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Optimal Shrinkage of Eigenvalues
in the Spiked Covariance Model

David L. Donoho ∗ Matan Gavish ∗ Iain M. Johnstone ∗

Abstract

Since the seminal work of Stein (1956) it has been understood that the empirical covariance
matrix can be improved by shrinkage of the empirical eigenvalues. In this paper, we consider a
proportional-growth asymptotic framework with n observations and pn variables having limit
pn/n → γ ∈ (0, 1]. We assume the population covariance matrix Σ follows the popular spiked
covariance model, in which several eigenvalues are significantly larger than all the others, which
all equal 1. Factoring the empirical covariance matrix S as S = V ΛV ′ with V orthogonal and
Λ diagonal, we consider shrinkers of the form Σ̂ = η(S) = V η(Λ)V ′ where η(Λ)ii = η(Λii) is
a scalar nonlinearity that operates individually on the diagonal entries of Λ. Many loss func-
tions for covariance estimation have been considered in previous work. We organize and am-
plify the list, and study 26 loss functions, including Stein, Entropy, Divergence, Fréchet, Bhat-
tacharya/Matusita, Frobenius Norm, Operator Norm, Nuclear Norm and Condition Number
losses. For each of these loss functions, and each suitable fixed nonlinearity η, there is a strictly
positive asymptotic loss which we evaluate precisely. For each of these 26 loss functions, there is
a unique admissible shrinker dominating all other shrinkers; it takes the form Σ̂∗ = V η∗(Λ)V ′ for
a certain loss-dependent scalar nonlinearity η∗ = η∗( · |γ, Loss), which we characterize. For 17
of these loss functions, we derive a simple analytical expression for the optimal nonlinearity η∗;
in all cases we tabulate the optimal nonlinearity and provide software to evaluate it numerically
on a computer. We also tabulate the asymptotic slope limλ→∞

η∗(λ)
λ and, where relevant, the

asymptotic shift limλ→∞(η∗(λ)− λ) of the optimal nonlinearity.

Key Words. Covariance Estimation, Precision Estimation, Optimal Nonlinearity, Stein Loss,
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1 Introduction

Suppose we observe p-dimensional vectors Xi
i.i.d∼ N(0,Σp), i = 1, . . . , n, with Σp the underlying

p-by-p population covariance matrix. To estimate Σp, we form the empirical covariance matrix
S ≡ Sn,p ≡ n−1

∑n
i=1XiX

′
i; this is the maximum likelihood estimator. Stein [57, 58] observed that

the maximum likelihood estimator S ought to be improvable by eigenvalue shrinkage.
Write Sn,p = V ΛV ′ for the eigendecomposition of Sn,p, where V is orthogonal and the diago-

nal matrix Λ = diag(λ1, . . . , λp) contains the empirical eigenvalues. Stein proposed to shrink the
eigenvalues by applying a specific univariate nonlinearity η : [0,∞)→ R to each eigenvalue of Sn,p,
producing the estimate Σ̂η = V η(Λ)V ′, where η(Λ) denotes the application of η entry-wise to the di-
agonal of Λ. In the ensuing half century, research on eigenvalue shrinkers has flourished, producing
an extensive literature; we can point here only to a fraction of this literature, with pointers organized
into early decades [29, 21, 26, 27, 7, 25], the middle decades [13, 55, 56, 38, 37, 46, 36, 51, 62, 24, 45],
and the last decade [12, 42, 59, 28, 34, 41, 43, 22, 11, 61]. Papers in this literature typically choose
some loss function Lp : S+

p × S+
p → [0,∞), where S+

p is the space of positive semidefinite p-by-p

matrices, and develop a shrinker η with “favorable” risk ELp
(

Σp , Σ̂η(Sn,p)
)

.
In high dimensional problems, p and n are often of comparable magnitude. There, the maximum

likelihood estimator is no longer a reasonable choice for covariance estimation and the need to
shrink becomes acute.

In this paper, we consider a popular large n, large p setting with p comparable to n, and a
popular set of assumptions about Σ known as the Spiked Covariance Model [30]. We consider a variety
of loss functions derived from or inspired by the literature, and show that to each “reasonable”
nonlinearity η there corresponds a well-defined asymptotic loss.

In the sibling problem of matrix denoising under a similar setting, it has been shown that there
exists a unique asymptotically admissible shrinker [54, 15]. The same phenomenon is shown to
exist here: for many different loss functions, we show that there exists a unique optimal nonlinearity
η∗, which we explicitly provide. Perhaps surprisingly, η∗ is the only asymptotically admissible
nonlinearity, namely, it offers equal or better asymptotic loss than that of any other choice of η,
across all possible spiked covariance models.

1.1 Estimation in the Spiked Covariance Model

Consider a sequence of covariance estimation problems, satisfying the following assumption:

Assumption Asy(γ). The number of observations n and the number of variables pn in the n-th
problem follows the proportional-growth limit pn/n→ γ, as n→∞, for a certain 0 < γ ≤ 1.

Denote the population covariance and sample covariance in the n-th problem by Σpn and Sn,pn ,
respectively. Further assume that the eigenvalues of Σpn (the population eigenvalues in the n-th
problem) satisfy the following assumption:

Assumption Spike(`1, . . . , `r). The theoretical (namely, population) eigenvalues in the n-th prob-
lem are given by (`1, . . . , `r, 1, 1, . . . , 1), where the number of “spikes” r and their amplitudes
`1 ≥ . . . ≥ `r ≥ 1 are fixed independently of n and pn.

Assumptions [Asy(γ)] and [Spike(`1, . . . , `r)] together form the asymptotic model known as the
Spiked Covariance Model (or simply the spiked model) [30]. Recent results on the spiked model have
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shown that when `r > (1 +
√
γ), various regularities among the top r principal components quickly

set in as n increases [5, 52, 6, 3, 4]:

(i) Each of the largest r eigenvalues of the sample covariance matrix Sn,pn , call it λi,n, tends to a
deterministic limit. Specifically, λi,n →P λ(`i), where

λ(`) = ` · (1 + γ/(`− 1)) . (1.1)

(Here and throughtout the paper,→P and =P denote convergence in probability.)

(ii) Each of the top r eigenvectors of the sample covariance matrix Sn,pn , call it ui,n, makes asymp-
totically deterministic angles with the top r population eigenvectors, call them v1,n, . . . , vp,n.
Specifically, |〈ui,n, vj,n〉| →P 0 if i 6= j and |〈ui,n, vi,n〉| →P c(`i), where

c(`) =

√
1− γ/(`− 1)2

1 + γ/(`− 1)
. (1.2)

As a result, random variables that depend on the sample covariance matrix Sn,pn only through the
top empirical eigenvalues and the angles between corresponding sample and population eigenvec-
tors converge to deterministic quantities.

Consider a sequence of loss functions L = {Lp} and a fixed nonlinearity η : [0,∞)→ R. Define
the asymptotic (L-) loss of the shrinkage estimator Σ̂η : Sn,pn 7→ V η(Λ)V ′ in the spiked model
satisfying assumption [Spike(`1, . . . , `r)] by

L∞(η|`1, . . . , `r) = lim
n→∞

Lpn

(
Σpn , Σ̂η(Sn,pn)

)
, (1.3)

assuming such limit exists. If a nonlinearity η∗ satisfies

L∞(η∗|`1, . . . , `r) ≤ L∞(η|`1, . . . , `r)

for any other nonlinearity η, any r and any spikes `1, . . . , `r, and if the inequality is strict at some
choice of `1, . . . , `r, then we say that η∗ is the unique asymptotically admissible nonlinearity (nick-
named “optimal”) for the loss sequence L.

1.2 Some Optimal Shrinkers

This paper identifies the optimal nonlinearity for each of 26 loss functions found in, or inspired by,
the covariance estimation literature. Most of these nonlinearities have simple closed-form expres-
sions in terms of the functions λ 7→ `(λ), the inverse map of (1.1), and of λ 7→ c(`(λ)), a composition
of `(λ) with (1.2).

Operator Loss is given by L(A,B) = ‖A − B‖op where ‖ · ‖op is the operator norm (namely, the
maximal singular value). The unique asymptotically admissible nonlinearity for Operator
loss is simply debiasing, namely, it shrinks each empirical eigenvalue back to the location of its
corresponding population eigenvalue:

η∗(λ; γ) = `(λ), λ > (1 +
√
γ)2.
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Frobenius Loss and Entropy Loss. Frobenius (or Squared Error) loss is given by L(A,B) = ‖A −
B‖2F where ‖·‖F is the Frobenius matrix norm. Entropy loss is given byL(A,B) = (trace(B−1A−
I) − log(|A|/|B|))/2. The unique asymptotically admissible nonlinearity for both Frobenius
loss and Entropy loss is

η∗(λ; γ) = 1 + (`(λ)− 1) · c2(λ), λ > (1 +
√
γ)2.

Frobenius Loss on Precision and Stein Loss. Frobenius loss on precision matrices is given byL(A,B) =
‖A−1−B−1‖2F . Stein loss is given byL(A,B) = (trace(A−1B−I)−log(|B|/|A|))/2. The unique
asymptotically admissible nonlinearity for both Frobenius loss on precision and Stein loss is

η∗(λ; γ) =
`(λ)

c2(λ) + `(λ) · (1− c2(λ))
, λ > (1 +

√
γ)2.

Fréchet Loss is given by L(A,B) = trace(A+B−2
√
A
√
B). The unique asymptotically admissible

nonlinearity for Frechet loss is

η∗(λ; γ) =
(

1− c2(λ) +
√
`(λ) · c2(λ)

)2
, λ > (1 +

√
γ)2.

All the 26 optimal nonlinearities we study, including the ones above, are depicted in Figure 1.

