi \left(\frac{r - \frac{a}{\mu}}{\sqrt{r} \sigma/\mu} \right).$$

Since $\frac{R_a}{a}$ converges in probability $1/\mu$ as $a \to \infty$, it follows that

$$R_a = a/\mu + \sqrt{\frac{a \sigma^2}{\mu^2}} \epsilon_2$$

where ϵ_2 is asymptotically normal with mean 0 and variance 1 as $a \to \infty$.

(c) $Z_{R_b^*}$, V, W

Combining (a) and (b), we have

$$Z_{R_b^*} = (R_b^* - \frac{p}{p^*} - \frac{1}{2p^*}) + \epsilon_1 \sqrt{R_b^* (1 + \frac{p}{p^*}) \frac{p}{p^*}}$$

$$= \frac{b^*}{\mu} - \frac{1}{2p^*} + \frac{p}{p^*} \frac{b^* \sigma^2}{\mu^2} \epsilon_2 + \epsilon_1 \sqrt{\frac{b^*}{\mu} (1 + \frac{p}{p^*}) \frac{p}{p^*}}.$$

Now

$$V = Z_{R_b^*} - R_b = v_0 + v_1 \epsilon_1 + v_2 \epsilon_2 + v_3 \epsilon_3.$$
where

\[v_0 = \frac{b^*}{\mu} \frac{p}{p^*} - \frac{1}{2p^*} - \frac{b}{\mu} \]

\[v_1 = \sqrt{\frac{b^*}{\mu} \left(1 + \frac{p}{p^*}\right) \frac{p}{p^*}} \]

(5.1)

\[v_2 = -\sqrt{\frac{b^2}{\mu}} \]

\[v_3 = \frac{p}{p^*} \sqrt{\frac{b^* \sigma^2}{\mu}} \]

Finally

\[W = \frac{R^*}{b^*} + Z \frac{p^*}{b^*} = w_0 + w_1 \epsilon_1 + w_2 \epsilon_2 + w_3 \epsilon_2^* \]

where

\[w_0 = \frac{b^*}{\mu} \left(1 + \frac{p}{p^*}\right) - \frac{1}{2p^*} \]

(5.2)

\[w_1 = \sqrt{\frac{b^*}{\mu} \left(1 + \frac{p}{p^*}\right) \frac{p}{p^*}} \]

\[w_2 = 0 \]

\[w_3 = \left(1 + \frac{p}{p^*}\right) \sqrt{\frac{b^* \sigma^2}{\mu}} \]

10
It follows that \((V, W)\) has approximately a bivariate normal distribution with means and covariances given by

\[
\mu_V = v_o ; \quad \mu_W = w_o ,
\]

\[
\sigma_V^2 = v_1^2 + v_2^2 + v_3^2 , \quad \sigma_W^2 = w_1^2 + w_2^2 \]

\[
\sigma_{VW} = w_1 v_1 + w_2 v_2 .
\]

Assuming that \(V\) and \(W\) do have a joint normal distribution, we are interested in \(P(V < 0)\) and \(E(W|V < 0)\).

First

\[
P(V < 0) = \Phi \left(\frac{-\mu_V}{\sigma_V} \right) = \Phi \left(\frac{-\mu_V}{\sigma_V} \right)
\]

Then

\[
E(W|V) = \mu_W + \frac{\sigma_{WV}}{\sigma_V^2} (V - \mu_V) = \mu_W + \frac{\sigma_{WV}}{\sigma_V} \left(\frac{V - \mu_V}{\sigma_V} \right)
\]

\[
E(W|V < 0)P(V < 0) = \mu_W P(V < 0) + \frac{\sigma_{WV}}{\sigma_V} \int_{-\infty}^{\mu_V/\sigma_V} x \varphi(x) dx
\]

\[
= \mu_W \Phi \left(\frac{-\mu_V}{\sigma_V} \right) - \Phi \left(\frac{-\mu_V}{\sigma_V} \right) \frac{\sigma_{WV}}{\sigma_V}
\]
6. Final Results