1.3 Three Key Observations

In what follows, we construct a framework for evaluating the asymptotic loss (1.3). Our framework
makes several assumptions about the nonlinearity η and the loss function L, and then exploits three
observations flowing from those assumptions. The observations are:

Obs. 1: Block Diagonalization. For certain eigenvalue shrinkage estimators, the population co-
variance Σp and the estimated covariance matrix Σ̂η(Sn,p) are simultaneously block-diagonalizable.
Specifically, there is a (random) basis W such that

W ′ΣpW = (⊕iAi)⊕ Ip−2r

and
W ′Σ̂η(Sn,p)W = (⊕iBi)⊕ Ip−2r ,

where Ai and Bi are square blocks of equal size di, and
∑
di = 2r.

Obs. 2: Decomposable Loss Functions. Certain matrix loss functions Lp, which are used in the
literature to evaluate performance of covariance estimators, are decomposable over these blocks.
They satisfy either

Lp

(
Σp, Σ̂η(Sn,p)

)
=
∑
i

Ldi(Ai, Bi)

or
Lp

(
Σp, Σ̂η(Sn,p)

)
= max

i
Ldi(Ai, Bi) .
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Obs. 3. Asymptotically Deterministic Loss. The blocks Ai and Bi only depend on the sample co-
variance Sn,p through its eigenvalues and through the angle between empirical and theoretical
eigenvectors. As a result, in the Spiked Covariance asymptotic model, Ai and Bi (and hence
the loss) converge to deterministic functions of the spike amplitudes `1, . . . , `r.

Combining these observations, for any loss sequence L consisting of decomposable functions,
we obtain an explicit formula for the asymptotic loss (1.3), as a deterministic function of `1, . . . , `r.
This allows us to determine the asymptotically optimal eigenvalue shrinkage estimator for covari-
ance estimation in that loss.

This paper is organized as follows. For simplicity of exposition, we assume a single spike (r = 1)
throughout most of the paper. [Obs. 1] is developed in Section 2. Section 3 fleshes out [Obs. 2] and
introduces our list of 26 decomposable matrix loss functions. Section 4 includes background on the
Spiked Covariance model. In Section 5 we discuss [Obs. 3] above and derive an explicit formula for
the asymptotic loss of a shrinker. In Section 6 we use this formula to characterize the asymptotically
unique admissible nonlinearity for any decomposable loss, provide an algorithm for computing the
optimal nonlinearity, and provide analytical formulas for some of the losses discussed. In Section
7 we evaluate the large-` asymptotics of the optimal shrinkage estimators, namely their behavior
and their performance when the signal `1 = ` is very strong. In Section 8 we extend these results to
the general case where r > 1 spikes are present. In Section 9 we show that, at least in the popular
Frobenius loss case, our asymptotically optimal univariate shrinkage estimator, which applies the
same univariate function to each of the sample principal components, is in fact optimal among
equivariant covariance estimators. Our results are discussed in Section 10. Proofs are provided in
the appendices. Additional technical details are provided in the supplemental article [17].

2 Simultaneous Block-Diagonalization

Let Σp be a population covariance matrix. Assume that Σp satisfies assumption [Spike(`1, . . . , `r)],
and let the empirical covariance matrix S ≡ Sn,p ≡ n−1

∑n
i=1XiX

′
i have empirical eigenvalues

λi, i = 1, . . . , p, also ordered so λ1 ≥ λ2 ≥ · · · ≥ λp. Let ui denote the eigenvector (population
principal vector) corresponding to the i-th population eigenvalue, and let vi denote the eigenvector
(sample principal vector) corresponding to λi.

Specialize now to a population covariance matrix Σp with a single “spike”, corresponding to
r = 1 in our notation. Write Sn,p = V ΛV ′ for principal component analysis of Sn,p. Here, V is a
p-by-p orthogonal matrix whose i-th column is vi, and Λ = diag(λ1, . . . , λp).

Let η : [0,∞) → R be any scalar nonlinearity and define the eigenvalue shrinkage operator
Σ̂η : Sn,p 7→ Σ̂η(Sn,p) = V η(Λ)V ′, where by convention η acts entrywise on the diagonal entries
of Λ. For a reason that will soon become apparent, we assume that η ≥ 1 and that η and the
empirical eigenvalues satisfy η(λ2) = . . . = η(λp) = 1. We now develop [Obs. 1], that while
the estimated matrix Σ̂η(Sn,p) and the population covariance Σp are not simultaneously diagonalizable in
general, under these assumptions, they are simultaneously block-diagonalizable. Indeed, working in the
theoretical eigenbasis (u-basis), we have

U ′ΣpU = `1e1e
′
1 ⊕ Ip−1 , (2.1)

where U is a matrix whose columns are u1 . . . up, and ei denotes the i-th standard basis vector.
Similarly, working in the empirical eigenbasis (v-basis), since by assumption η(λi) = 1 (2 ≤ i ≤ p),
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we have
V ′η(Sn,p)V = η(λ1)e1e

′
1 ⊕ Ip−1. (2.2)

Combining the two representations (2.1) and (2.2), we are led to the following “common” basis. Let
w1, . . . , wp denote the orthonormal basis constructed by applying the Gram-Schmidt process to the
sequence u1, v1, v2, . . . , vp−1. Observe that in the w-basis we have

W ′ΣpW =

[
`1 0
0 1

]
⊕ Ip−2 (2.3)

W ′Σ̂η(Sn,p)W =

[
1 + (η(λ1)− 1)c2

1 (η(λ1)− 1)c1s1

(η(λ1)− 1)c1s1 1 + (η(λ1)− 1)s2
1

]
⊕ Ip−2 , (2.4)

where W is a matrix whose columns are w1, . . . , wp, and where 1 c1 = 〈u1, v1〉 and s1 =
√

1− c2
1. It

is convenient to rewrite (2.3) and (2.4) as

W ′ΣpW = A(`1)⊕ Ip−2

W ′Σ̂η(Sn,p)W = B
(
η(λ1), c1, s1

)
⊕ Ip−2 ,

where A(`) = diag(`, 1) and B is the fundamental 2-by-2 matrix

B(λ, c, s) =

[
1 + (λ− 1)c2 (λ− 1)cs

(λ− 1)cs 1 + (λ− 1)s2

]
. (2.5)

Below, for a matrix M and a k-dimensional subspace U , we let M |U denote a k-by-k matrix
representing the action of PUMPU on vectors in U , where PU denotes orthoprojection on subspace
U . We have proved

Lemma 2.1. Simultaneous Block Diagonalization in the case r = 1. Write Sn,p = V ΛV ′ for the
diagonalization of the sample covariance matrix. Consider the estimator Σ̂η : V ΛV ′ 7→ V η(Λ)V ′ where
η : [0,∞) → [1,∞) is a nonlinearity that is applied entrywise to the diagonal entries of Λ. Assume that η
satisfies η(Λ)i = 1 for all i > 1. Then

1. Σp and Σ̂η are jointly block-diagonalizable, with jointly-invariant subspacesW2 andW⊥2 .

2. On the first block,

Σp|W2 = A(`1) ≡ diag(`1, 1), (2.6)
Σ̂η|W2 = B(η(λ1), c1, s1) . (2.7)

3. On the second block,
Σp|W⊥2 = Σ̂η|W⊥2 = I|W⊥2 .

1In constructing the w-basis by Gram-Schmidt, we choose the orientation of w2 so s1 = +
√

1− c21, and not s1 =

−
√

1− c21 .
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3 Decomposable Loss Functions

Here and below, by loss function Lp we mean a function of two p-by-p positive semidefinite matrix
arguments obeying Lp ≥ 0, with Lp(A,B) = 0 if and only if A = B. [Obs. 2] calls out a large
class of loss functions which naturally exploit the simultaneously block-diagonalizability property
of Lemma 2.1; we now develop this observation.

Definition 3.1. Orthogonal Invariance. We say the loss function Lp(A,B) is orthogonally invariant if

Lp(A,B) = Lp(OAO
′, OBO′)

for each orthogonal p-by-p matrix O.

We now assume that we have a family of loss functions Lp indexed by p = 1, 2, . . .. Consider all
block matrix decompositions of p by p matrices into blocks of size di:

A = ⊕iAi B = ⊕iBi. (3.1)

Definition 3.2. Sum-Decomposability. We say the loss function Lp(A,B) is sum-decomposable if, for
all decompositions (3.1),

Lp(A,B) =
∑
i

Ldi(A
i, Bi).

Definition 3.3. Max-Decomposability. We say the loss function Lp(A,B) is max-decomposable if, for
all decompositions (3.1),

Lp(A,B) = max
i
Ldi(A

i, Bi) ,

Focusing again on the single spike case (r = 1), when the representations (2.3) and (2.4) hold,
we have for any orthogonally invariant, sum-decomposable or max-decomposable loss function Lp
that

Lp

(
Σp, Σ̂η(Sn,p)

)
= Lp (A(`1)⊕ Ip−2 , B(η(λ1), c1, s1)⊕ Ip−2) = L2 (A(`1) , B(η(λ1), c1, s1)) .

In other words, evaluating Lp reduces to evaluating L2 on specific matrices A and B, and we may
ignore the last p− 2 coordinates completely. We have proved:

Lemma 3.1. Reduction to Two-Dimensional Problem. Consider an orthogonally invariant loss func-
tion, Lp, which is sum- or max-decomposable. Assume that the population covariance Σn,p and nonlinearity
η satisfy the assumptions of Lemma 2.1. When η(λi) = 1 for i > 1,

Lp

(
Σp, Σ̂η(Sn,p)

)
= L2 (A(`1) , B(η(λ1), c1, s1)) .

Many decomposable loss functions that appear in the literature can be built via the following
common recipe.

Definition 3.4. Pivots. A matrix pivot is a matrix-valued function ∆(A,B) of two real symmetric matri-
ces A,B that is orthogonally invariant and respects block structure:

∆(OAO′, OBO′) = O∆(A,B)O′, (3.2)

∆(⊕Ai,⊕Bi) = ⊕∆(Ai, Bi). (3.3)
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Matrix pivots can be symmetric-matrix valued, for example ∆(A,B) = A−B, but need not be,
for example ∆(A,B) = A−1B − I . For symmetric pivots, we consider loss functions of the form

L(A,B) = g(∆(A,B)), (3.4)

where g is orthogonally invariant, g(O∆O′) = g(∆), and so is a function of the eigenvalues δ = (δj)
of ∆, which with slight abuse of notation we write as g(δ). Such loss functions are orthogonally
invariant. If g has either of the forms

g(δ) =
∑
j

g1(δj) or g(δ) = max
j
g1(δj),

then L is respectively sum- or max-decomposable. For general pivots, we consider loss functions

L(A,B) = h(|∆|(A,B)), |∆| = (∆′∆)1/2. (3.5)

Here, h is orthogonally invariant and a function of the singular values σ = (σj) of ∆. If h(σ) =∑
h1(σj) or maxh1(σj), we obtain sum- or max-decomposable loss functions. Of course, if ∆ is

symmetric, then σj = |δj |.
We now discuss some examples in greater detail.

3.1 Sum-Decomposable Losses

Suppose A and B are jointly block diagonalizable with respective blocks Ai, Bi. Then let ∆i =
∆(Ai, Bi) and δij be the eigenvalues (resp. singular values) of ∆i. Then, when L has the form (3.4)
and g is additive,

L(A,B) =
∑
i

∑
j

g1(δij).

There are several strategies to derive sum-decomposable functions. First, we can use statistical
discrepancies between the N(0, A) and the N(0, B) distributions.

1. Stein Loss [57, 13, 35]: Let A and B be p by p covariance matrices; Stein’s Loss is denoted
Lst(A,B) = (trace(A−1B − I) − log(|B|/|A|))/2. This can be understood as the Kullback
distance DKL(N(0, B)|N(0, A)). Consider the matricial pivot ∆ = A−1/2BA−1/2. Then

Lst(A,B) = (trace(∆− I)− log |∆|)/2 = g(∆) .

We may take g1(δ) = (δ − 1− log δ)/2.

2. Entropy/Divergence Losses: Because the Kullback discrepancy is not symmetric in its argu-
ments, we may consider two other losses: reversing the arguments we get Entropy lossLent(A,B) =
Lst(B,A) [56, 36] and summing the Stein and Entropy losses gives divergence loss:

Ldiv(A,B) = Lst(A,B) + Lst(B,A) = 1
2 [trace(A−1B − I) + trace(B−1A− I)] ,

see [39, 24]. Each can be shown sum-decomposable, following the same argument as above.
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3. Bhattarcharya/Matusita Affinity [32, 48]: Let Laff = 1
2 log |A+B|/2

|A|1/2|B|1/2 . This measures the sta-
tistical distinguishability of N(0, A) and N(0, B) based on independent observations, since
Laff = 1

2 log(
∫ √

φA
√
φB) with φA and φB the densities of N(0, A) and N(0, B). Hence con-

vergence of affinity loss to zero is equivalent to convergence of the underlying densities in
Hellinger or Variation distance. Using the pivot ∆ = A−1/2BA−1/2, we have

Laff = 1
4 log(|2I + ∆ + ∆−1|/4),

as is seen by setting C = A−1/2(A+B)B−1/2 and noting that C ′C = (2I + ∆ + ∆−1). Then we
have g1(δ) = 1

4 log(2 + δ + δ−1)/4.

4. Fréchet Discrepancy [50, 19]: LetLfre(A,B) = trace(A+B−2A1/2B1/2). This measures the min-
imum possible mean-squared difference between zero-mean random vectors with covariances
A and B respectively. The pivot ∆ = A1/2 −B1/2, and Lfre = trace(∆2), so that g1(δ) = δ2.

We may also obtain sum-decomposable losses by applying certain standard matrix norms to
pivot matrices.

1. Squared Error Loss [29, 11, 41, 43]: Let LF,1(A,B) = ‖A−B‖2F , using pivot ∆ = A−B, so that
g(∆) = trace∆′∆ and g1(δ) = δ2.

2. Squared Error Loss on Precision [25]: Let LF,2(A,B) = ‖A−1−B−1‖2F . The pivot ∆ = A−1−B−1

and again g(∆) = trace∆′∆.

3. Nuclear Norm Loss. Let LN,1(A,B) = ‖A − B‖∗ where ‖A − B‖∗ denotes the nuclear norm of
matrix ∆, i.e. the sum of singular values. The symmetric pivot ∆ = A−B, and so if blocks ∆i

have singular values σij and eigenvalues δij , (say), then

LN,1 =
∑
i,j

σij =
∑
i,j

|δij |.

Many other norm-based loss functions offer additive decomposability. The previous examples
all involved the use of the r-th power of an `r norm, applied to the eigenvalues or singular val-
ues of a pivot ∆(A,B) having the property ∆(A,A) = 0. We now adopt the systematic naming
scheme Lnorm,pivot where norm ∈ {F,O,N}, and pivot ∈ {1, . . . , 7}. The resulting 21 different
possible combinations are all studied in this article. Under this naming scheme, the three examples
immediately above are called LF,1, LF,2 and LN,1, respectively.

Remarks.

• The squared Frobenius norm of the pivotA−1B−I is an invariant loss function – here denoted
LF,3; it was studied in [53, 27, 55] and later work.

• The pivot log(A−1/2BA−1/2), where log() denotes the matrix logarithm [23, 44], also yields
invariant losses. The matrix logarithm transfers the matrices from the symmetric space (Rie-
mannian manifold) of symmetric positive definite (SPD) matrices to its tangent space at A.
Applying the squared Frobenius norm to this logarithm, we obtain an invariant loss func-
tion, here denoted LF,7. It is simply the squared geodesic distance in the manifold of positive
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semidefinite matrices. This metric between covariances has attracted attention in diffusion
tensor MRI [44, 20].2

3.2 Max-Decomposable Losses

Max-decomposable losses arise by applying an operator norm to a suitable matrix pivot, so that
whenA andB are jointly block diagonalizable, with respective blocksAi, Bi and if σij and δij are the
singular values and eigenvalues of ∆i = ∆(Ai, Bi), then

L(A,B) = max
i,j

σij = max
i,j
|δij |,

the latter holding for symmetric pivots.
Here are a few examples.

1. Operator Norm Loss [33]: Let Lop(A,B) = ‖A−B‖op. The pivot ∆ = A−B.

2. Operator Norm Loss on Precision: Let Lop(A,B) = ‖A−1 − B−1‖op. Then the pivot ∆ = A−1 −
B−1.

3. Condition Number Loss: LetLcond(A,B) = ‖ log(A−1/2BA−1/2)‖op. The pivot ∆ = log(A−1/2BA−1/2).
(Related to [61].)

Under our naming scheme, the preceding 3 examples are LO,1, LO,2 and LO,7. We note that, in
the spiked model, LO,7 effectively measures the condition number of A−1/2BA−1/2.

The systematic notation we adopt for naming these 26 losses is summarized in Table 1.

MatrixNorm
Pivot Frobenius Operator Nuclear
A−B LF,1 LO,1 LN,1

A−1 −B−1 LF,2 LO,2 LN,2

A−1B − I LF,3 LO,3 LN,3

B−1A− I LF,4 LO,4 LN,4

A−1B +B−1A− 2I LF,5 LO,5 LN,5

A−1/2BA−1/2 − I LF,6 LO,6 LN,6

log(A−1/2BA−1/2) LF,7 LO,7 LN,7

Statistical Measures
St Ent Div

Stein Lst Lent Ldiv

Affinity Laff

Fréchet Lfre

Table 1: Systematic naming of 26 loss functions

2We view our ability to derive the optimal shrinker for such losses as a contribution.
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4 The Spiked Covariance Model

So far, under certain conditions, we have reduced the evaluation of a decomposable loss Lp for
p > 2 to evaluation of a corresponding loss L2 on specific 2-by-2 matrices A(`) and B(η(λ1), c1, s1).
We now develop [Obs. 3], which asserts that, in the spiked model [30, 52, 5], these matrices, and
hence the limiting loss, are in fact deterministic functions of the population spike amplitude `.

To set notation, let us work under assumptions [Asy(γ)] and [Spike(`1, . . . , `r)]. We denote the
i-th empirical eigenvalue of Sn,pn by λi,n and its corresponding eigenvector by vi,n. Similarly, we
denote the i-th theoretical eigenvector by ui,n. The symbol→P denotes convergence in probability.

The Bulk. In what we might call the “unspiked” or “null” special case of this model, all eigen-
values are equal to one: `1 = · · · = `r = 1. Although here Σpn = Ipn is the standard identity
covariance, many empirical eigenvalues will be far from the underlying theoretical eigenvalue 1. In
fact, in this case the empirical eigenvalues are concentrated in an interval extending roughly from
λ−(γ) to λ+(γ), where

[RMT 1] λ±(γ) = (1±√γ)2 , (4.1)

see [1]. This compact scatter forms the so-called Marčenko-Pastur “bulk” (or “sea”) and λ± are
known as the limiting “bulk edges” 3.

Emergence from the Bulk. When `1 ≥ · · · ≥ `r > 1 (the “actually spiked” or “non-null” case) and
`r is large enough, the top empirical eigenvalues typically “emerge from the bulk”, namely, their
asymptotic limits in probability exist and exceed λ+(γ) (while all the other empirical eigenvalues
have cluster points ≤ λ+). This emergence from the bulk happens when `r crosses the so-called
Baik-Ben Arous-Péché phase transition

[RMT 2] `+(γ) = (1 +
√
γ) , (4.2)

see [4]. Gathering together results from several papers [5, 52, 6, 3] we have the following general
picture:

Theorem 4.1. (Spiked Covariance Model) Let the theoretical covariance have leading eigenvalues `i,
i = 1, . . . , r obeying `i > `+(γ). Then, as n→∞, the leading empirical eigenvalues obey

λi,n →P λ(`i), i = 1, . . . , r , (4.3)

where λ(`) is defined in (1.1); See [5, 3, 6]. Moreover, let vi,n denote the empirical eigenvector correspond-
ing to λi,n and let ui,n denote the theoretical eigenvector corresponding to `i. Suppose that the principal
theoretical eigenvalues are distinct, namely `i 6= `j , 1 ≤ i, j ≤ r. Then, as n→∞, we have

|〈ui,n, vj,n〉| →P δi,j · c(`i) 1 ≤ i, j ≤ r ,

where c(`) is defined in (1.2); See [52, 6].