Combining the equations of the preceding sections, we have the following approximations:

\[(6.1) \quad P(V < 0) = \Phi(k_1)\]

where

\[(6.2) \quad k_1 = -\frac{v}{\sqrt{v_1^2 + v_2^2 + v_3^2}}.\]

\[(6.3) \quad E(W|V < 0)P(V < 0) = w_o \Phi(k_1) - k_2 \Phi(k_1) = \psi(\mu, \sigma^2, b, b^*, p, p^*)\]

where

\[(6.4) \quad k_2 = \frac{(w_1v_1 + w_3v_3)}{\sqrt{v_1^2 + v_2^2 + v_3^2}}.\]

By symmetry, we have

\[(6.5) \quad E(W^*|V^* < 0)P(V^* < 0) = \psi(\mu, \sigma^2, b^*, b, p^*, p) .\]

Hence the expected number of transactions until reordering is

\[(6.6) \quad N = \psi(\mu, \sigma^2, b, b^*, p, p^*) + \psi(\mu, \sigma^2, b^*, b, p^*, p) .\]

and the average cost per transaction is

\[(6.6) \quad L = \frac{[1 + c\Phi(k_1)]}{N} .\]

The numbered equations of sections 5 and 6 may be used to compute L, N, and P.
REFERENCES

Figures

Average cost per transaction, L, as a function of reorder point b^* for fixed values of p^*, s, c, and $\mu = 1$.
<table>
<thead>
<tr>
<th>Address</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armored Services Technical Information Agency</td>
<td>Arlington Rail Station, Arlington, Virginia</td>
</tr>
</tbody>
</table>
| Army Logistics and Mathematical Statistics Branch Office | 10。
| Commanding Officer Office of Naval Research Branch Office | New York, N.Y. |
| Commanding Officer Office of Naval Research Branch Office | 1000 Geary Street, San Francisco 9, California |
| Commanding Officer Office of Naval Research Branch Office | 15th Floor, The John Creer Library Bldg., 56 East Randolph Street, Chicago 1, Illinois |
| Commanding Officer Office of Naval Research Branch Office | 946 Broadway, New York 13, N.Y. |
| Commanding Officer Ordnance Proving Ground | Fort Knox, Kentucky |
| Commanding Officer Signal Corps Engineering Laboratory | Fort Monmouth, New Jersey |
| Commanding Officer | Wright Air Development Center |
| Commanding Officer | Watervliet Arsenal |
| Commanding Officer | Waterdata Research Division, NBS |
| Commanding Officer | Washington, D.C. |
| Commanding Officer | 3500 Technical Service Unit |
| Commanding Officer | 9560 Technical Service Unit |
| Commanding Officer | 9550 Technical Service Unit |
| Commanding Officer | Engineering Research & Development Labs, Fort Belvoir, Virginia |
| Commanding Officer | Frankford Arsenal Library Branch, G-70, 2nd Fl. Bridge and South Streets, Philadelphia 37, Pennsylvania |
| Commanding Officer | Rock Island Arsenal, Rock Island, Illinois |
| Commanding General | Redstone Arsenal (GODDND-3C-1) |
| Commanding General | White Sands Proving Ground (GODDND-3C-GS) |
| Commanding General | Las Cruces, New Mexico |
| Commanding General | Fort Monmouth, New Jersey |
| Commanding General | Naval Weapons Command Research Branch |
| Commanding General | Rock Island, Illinois |
| Commanding General | Western Development Division, NBS |
| Commanding General | Inglewood, California |
| Commanding General | Chief, Research Division Office of Research & Development |
| Commanding General | U.S. Army Washington, D.C. |
| Commanding General | Ballistic Research Laboratory Aberdeen Proving Ground, Maryland |
| Director | National Security Agency |
| Director | Fort George G. Meade, Maryland |
| Director | Operations Analysis Div., APDC |
| Director | Washington, D.C. |
| Director | Snow, Ice & Permafrost Research Establishment Corps of Engineers 1225 Washington Avenue Wilmette, Illinois |
| Director | Lincoln Laboratory Lexington, Massachusetts |
| Department of Mathematics | Michigan State University East Lansing, Michigan |