3The marginal distribution of the eigenvalues falling in the bulk is the famous Marčenko-Pastur distribution [47]
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In words, the empirical eigenvalues are shifted upwards from their theoretical counterparts by
a displacement of asymptotically predictable size; and the empirical eigenvectors are rotated away
from their theoretical positions, through a noticeable angle of asymptotically predictable size. These
two effects drive our main results, as the fundamental 2-by-2 matrix B only depends on ` through
these quantities.

In all the expressions below we freely use that, for λ > λ+(γ) and ` > `+(γ), there is a one-one
relationship between λ and ` such that any expression may be written in terms of either, without
chance of ambiguity. A simple calculation shows that the one-to-one map λ(`) and `(λ) is given by
(1.1) and

`(λ) =
(λ+ 1− γ) +

√
(λ+ 1− γ)2 − 4λ

2
, λ > λ+(γ). (4.4)

5 Asymptotic Loss in the Spiked Covariance Model

Consider the spiked model with a single spike, r = 1, namely, make assumptions [Asy(γ)] and
[Spike(`1)]. In accord with [Obs. 3], we now show that the asymptotic loss (1.3) is a deterministic,
explicit function of the population spike `1.

For ε > 0, consider the event

Ω′n,ε = {λ1,n > λ+(γ) + ε, λ2,n < λ+(γ) + ε}.

Under the single-spiked model and the assumption `1 > `+(γ) we have, for sufficiently small ε > 0,

P (Ω′n,ε)→ 1 as n→∞.

Definition 5.1. • We say that a scalar nonlinearity η : [0,∞) → [0,∞) collapses the bulk to 1 if
η(λ) = 1 whenever λ ∈ (λ−(γ), λ+(γ)).

• We say that a scalar nonlinearity η : [0,∞) → [0,∞) collapses the vicinity of the bulk to 1 if, for
some ε > 0, we have η(λ) = 1 whenever λ ∈ (λ−(γ)− ε , λ+(γ) + ε).

Observe that, if η is a nonlinearity collapsing the vicinity of the bulk to 1, then, on the event Ω′n,ε
for an appropriate ε, Lemma 2.1 holds: for each n there is a random pn-by-pn orthogonal matrix Wn

that simultaneously block-diagonalizes Σpn and Σ̂η(Sn,pn).
We now turn to investigate the convergence of the 2-by-2 matrix B. By Theorem 4.1 we have

λ1,n →P λ(`) and c1,n →P c(`). Define s(`) =
√

1− c2(`). Suppose that η(λ) is continuous. It
follows that the 2-by-2 matrix B(η(λ1,n), c1,n, s1,n) in (2.4) converges in probability to a limit 2-by-2
matrix B(`1) = B(`1, η), where

B(`, η) := B
(
η(λ(`)), c(`), s(`)

)
=

[
1 + (η(λ(`))− 1)c(`)2 (η(λ(`))− 1)c(`)s(`)
(η(λ(`))− 1)c(`)s(`) 1 + (η(λ(`))− 1)s(`)2

]
. (5.1)

We have proved:

Lemma 5.1. Convergence of the principal block. Let the scalar nonlinearity η collapse the vicinity of
the bulk to 1 and assume that it is continuous. Then for every ε > 0 small enough there is a sequence of
events Ωn,ε with P (Ωn,ε)→ 1 as n→∞ such that on Ωn,ε:

1. Σpn and Σ̂η(Sn,pn) are simultaneously block-diagonalizable, and
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2. ‖B (η(λ1,n), c(λ1,n), s(λ1,n))−B(`1)‖F < ε.

We now specify a family L = {Lp} of loss functions and consider the asymptotic loss

lim
n→∞

Lpn(Σpn , Σ̂η(Sn,pn))

of a shrinkage rule η.

Lemma 5.2. A deterministic formula for the asymptotic loss. Let L = {Lp} be a family of loss
functions which is orthogonally invariant in the sense of Definition 3.1, and also sum-decomposabile or max-
decomposabile in the sense of Definitions 3.2 and 3.3. Assume that for some exponent α > 0, and any ` > 0,
Lα2 is Lipschitz continuous on the set{

(A,B)
∣∣λmin(A), λmin(B) ≥ `

}
⊂ S+

2 × S
+
2

with respect to the matrix Frobenius distance, with Lipschitz constant C`. Consider a problem sequence with
n, p → ∞, with p = pn obeying pn/n → γ, with theoretical covariance matrices Σpn following the single-
spike model with fixed population spike ` > `+(γ). Suppose the scalar nonlinearity η collapses the vicinity of
the bulk to 1 and is continuous. Then

Lpn

(
Σpn , Σ̂η(Sn,pn)

)
→P L∞(`|η) ≡ L2 (A(`) , B (η(λ(`), c(`), s(`))) , (5.2)

where λ(`), c(`) and s(`) are defined above, A(`) = diag(`, 1), B(η, c, s) is defined in (2.5), and where the
convergence is in probability.

Proof. Fix the spike amplitude ` and let C` be the corresponding Lipschitz constant of Lα2 . WLOG
assume α = 1. We will show that

P

{∣∣∣∣∣Lpn (Σpn , Σ̂η(Sn,pn)
)
− L2 (A(`) , B (η(λ(`), c(`), s(`)))

∣∣∣∣∣ ≤ C`ε
}
→ 1

as n → ∞. Let Ωn,ε denote the sequence of events in Lemma 5.1. For ε > 0 is small enough,
P (Ωn,ε) → 1 and on each event Ωn,ε, Σpn and Σ̂η(Sn,pn) are simultaneously block-diagonalizable.
By Lemma 3.1, on Ωn,ε we have

Lp

(
Σp, Σ̂η(Sn,p)

)
= L2 (A(`) , B(η(λ1), c1, s1)) .

By Lemma 3.1, on Ωn,ε we also have ‖B (η(λ1,n), c(λ1,n), s(λ1,n))−B(`1)‖F < ε. Since L2 is Lipschitz
continuous, ∣∣∣L2(A(`), B (η(λ1,n), c(λ1,n), s(λ1,n)))− L2(A(`), B(`1))

∣∣∣ ≤ C`ε ,
as required.
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6 Optimal Shrinkage for Decomposable Losses

6.1 Formally Optimal Shrinker

Formula (5.2) for the asymptotic loss has only been shown to hold under [Asy(γ)] and [Spike(`1)],
for certain nonlinearities η. In fact, the loss converges toL∞(`|η) under [Asy(γ)] and [Spike(`1, . . . , `r)],
and for a much broader class of nonlinearities η. To preserve the narrative flow of the paper, we
defer the proof, which is largely technical, to Section 8. Instead, we proceed by simply assuming
that (5.2) holds, namely that L∞(`|η) is the correct asymptotic loss, and drawing conclusions on the
optimal shape of the shrinker η.

Definition 6.1. Let L = {Lp} be a given loss family and let L∞(`|η) be the asymptotic loss corresponding
to a nonlinearity η, as defined in (5.2). If a nonlinearity η∗ satisfies

L∞(`|η∗) = min
η
L∞(`|η), ∀` ≥ 1 , (6.1)

we say that η∗ is a formally optimal, or simply optimal, shrinker.

By definition, the corresponding rule η∗(λ; γ, L) is the unique admissible rule, in the asymptotic
sense, among rules of the form Σ̂η(Sn,p) = V η(Λ)V ′ in the single-spike model. In view of the Lemma
5.2, solving the problem (6.1) is simpler than one might expect, as it only involves optimization over
2-by-2 matrices:

Definition 6.2. (Optimal Shrinker.) Let ` > `+(γ) and correspondingly λ = λ(`) > λ+(γ). Given a
component loss function L2(A,B), consider the optimization problem

min
η≥1

F (η, `) (6.2)

where

F (η, `) = L2

( [` 0
0 1

]
,

[
1 + (η − 1)c2 (η − 1)cs

(η − 1)cs 1 + (η − 1)s2

] )
. (6.3)

Here, c = c(`) and s = s(`) satisfy c2(`) = 1−γ/(`−1)2

1+γ/(`−1) and s2(`) = 1 − c2(`). Suppose this optimization
problem has a unique solution η∗(`) for each ` > `+ and write the solution as a function of λ using the
relation (4.4) to obtain η∗(λ) ≡ η∗(`(λ)). We call the resulting function η∗(λ) = η∗(λ; γ, L), the optimal
shrinker for the family of loss functions L.

Alternatively suppose 1 < ` < `+(γ). Consider the minimization minη≥1G(η), where

G(η, `) = L2

( [` 0
0 1

]
,

[
1 0
0 η

] )
; (6.4)

if, for every ` ∈ [1, `+), this minimum is achieved at η = 1, then we say that the optimal shrinker collapses
the bulk to 1: i.e. the optimal shrinker satisfies η∗(λ) = 1 for λ < λ+(γ).

Many of the 26 loss families discussed in Section 3 admit a closed form expression for the op-
timal shrinker; see Table 2. For others, we computed the optimal shrinkage numerically, by im-
plementing the optimization problem of Definition 6.2 in software. Figure 1 portrays the optimal
shrinkers for 26 loss functions. For readers interested in using specific individual shrinkers, we rec-
ommend to read our reproducibility advisory at the bottom of this paper, and explore the data and
code supplement [16], consisting of online resources and code we offer.
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Figure 1: Optimal Shrinkers for 26 Component Loss Functions. γ = 1. 4 < λ < 10. Upper Left:
Frobenius-based losses; Lower Left: Nuclear-Norm based losses; Upper Right: Operator-norm-
based losses; Lower Right: Statistical Discrepancies. Reproducibility advisory: The data and code
supplement [16] includes a script to generate any one of these individual curves.

6.2 Collapse of the Bulk

We first observe that, for any of the 26 losses considered, the optimal shrinker collapses the bulk to
1. The following lemma is proved in Appendix A.1:

Lemma 6.1. Let L be any of the 26 losses mentioned in Table 1. Then the rule η∗∗(`) = 1 is unique
asymptotically admissible on [1, `+(γ)), namely, for every ` ∈ [1, `+(γ)) we have EL(`, η) ≥ L(`, η∗∗), with
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strict inequality for at least one point in [1, `+(γ)).

To determine the optimal shrinker η∗ for each of our loss functions, it therefore remains to de-
termine the map ` 7→ η(`) or λ 7→ η(λ) only for ` > `+(γ). This is our next task.

6.3 Optimal Shrinkers by Computer

The optimization problem (6.2) is easy to solve numerically, so that one can always compute the
optimal shrinker at any desired value λ. In the data and code supplement [16] we provide Mat-
lab code to compute the optimal nonlinearity for each of the 26 loss families discussed, as well as
tabulated values of each.

6.4 Optimal Shrinkers in Closed Form

The rest of this section presents analytic formulas for the optimal shrinker η∗ in each of 17 loss
families from Section 3. While the optimal nonlinearities provided are of course functions of the
empirical eigenvalue λ, in the interest of space, we provide the formulas in terms of the quantities
`, c and s. To calculate any of the nonlinearities below for a specific empirical eigenvalue λ, use the
following procedure:

1. Calculate `(λ) using (4.4)

2. Calculate c(λ) = c(`(λ)) using (1.2) and (4.4).

3. Calculate s(λ) = s(`(λ)) using s(`) =
√

1− c2(`).

4. Substitute `(λ), c(λ) and s(λ) into the formula provided4.

The formulas we provide are summarized in Table 2. These formulas are derived in the follow-
ing sequence of Lemmas, which are proved in Appendix A.1.

Lemma 6.2. (Operator Norms.) For the direct operator norm loss LO,1 and the operator norm loss on
precision matrices LO,2, we have

η∗(λ; γ, LO,1) = η∗(λ; γ, LO,2) =

{
`, ` > `+(γ)
1, ` ≤ `+(γ)

. (6.5)

This asymptotic relationship reflects the classical fact that in finite samples the top empirical
eigenvalue is always biased upwards of the underlying empirical eigenvalue [60, 9]. Formally
defining the (asymptotic) bias as

bias(η, `) = η(λ(`))− ` ,

we have bias(λ(`), `) > 0. The formula η∗(λ) = ` shows that the optimal nonlinearity for oper-
ator norm loss is what we might simply call a debiasing transformation, mapping each empirical
eigenvalue back to the value of its “original” population eigenvalue, and the corresponding shrink-
age estimator Σ̂η uses each sample eigenvectors with its corresponding population eigenvalue. In

4We stress that these formulas describe the optimal shrinkers only for λ > λ+(γ); all optimal shrinkers discussed set
to 1 any λ < λ+(γ).
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MatrixNorm

Pivot Frobenius Operator Nuclear

A−B `c2 + s2 ` max
(
1 + (`− 1)(1− 2s2) , 1

)
A−1 −B−1 `

c2 + `s2
` max

(
`

c2 + (2`− 1)s2
, 1

)

A−1B − I `c2 + `2s2

c2 + `2s2
N/A max

(
`

c2 + `2s2
, 1

)

B−1A− I `2c2 + s2

`c2 + s2
N/A max

(
`2c2 + s2

`
, 1

)

A−1/2BA−1/2 − I (`− 1)c2

(c2 + `s2)2

`− 1

c2 + `s2
max

(
`− (`− 1)2c2s2

(c2 + `s2)2
, 1

)

Statistical Measures

St Ent Div

Stein
`

c2 + `s2
`c2 + s2

√
`2c2 + `s2

c2 + `s2

Fréchet
(√

`c2 + s2
)2

Table 2: Optimal shrinkers η∗(λ; γ, L) for 17 of the loss families L discussed. Values shown are
shrinkers for λ > λ+(γ). All shrinkers obey η∗(λ; γ, L) = 1 for λ ≤ λ+(γ). Here, `, c and s depend
on λ according to (4.4), (1.2) and s =

√
1− c2. In the cases marked “N/A” we were not able to

obtain the optimal shrinker in a simple, appealing form.

words, within the top branch of (6.5), the effect of operator-norm optimal shrinkage is to debias the top
eigenvalue:

bias(η∗(·; γ, LO,1), `) = bias(η∗(·; γ, LO,2), `) = 0, ∀` > `+(γ).

On the other hand, within the bottom branch, the effect is to collapse the bulk to 1. Comparing this
with Definition 5.1, we see that η∗ does not collapse the vicinity of the bulk to 1, only the bulk itself.

One might expect asymptotic debiasing from every loss function, but, perhaps surprisingly, pre-
cise asymptotic debiasing is exceptional. In fact, none of the following optimal nonlinearities is
precisely debiasing.
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Lemma 6.3. (Frobenius Matrix Norms.) For the squared error losses LF,12 , LF,22 , LF,32 , LF,42 and LF,62 , the
optimal nonlinearity collapses the bulk to 1, and outside the bulk, obeys the formulas

η∗(λ; γ, LF,12 ) = `c2 + s2 (6.6)

η∗(λ; γ, LF,22 ) =
`

c2 + `s2
(6.7)

η∗(λ; γ, LF,32 ) =
`c2 + `2s2

c2 + `2s2
(6.8)

η∗(λ; γ, LF,42 ) =
`2c2 + s2

`c2 + s2
(6.9)

η∗(λ; γ, LF,62 ) =
(`− 1)c2

(c2 + `s2)2 . (6.10)

Lemma 6.4. (Nuclear Matrix Norms.) For the squared error losses LN,12 , LN,22 , LN,32 , LN,42 and LN,62 , the
optimal nonlinearity collapses the bulk to 1, and outside the bulk, obeys the formulas

η∗(λ; γ, LN,12 ) = max
(
1 + (`− 1)(1− 2s2) , 1

)
(6.11)

η∗(λ; γ, LN,22 ) = max

(
`

c2 + (2`− 1)s2
, 1

)
(6.12)

η∗(λ; γ, LN,32 ) = max

(
`

c2 + `2s2
, 1

)
(6.13)

η∗(λ; γ, LN,42 ) = max

(
`2c2 + s2

`
, 1

)
(6.14)

η∗(λ; γ, LN,62 ) = max

(
`− (`− 1)2c2s2

(c2 + `s2)2
, 1

)
. (6.15)

Lemma 6.5. (Stein, Entropy and Divergence Losses.) For the Stein, Entropy and Divergence losses
Lst2 , Lent2 and Ldiv2 , the optimal nonlinearity collapses the bulk to 1, and outside the bulk, obeys the formula

η∗(λ; γ, Lst2 ) =
`

c2 + `s2
(6.16)

η∗(λ; γ, Lent2 ) = `c2 + s2 (6.17)

η∗(λ; γ, Ldiv2 ) =

√
`2c2 + `s2

c2 + `s2
. (6.18)

Lemma 6.6. (Fréchet Loss) For the Fréchet loss Lfre2 (A,B), the optimal nonlinearity collapses the bulk to
1, and outside the bulk, obeys the formula

η∗(λ; γ, Lfre2 ) =
(√

`c2 + s2
)2

. (6.19)
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7 Large-λ Asymptotics of the Optimal Shrinker

As the top theoretical eigenvalue ` → ∞, Theorem 4.1 shows that the top empirical eigenvalue
is asymptotic to the top theoretical eigenvalue λ(`)/` → 1, and that the corresponding empirical
eigendirection becomes an increasingly accurate estimate of the underlying theoretical eigendirec-
tion. These observations might suggest that also η∗(λ)/λ→ 1 for λ→∞.

Figure 2 dashes this expectation, for several of the loss functions we are considering. In effect,
there is a nontrivial asymptotic proportional shrinkage, η(λ)/λ → b < 1 as λ → ∞. We investigate
this in more detail in subsection 7.1 below.
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Figure 2: Optimal Shrinkers for 21 Component Loss Functions (γ = 1) – expanded range 4 <
λ < 100. Coloring classifies shrinkers by their asymptotic slope. Blue: 1. Magenta: roughly .7.
Red: 1/2, Black dashdot 1/3, Green: 1/4. Several loss functions (indicated with cyan), demand
extreme shrinkage. Reproducibility advisory: The data and code supplement [16] includes a script
that generates any of these individual curves.

For other loss functions, we may still have η(λ)/λ → 1 as λ → ∞, but nevertheless there is a
nontrivial asymptotic shift η(λ)−λ→ a as λ→∞, with a 6= 0. We study this in detail in subsection
7.2 below.

Finally, one might imagine that because there is asymptotically stronger ‘signal’ as ` grows, that
Loss(`, η∗) → 0 as ` → ∞, or at least that the optimal shrinker behaves ‘much better’ than the
non-shrinker η(λ) = λ. We study this in detail in subsection 7.3 below.
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7.1 Asymptotic Slopes

Definition 7.1. The asymptotic slope of a shrinker η is

asySlope(η) = lim
λ→∞

η(λ)

λ
.

The bias of a shrinker is defined by
bias(η, `) = η(λ(`))− ` .

Note that the asymptotic slope of a shrinker η is connected to its biased by

lim
`→∞

bias(η, `)

`
= asySlope(η)− 1 .

Lemma 7.1. (Asymptotic Slopes for Shrinkers with Closed Forms) We have the asymptotic slopes in
Table 3.