<table>
<thead>
<tr>
<th>Name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headquarters</td>
<td>Oklahoma City, Oklahoma Area United States Air Force Tinker Air Force Base, Oklahoma</td>
</tr>
<tr>
<td>Institute of Statistics</td>
<td>North Carolina State College of A & E Raleigh, North Carolina</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>California Institute of Technology Attn: A. J. Storick 4500 Oak Grove Pasadena, California</td>
</tr>
<tr>
<td>Librarian</td>
<td>The NAR Corporation 1700 Main Street Santa Monica, California</td>
</tr>
<tr>
<td>Library Division</td>
<td>U.S. Naval Ordnance Test Station China Lake, California</td>
</tr>
<tr>
<td>Mathematics Division</td>
<td>Code 977 U.S. Naval Ordnance Test Station China Lake, California</td>
</tr>
<tr>
<td>NASA</td>
<td>Code 807 U.S. Naval Ordnance Test Station China Lake, California</td>
</tr>
</tbody>
</table>
| Office, Asst. Chief of Staff, G-4 Research Branch, E & D Division Department of the Army | 2.
| Office of Technical Services Department of Commerce | Washington, D.C. |
| Technical Information Officer Naval Research Laboratory | Washington, D.C. |
| Technical Director | Combat Development Department Army Electric Proving Ground Fort Huachuca, Arizona |
| Technical Information Service | Attn: Reference Branch P.O. Box 62 Oak Ridge, Tennessee |
| Technical Library Branch | Code 29 U.S. Naval Ordnance Laboratory Attn: Clayborn Graves Corona, California |

March 31, 1961
Mr. Irving B. Altman
Office, Asst. Secretary of Defense
2001 C Street, N.W., The Pentagon
Washington, D.C. 20500

Professor T. W. Anderson
Department of Statistics
Columbia University
New York 10027, New York

Professor Robert Behroozi
Dept. of Industrial and Engineering Management
Tibbey School of Mechanical Engineering
Cornell University
Ithaca, New York

Professor Fred C. Andrews
Department of Mathematics
University of Oregon
Eugene, Oregon

Professor S. W. Bimboe
Department of Mathematics
University of Washington
Seattle 9, Washington

Dr. David Blackwell
Department of Mathematical Sciences
University of California, Berkeley 4, California

Professor Ralph A. Bradley
Department of Statistics
Florida State University
Tallahassee, Florida

Dr. John W. Cell
Department of Mathematics
North Carolina State College
Raleigh, North Carolina

Professor William G. Condran
Department of Statistics
Harvard University
2 Divinity Avenue, Room 311
Cambridge 38, Massachusetts

Miss Beose R. Day
Bureau of Ships, Code 303
Room 3120, Main Navy
Department of the Navy
Washington 25, D.C.

Dr. Walter L. Deemer, Jr.
Operations Analysis Div., DCE/0
HQ., U.S. Air Force
Washington 25, D.C.

Professor Cyrus DeMars
Dept. of Industrial Engineering
Columbia University
New York 27, New York

Mr. Harold Gumble
Head, Operations Research Group
Code 01-S
Pacific Missile Range
Point Mugu, California

Dr. Ivan Herzner
Office, Chief of Research & Dev.
U.S. Army, Research Division
Washington 25, D.C.

Professor W. H. Kruskal
Department of Statistics
The University of Chicago
Chicago 37, Illinois

Professor Eugene Lukacs
Department of Mathematics
Catholic University
Washington 15, D.C.

Dr. Craig Maguire
2954 Winchester Way
Menlo Park, California

Dr. Ross T. Millspa
Executive Director
Air Force Office of Scientific Research
Washington 25, D.C.