MatrixNorm

Pivot Frobenius Operator Nuclear

A−B 1 1 1

A−1 −B−1 1

1 + γ
1

1

1 + 2γ

A−1B − I 0 N/A 0

B−1A− I 1 N/A 1

A−1/2BA−1/2 − I 1

(1 + γ)2

1

1 + γ

1− γ
(1 + γ)2

Statistical Measures

St Ent Div

Stein
1

1 + γ
1

1√
1 + γ

Fréchet 1

Table 3: Asymptotic Slopes; See Lemma 7.1

Proof. First observe that asySlope(η) = 1+lim`→∞ bias(η, `)/` = lim`→∞ η(λ(`))/`. Using the identi-
ties lim`→∞ c

2(`) = 1, lim`→∞ s
2(`) = 0 and lim`→∞ `s

2(`) = γ, calculating the limit lim`→∞ η(λ(`))/`
for each of the shrinkers in Table 2 is a simple calculus exercise.
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All our shrinkers with asySlope(η) = 1 are approximately unbiased for large λ; while shrinkers
with asySlope(η) < 1 are noticeably biased for large λ.

For example, the optimal shrinker for LF,2 is noticeably biased as λ → ∞. For example when
γ = 1, so n ∼ p, it performs 50% asymptotic shrinkage. The same is true for the optimal shrinker
for Lst. The divergence loss shrinker is less biased than either of these: it sits between those for Lst

and Lent, as 1 > 1√
1+γ

> 1
1+γ .

In two cases where we did not obtain closed-form expressions for the optimal shrinker, we
nevertheless were able to obtain the asymptotic slopes:

Lemma 7.2. (Asymptotic Slopes for LF,7 and Laff ) For the Bhattacharya/Matusita Affinity, the asymp-
totic slope is the unique solution b∗ ∈ (0, 1) to

b3/2 =
2

γ
(1− b).

For LF,7 the asymptotic slope is the value b∗ ∈ (0, 1) minimizing

J(b; γ) =
∑
±

log2(λ±(b; γ))

where
λ±(b; γ) =

(
(1 + b(1 + γ))±

√
(1 + b(1 + γ))2 − 4b

)
/2

In cases where we could not determine asymptotic slopes analytically, we resorted to numerical
studies; we simply define ̂asySlope(η) = η(λ)

λ |λ=100 (Figure 3). Table 4 compiles results obtainable
by either analytical or numerical means, in case γ = 1.

MatrixNorm
Pivot Frobenius Operator Nuclear
A−B 1 1 1

A−1 −B−1 1/2 1 1/3
A−1B − I 0 0 0
B−1A− I 1 1 1

A−1B +B−1A− 2I 1 1 0.7
A−1/2BA−1/2 − I 1/4 1/2 0
log(A−1/2BA−1/2) ≈ 2/3 1 1/2

Statistical Measures
St Ent Div

Stein 1/2 1 1/
√

2

Affinity ≈ .66
Fréchet 1

Table 4: Approximate Asymptotic Slopes; γ = 1
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Figure 3: Approximate Asymptotic Slopes ̂asySlope(η, γ) for the 26 loss functions studied in this
paper. In all cases shrinkage becomes more extreme as γ → 1. The clustering of the 26 slopes
into discrete clusters is evident. (Line and color convention is identical to Figure 2.) Reproducibility
advisory: The data and code supplement [16] includes a script that generates any of these individual
curves.

7.2 Asymptotic Shifts

Definition 7.2. Conside a shrinker η with asymptotic slope 1. The asymptotic shift is

asyShift(η) = lim
λ→∞

η(λ)− λ.

Observe that the asymptotic shift of a shrinker with asymptotic slope 1 is connected to its asymp-
totic bias by asyShift(η) = lim`→∞ bias(η, `)− γ.

Lemma 7.3. (Asymptotic Shifts) We have the asymptotic shifts in Table 5.

The entries in this table are negative, meaning that asymptotically the optimal nonlinearity is
pulling down. In cases where we could not determine asymptotic shift analytically, we resorted
to numerical studies. One may compute numerical approximations to the asymptotic shifts by
defining ̂asyShift(η) = (η(λ)−λ)|λ=100. Table 6 enumerates 4 additional cases with unit asymptotic
slope, and the corresponding asymptotic shifts, determined numerically.
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Loss asyShift asymptotic bias
LF,1 −2γ −γ
LO,1 −γ 0
LN,1 −3γ −2γ
LO,2 −γ 0
LF,4 −γ 0
LN,4 −2γ −γ
Lent −2γ −γ
Lfre −3γ −2γ

Table 5: Asymptotic Shifts; See Lemma 7.3

Loss ̂asyShift(η; γ = 1) Inferred Formula
LF,5 -2 −2γ
LO,4 -1 −γ
LO,5 -1 −γ
LO,7 -1 −γ

Table 6: Approximate Asymptotic Shifts at γ = 1, rounded so eg. −.990 becomes −1.

7.3 Asymptotic Percent Improvement

One simple covariance estimation method is Hard Thresholding of the empirical eigenvalues, where
the nonlinearity η applied to each λi is of the form η : λ 7→ 1 + (λ − 1)1λ>α for some threshold α.
A reasonable choice for the threshold α is the edge of the Marčenko-Pastur Bulk (4.1), leading to
the bulk-edge hard threshold nonlinearity, η#(λ) = 1 + (λ− 1)1{λ>(1+

√
γ)2}. This estimator appears

implicitly in the multivariate analysis literature and can be traced back to the famous Scree Plot
method [10] (see [31, ch. 6]).

To evaluate the improvement offered by the optimal shrinkers we propose, we computed per-
cent improvement in asymptotic loss over the “naive” estimator η#.

Definition 7.3. Let η∗ denote the optimal shrinkage procedure and let L2(A(`1), B(`1, η
∗)) denote its com-

ponent loss. The Possible Percent Improvement (PPI) measures the extent to which η∗ delivers a reduction
below the asymptotic loss suffered by bulk edge thresholding η#, with 100 meaning complete elimination of
all loss:

PPI = 100× L(A(`1), B(`1, η
#))− L(A(`1), B(`1, η

∗))

L(A(`1), B(`1, η#))
.

Figure 4 shows that, for many Loss functions, η∗(·|L) succeeds in mitigating most of the asymp-
totic loss experienced by the naive covariance estimator for ` in the range 2 < ` < 10. In this range
of moderate `, the optimal estimator in some cases reduces the risk by 50% and in some cases much
more.

Note that for some choices of L, the PPI appears to decay to zero with increasing `, while in
some others, it does not decay to zero. In the latter cases, the optimal rule provides a meaning-
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Figure 4: Loss Reduction as Percent of Possible Improvement (PPI), for each of the 26 loss functions,
as a function of `. Here γ = 1. In all cases, the asymptotic “weak signal” ` → 2 improvement
over bulk-edge hard thresholding η# is substantial. In most cases, the asymptotic “strong signal”
λ → ∞ improvement over η# is negligible; but in several cases it is quite substantial. (Line and
color convention is identical to Figure 2.) Reproducibility advisory: The data and code supplement
[16] includes a script that generates any of these individual curves.

ful improvement on the naive rule even when the signal is extremely strong. Let the Asymptotic
Percentage of Possible Improvement asyPPI denote the large-` limit of PPI(L, `). In many cases
asyPPI(L) = 0; but Table 7 identifies 7 cases where asyPPI > 0; they are associated with Pivots
A−1B − I , A−1/2BA−1/2 − I and with Stein Loss.

MatrixNorm
Pivot Frobenius Operator Nuclear

A−1B − I 100 100 50
A−1/2BA−1/2 − I 50 56 56

Statistical Measures
Stein 30

Table 7: Asymptotic PPI; γ = 1. All Figures in percentage points, max 100. Figures not listed are 0.
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8 Beyond Formal Optimality

The shrinkers we have derived and analyzed above are formally optimal, as in Defintion 6.1, in
the sense that they minimize a formal expression L∞(`|η). So far we have only shown that for-
mally optimal shrinkers actually minimize the asymptotic loss (namely, are asymptotically unique
admissible) in the single-spike case, under assumptions [Asy(γ)] and [Spike(`1)], and only over
nonlinearities η that collapse the vicinity of the bulk to 1.

In this section, we show that formally optimal shrinkers in fact minimize the asymptotic loss in
the general Spiked Covariance model, namely under assumptions [Asy(γ)] and [Spike(`1, . . . , `r)],
and over a large class of nonlinearities that collapse the bulk, but possibly not the vicinity of the
bulk, to 1.

8.1 The Multiple Spike Case

Lemma 8.1. A deterministic formula for the asymptotic loss: multiple non-degenerate spikes.
Let L = {Lp} be a family of loss functions satisfying the assumptions of Lemma 5.2. Consider a problem
sequence with n, p→∞, with p = pn obeying pn/n→ γ, with theoretical covariance matrices Σpn obeying
the multiple-spike model with fixed top r eigenvalues ` = (`1, . . . , `r) all distinct, such that `i > `+(γ),
i = 1, . . . , r. Suppose the scalar nonlinearity η collapses the vicinity of the bulk to 1 and is continuous. Then

Lpn

(
Σpn , Σ̂η(Sn,pn)

)
→P L∞(`1, . . . , `r|η) ≡

r∑
i=1

L2 (A(`i) , B (η(λ(`i), c(`i), s(`i))) , (8.1)

where λ(`), c(`) and s(`) are as in Lemma 5.2 above.

Corollary 8.1. The optimal shrinker η∗ in the single-spike model is also optimal in the multiple-spike model:

L∞(`1, . . . , `r|η∗) = min
η
L∞(`1, . . . , `r|η), ∀` ≥ 1 ,

where η∗ is the optimal shrinker of Definition 6.2 corresponding to the loss L.

It follows that the optimal shrinkers we derived correspond to the unique admissible rule, in the
asymptotic sense, among rules of the form Σ̂η(Sn,p) = V η(Λ)V ′ in the general Spiked Covariance
Model (with r ≥ 1 spikes), and over nonlinearities that collapse the vicinity of the bulk to 1.

Lemma 8.1 is a technical generalization of Lemma 5.2. To prove it, one proceeds as in the proof
of Lemma 5.2 above, except that the block-diagonalizing basis W is constructed more generally by
applying the Gram-Schmidt process to

u1,n, u2,n, . . . , ur,n, v1,n, v2,n, . . . , vr,n, vr+1,n, vr+2,n, . . . , vp−r,n

and then permuting outputs, interleaving the output vectors as 1, r + 1, 2, r + 2, . . . , r, 2r, 2r +
1, . . . , p − 2r. Denote the resulting basis vectors by w1, . . . wp. The interleaving associates the se-
quence of index pairs (1, 2), (3, 4), . . . , (2r−1, 2r) to a block structure. Lemma 8.1 now follows from
the following result, proved in Appendix A.2:

Lemma 8.2. Assume [Asy(γ)] and [Spike(`1, . . . , `r)], with `1, . . . , `r > `+(γ) all distinct. As before,
write Σp = diag(`1, . . . , `r)⊕Ip−2r for the population covariance matrix at a given value of p. LetW denote
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the basis described above and denote ci = c(`i), si = s(`i) and ηi = η(λ(`i)). Also let A(`) = diag(`, 1)
and let B(η, c, s) be as in (2.5). Then

W ′ΣpW = (⊕ri=1A(`i))⊕ Ip−2r .

Let η collapse the vicinity of the bulk to zero. Then

‖W ′ Σ̂η(Sn,pn)W − Σ̃pn‖F →P 0 ,

where
Σ̃p = (⊕ri=1B(ηi, ci, si))⊕ Ip−2r . (8.2)

Empirically and heuristically, Lemma 8.1 remains valid in the degenerate case, where the non-
trivial population eigenvalues are not necessarily distinct. The construction of W would have to be
different in the degenerate case; see discussion in [17].

8.2 Nonlinearities that Only Collapse the Bulk

So far we have shown that the optimal shrinkers we derived are asymptotically unique admis-
sible over nonlinearities that collapse the vicinity of the bulk to 1. The following result, proved
in Appendix A.2, shows that they remain asymptotically unique admissible over a larger class of
nonlinearities, some of which collapse the bulk, but not the vicinity of the bulk, to 1.

Lemma 8.3. Assume that the scalar nonlinearity η is continuous, and assume one of the following conditions:

1. η collapses the vicinity of the bulk to 1.

2. η collapses the bulk to 1, is monotone non-decreasing in a neighborhood of the bulk edge, and is α-
Hölder at the bulk edge for some 0 < α ≤ 1.

Then Lemma 8.1 holds.

It follows that the optimal shrinkers we derived are asymptotically unique admissible over non-
linearities that either collapse the vicinity of the bulk to 1, or collapse the bulk to 1 and are Hölder
and non-decreasing at the bulk edge.

9 Optimality Among Equivariant Procedures

The notion of optimality in asymptotic loss, with which we have been concerned, is fairly weak.
Also, the class of covariance estimators we have considered, namely procedures that apply the same
univariate shrinker to all empirical eigenvalues, is fairly restricted.

Naturally the reader will at this point suppose that the procedures we proposed are optimal
only with respect to their respective limiting loss, and only within the class of estimators of the
form Σ̂(S) = V η(Λ)V ′, where η is a single nonlinearity applied in turn to each of the empirical
eigenvalues λi, and where, as before, the columns of V are the empirical eigenvectors.

Consider the much broader class of orthogonally-equivariant procedures for covariance estima-
tion [58, 45, 49], in which estimates take the form Σ̂ = V ∆V ′. Here, ∆ = ∆(Λ) is any diagonal
matrix that depends on the empirical eigenvalues Λ in possibly a more complex way than sim-
ple scalar element-wise shrinkage η(Λ). One might imagine that the extra freedom available with
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more general shrinkage rules would lead to improvements in loss, relative to our optimal scalar
nonlinearity; certainly the proposals of [58, 45, 43] are of this more general type.

The smallest achievable loss by any orthogonally equivariant procedure is obtained with the
“oracle” procedure Σ̂oracle = V ∆oracle V ′, where ∆oracle is chosen to be the minimizer

∆oracle = argmin∆L(Σ, V ∆V ′),

the minimum being taken over diagonal matrices with diagonal entries ≥ 1. Clearly, this optimal
performance is not attainable, since the minimization problem explicitly demands perfect knowl-
edge of Σ. This knowledge is never available to us in practice – hence the label oracle 5. Nevertheless,
this optimal performance is a legitimate benchmark.

Interestingly, at least in the popular Frobenius case LF,1 and in the Stein Loss case Lst, the op-
timal nonlinearities η∗, which we have derived, deliver oracle-level performance – asymptotically.
The following theorem is proved in Appendix A.3.

Theorem 9.1. (Asymptotic-loss optimality among all equivariant procedures.) Let L denote either
the direct Frobenius Loss LF,1 or the Stein Loss Lst. Consider a problem sequence satisfying assumptions
[Asy(γ)] and [Spike(`1, . . . , `r)] where the fixed top r eigenvalues ` = (`1, . . . , `r) are all distinct. For Σpn

and Σ̂oracle
pn , the pn-by-pn matrices in our sequence of statistical estimation problems, we have

lim
n→∞

Lpn(Σpn , Σ̂
oracle
pn ) =P L∞(`1 . . . , `r|η∗) , (9.1)

where η∗ is the optimal shrinker (Definition 6.2) corresponding to the loss L.

In short, the shrinker η∗(), which has been designed to minimize the limiting loss, asymptotically
delivers the same performance as the oracle procedure, which has the lowest possible loss over the
entire class of covariance estimators by arbitrary high-dimensional shrinkage rules. On the other
hand, by definition, the oracle procedure outperforms every orthogonally-equivariant statistical
estimator. We conclude that η∗ – as one such orthogonally-invariant estimator – is indeed optimal
(in the sense of having the lowest limiting loss) among all orthogonally invariant procedures. While
we only discuss the cases LF,1 and Lst, we suspect that this theorem holds true for many, or all, of
the 26 loss functions considered.

10 Discussion

In the present paper, we consider the problem of covariance estimation in high dimensions, where
the dimension p is comparable to the number of observations n. We choose a fixed-rank principal
subspace, and let the dimension of the problem grow large. A different asymptotic framework for
covariance estimation would choose a principal subspace that is a fixed fraction of the problem
dimension; i.e. the rank of the principal subspace is growing rather than fixed. (In the sibling
problem of matrix denoising, compare the “spiked” setup [15, 54] with the “fixed fraction” setup of
[14].)

In the fixed fraction framework, some of underlying phenomena remain qualitatively similar to
those governing the spiked model, while new effects appear. Importantly, the relationships used

5The oracle procedure does not attain zero loss since it is “doomed” to use the eigenbasis of the empirical covariance,
which is a random basis corrupted by noise, to estimate the population covariance.
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in this paper, predicting the location of the top empirical eigenvalues, as well as the displacement
of empirical eigenvectors, in terms of the top theoretical eigenvalues, no longer hold. Instead, one
has a complex nonlinear relationship between the limiting distribution of the empirical eigenvalues
and the limiting distribution of the theoretical eigenvalues, as expressed by the Marčenko-Pastur
(MP) relation between their Stieltjes transforms [47, 2].

Covariance shrinkage in the proportional rank model should then, naturally, make use of the
so-called MP Equation. Noureddine El Karoui [34] proposed a method for debiasing the empiri-
cal eigenvalues, namely, for estimating (in a certain specific sense) their corresponding population
eigenvalues; Olivier Ledoit and Sandrine Peché [41] developed analytic tools to also account for
the inaccuracy of empirical eigenvectors, and Ledoit and Michael Wolf [43] have implemented such
tools and applied them in this setting.

We admire the depth of insight involved in the study of the proportional rank case, which is
really quite subtle and beautiful. Yet, the fixed-rank case deserves to be worked out carefully. In
particular, the shrinkers we have obtained here in the fixed-rank case are extremely simple to im-
plement, requiring just a few code lines in any scientific computing language. In comparison, those
covariance estimation ideas, based on powerful and deep insights from MP theory, require a del-
icate, nontrivial effort to implement in software, and call for expertise in numerical analysis and
optimization. As a result, the simple shrinkage rules we propose here are more likely to be applied
correctly in practice, and to work as expected, even in relatively small sample sizes.

An analogy of this situation can be made to shrinkage in the normal means problem, for ex-
ample [18]. In applications of that problem, often a full Bayesian model applies, and in principle a
Bayesian shrinkage would provide an optimal result [8]. Yet, in applications one often wants a sim-
ple method which is easy to implement correctly, and which is able to deliver much of the benefit
of the full Bayesian approach. In literally thousands of cases, simple methods of shrinkage - such
as thresholding - have been chosen over the full Bayesian method for precisely that reason.

Reproducible Research

In the data and code supplement [16] we offer a Matlab software library that includes:

1. A function to compute the value of each of the 26 optimal shrinkers discussed to high preci-
sion.

2. A function to compute the optimal risk corresponding to these optimal shrinkers.

3. A function to test the correctness of each of the 17 analytic shrinker fomulas provided.

4. Tabulated values of the optimal shrinkers, and a function for fast evaluation of each of the 26
optimal shrinkers based on interpolation of tabulated values.

5. Scripts that generate each of the figures in this paper, or subsets of them for specified loss
functions.
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A Proofs

A.1 Closed Forms of Optimal Shrinkers

Here we derive the closed forms for the optimal shrinkers, summarized in Table 2. In the interest of
space, only key steps are discussed in detail. Additional details may be found in the supplemental
article [17].