D. E. Newman
Chief, Ind. Eng'r., Div. of Control
USAF, Air Materiel Div., Ohio
Dayton Air Force Base, California

Professor Ewen G. Olds
Department of Mathematics
College of Engineering and Sciences
Carnegie Institute of Technology
Pittsburgh 13, Pennsylvania

Professor William R. Pfull
Bureau of Weapons
Room 5206, Main Navy
Department of the Navy
Washington 25, D.C.

H. Walter Price, Chief
Reliability Branch, 750
Diamond Ordnance Div. Laboratory
Room 107, Building F
Washington 25, D.C.

Professor Ronald Pyke
Mathematics Department
University of Washington
Seattle 5, Washington

Dr. Paul Rider
Wright Air Development Center, WADC
Wright-Patterson AFB, Ohio

Professor Herbert Robbins
Dept. of Mathematical Statistics
Columbia University
New York 27, New York

Professor Murray Rosenblatt
Department of Mathematics
Brown University
Providence 18, Rhode Island

Professor Dennis Rubin
Department of Mathematics
University of Oregon
Eugene, Oregon

Miss Marion W. Sandmire
U.S. Dept. of Agriculture
Western Regional Laboratory
Bacteriological Services
Albany 10, California

Professor I. R. Savage
School of Business Administration
University of Minnesota
Minneapolis, Minnesota

Professor L. J. Savage
Mathematics Department
University of Michigan
Ann Arbor, Michigan

Professor V. L. Smith
Statistics Department
University of North Carolina
Chapel Hill, North Carolina

Dr. Milton Sobel
Statistics Department
University of Minnesota
Minneapolis, Minnesota

Mr. O. F. Stock
Division 4511
Sandia Corp., Sandia Base
Albuquerque, New Mexico

Professor Donald Sturm
Department of Mathematics
University of Oregon
Eugene, Oregon

Professor John W. Tohey
Department of Mathematics
Princeton University
Princeton, New Jersey

Dr. Harry Velkamp
Special Projects Office, SPO 216
Navy Department
Washington 25, D.C.

Dr. F. J. Wayl, Director
Mathematical Sciences Division
Office of Naval Research
Washington 25, D.C.

Dr. John Wilks
Office of Naval Research, Code 200
Washington 25, D.C.

Professor S. S. Wilks
Department of Mathematics
Princeton University
Princeton, New Jersey

Mr. Silas Williams
Office, DCP 50
Department of the Army
Washington 25, D.C.

Professor Jacob Wolfowitz
Department of Mathematics
Cornell University
Ithaca, New York

Mr. William W. Wilson
National Aeronautics and Space Admin.
1500 E Street, N.W., Code ARR
Washington 25, D.C.

Additional copies for project
leader and assistants and reserve
for future requirements

Contract No. N-229(52)
March 31, 1951

(175)
JOINT SERVICES ADVISORY GROUP

Dr. Merle M. Andrew, Chief Mathematics
Division Air Force Office of
Scientific Research
Washington 25, D. C. 1

Mr. James J. Fleming, Head
Operational Research Branch
U. S. Naval Research Laboratory
Washington 25, D. C. 1

Mr. Fred Frishman, Chairman
Army Research Office
Arlington Hall Station
Arlington, Virginia 1

Mrs. Dorothy M. Gilford
Logistics and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, D. C. 3

Dr. Robert Lundegard
Logistics and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, D. C. 1

Dr. Clifford Maloney
Applied Sciences Division
Chemical Corps, U. S. Army
Fort Detrick, Maryland 1

Mr. R. H. Noyes
Office of Technical Plans, USASRDL
Fort Monmouth, New Jersey 1

Major Oliver A. Shaw, Jr.
Office of Scientific Research
Air Force - Room 2718, Temp. X
Washington 25, D. C. 2

Dr. Horace M. Trent, Head
Applied Mathematics Branch
U. S. Naval Research Laboratory
Washington 25, D. C. 1

Mr. J. Weinstein
Institute for Exploratory Research
USASRDL
Fort Monmouth, New Jersey 1