Proof of Lemma 6.1

Let L be any of the loss functions considered. The following condition can be easily directly verified
for each of our 26 losses in turn: For any ` ∈ [1, 1 +

√
γ] and any η ≥ 1, the function G(η, `) of (6.4)

satisfies G(η, `) = g1(η) + g2(`) or G(η, `) = max{g1(η) , g2(`)}, where g1,g2 are continuous and
strictly increasing on [1,

√
γ] and [1,∞), respectively, and where g1(1) = g2(1) = 0.

Now, assume such a decomposition of G(`, η). Let η be any random variable with values in
[1, 1 +

√
γ]. It is enough to show that

EG(`, η) ≥ G(`, 1) ,

with strict inequality holding for some sub-interval [1, `′] ⊂ [1,
√
γ]. Indeed, if G = g1 + g2 then

Eg2(η) > 0 unless η ≡ 1 almost surely. And if G = max {g1, g2}, then we have G(`, η) − G(`, 1) =
max{g1(`), g2(η)} − g1(`) and it follows that

D(`) = EG(`, η)−G(`, 1) ≥ E(g2(η)− g1(`))+ ≥ 0

is a continuous function on [1, 1 +
√
γ] with D(1) = Eg(η) > 0 unless η ≡ 1 almost surely.

Turning now to derive the explicit formulas of the optimal shrinkers for ` > `+(γ), we repeatedly
will use two simple observations regarding 2-by-2 matrices:

Lemma A.1. Let S be a symmetric 2-by-2 matrix. Then ‖S‖2F = trace(S)2 − 2 det(S).

Lemma A.2. The eigenvalues of any 2-by-2 matrix M with trace trace(M) and determinant det(M) are
given by

λ±(M) =
1

2

(
trace(M)±

√
trace(M)2 − 4 det(M)

)
(A.1)

These have useful corollaries:

Lemma A.3. Assume that ∆(η) is a 2-by-2 symmetric matrix and η∗ ≥ 1 is such that

trace(∆(η∗)) · d
dη

trace(∆(η))
∣∣∣
η=η∗

=
d

dη
det(∆(η))

∣∣∣
η=η∗

. (A.2)

Then η∗ solves the Frobenius norm minimization problem: η∗ = argminη≥1‖∆(η)‖F .

Proof. Differentiate with respect to η both sides of the equality in Lemma A.1 and equate to zero.

Lemma A.4. Assume that ∆(`, η) is a 2-by-2 matrix and such that det(∆(η)) ≤ 0 for all η ≥ 1, and assume
that η∗ ≥ 1 is such that

trace(∆(η∗)) · d
dη

trace(∆(η))
∣∣∣
η=η∗

= 2 · d
dη

det(∆(η))
∣∣∣
η=η∗

. (A.3)

Then η∗ solves the nuclear norm minimization problem: η∗ = argminη≥1‖∆(η)‖∗.
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Proof. The condition det(∆) ≤ 0 is equivalent to the condition |trace(∆)| ≤
√

trace(∆)2 − 4 det(∆),
which implies that λ+(∆) ≥ 0 and λ−(∆) ≤ 0. Hence,

‖∆‖2∗ = (|λ+|+ |λ−|)2 = (λ+(∆)− λ−(∆))2 = trace(∆)2 − 4 det(∆) ,

using Lemma A.2. Now differentiate both sides and equate to zero.

Finally, we will use the following fact regarding singular values of 2-by-2 matrices:

Lemma A.5. Let ∆ be a 2-by-2 matrix with singular values σ+ ≥ σ− > 0. Define t = trace(∆′∆) =
‖∆‖2F , d = det(∆) and r2 = t2 − 4e2. Assume that ∆ depends on a parameter η and let σ̇±, ṫ, ė denote the
derivative of these quantities w.r.t the parameter η. Then

r (σ̇+ + σ̇−) (σ̇+ − σ̇−) = 2
(
ṫ+ 2ė

) (
ṫ− 2ė

)
.

Proof. By Lemma A.2 we have 2σ2
± = t± r and therefore

√
2σ̇± =

ṫ± ṙ
2
√
t± r

.

Differentiating and expanding σ̇+ ± σ̇− we obtain the relation

(σ̇+ + σ̇−) =
(8d/r)(ṫ2 − 4ė2)

(t2 − r2)(σ̇+ − σ̇−)

and the result follows.

Keeping in mind that c2 + s2 = 1, the reader can verify the following auxilliary facts by direct
calculation:

Lemma A.6. Define the following auxiliary quantities:
˜̀ = `− 1

¯̀ = `−1 − 1

η̃ = η − 1

η̄ = η−1 − 1 .

Then for the matrix A(`) = diag(`, 1) and the matrix B(`) (which depends on η) of (5.1) we have:

Proof of Lemma 6.3

We use Lemma A.6 as needed. For LF,1 and LF,6, observe that ∆1(η̃) and ∆6(η̃) are symmetric and
solve equation (A.2) for the matrices ∆1(η̃) and ∆6(η̃), respectively. Note that minimizing w.r.t η̃ is
equivalent to minimizing w.r.t η. For LF,2, observe that ∆2(η̄) is symmetric and solve equation (A.2)
for the matrix ∆2(η̄). Note that minimizing w.r.t η̄ is equivalent to minimizing w.r.t η.

Next, define the 2-by-2 matrix-valued function

δ(η, `, α) =

[
`+ αηc2 αηcs
ηcs ηs2

]
. (A.4)

Direct calculation shows that

argminη≥1‖δ(η, `, α)‖2F =
−`αc2

s2 + α2c2
.

Since ∆3 = δ(η̃, ¯̀, 1/`) and ∆4 = δ(η̄, ˜̀, `), substitution yields the minimizers of LF,3 and LF,4.
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B =

[
1 + η̃c2 η̃cs
η̃cs 1 + η̃s2

]
trace(B) = η + 1 det(B) = η

B−1 =

[
1 + η̄c2 η̄cs
η̄cs 1 + η̄s2

]
trace(B−1) = η−1 + 1 det(B−1) = η−1

∆1 ≡ A−B =

[
˜̀− η̃c2 η̃cs
−η̃cs −η̃s2

]
trace(∆1) = ˜̀− η̃ det(∆1) = − ˜̀̃ηs2

∆2 ≡ A−1 −B−1 =

[
¯̀− η̄c2 η̄cs
−η̄cs −η̄s2

]
trace(∆2) = ¯̀− η̄ det(∆2) = − ¯̀̄ηs2

∆3 ≡ A−1B − I =

[
¯̀− η̃c2/` η̃cs/`
−η̃cs −η̃s2

]
trace(∆3) = ¯̀+ η̃(c2/`+ s2) det(∆3) = ¯̀̃ηs2

∆4 ≡ B−1A− I =

[
˜̀− η̄`c2 η̄`cs
η̄cs η̄s2

]
trace(∆4) = ˜̀+ η̄(`c2 + s2) det(∆4) = ˜̀̄ηs2

∆6 ≡ A−1/2BA−1/2 − I =

[
¯̀+ `−1η̃c2 `−1/2η̃cs

`−1/2η̃cs η̃s2

]
trace(∆6) = ¯̀+ η̃(c2/`+ s2) det(∆6) = ¯̀̃ηs2

Proof of Lemma 6.4

We use Lemma A.6 as needed. For LN,1, LN,2 and LN,6, observe that ∆i is symmetric and det(∆i) ≤
0, and it is therefore enough to solve (A.3). Now, in the cases LN,1 and LN,6, solve (A.3) for η̃ and
note that minimizing w.r.t η̃ is equivalent to minimizing w.r.t η. In the case LN,2, solve equation
(A.3) for η̄ and note that minimizing w.r.t η̄ is equivalent to minimizing w.r.t η.

For LN,3, in the notation of Lemma A.5 we have ṫ± 2ė = 2
(
c2 + `2s2

)
(η̃ − η̃±), where

η̃± =
c2 + `s2

c2 + `2s2
˜̀.

One can check that here r2 > 0 for all η ≥ 1, and moreover that σ̇+(η̃+) + σ̇−(η̃+) 6= 0 and σ̇+(η̃+)−
σ̇−(η̃−) 6= 0. It follows that the only zero of σ̇+(η̃+) + σ̇−(η̃−) is at η̃ = η̃−, which we solve for η.

For LN,4, again in the notation of Lemma A.5, we have ṫ± 2ė = −2
(
`2c2 + s2

)
(η̄ − η̄±), where

η̄± = − `c2 + s2

`2c2 + s2
¯̀.

One can check that here r2 > 0 for all η ≥ 1, and moreover that σ̇+(η̄+) + σ̇−(η̄+) 6= 0 and σ̇+(η̄+)−
σ̇−(η̄−) 6= 0. It follows that the only zero of σ̇+(η̄+) + σ̇−(η̄−) is at η̄ = η̄−, which we solve for η.

Proof of Lemma 6.2

For LO,1, by Lemma A.2 the eigenvalues of ∆1(η̃) are given by Eq. (A.1). Fix ` ≥ `+(γ) and consider
the functions η 7→ λ+(η) and η 7→ λ−(η). The following facts are verified by simple algebra:

• For all η ≥ 0 we have λ+(η) ≥ 0, λ+(η) ≥ λ−(η) and λ−(η) < 0.

• For η > ` we have λ+(η) ≤ −λ−(η) and for η < ` we have λ+(η) ≥ −λ−(η).

• For all η > ` we have dλ−(η)/dη < 0 and for all η < ` we have dλ+(η)/dη < 0.

32



The first two facts imply that

‖∆1‖op = max{λ+(η) , |λ−(η)|} =

{
λ+(η) η < `

−λ−(η) η > `
.

The third fact implies that indeed minη ‖∆1‖op = `.
An identical proof for ∆2(η̄) instead of ∆1(η̃) shows that the same nonlinearity minimizes LO,2

as well.

Proof of Lemma 6.5

We use Lemma A.6 as needed. For Lst, we have 2Lst = ¯̀+ η̃(c2/` + s2) − log(η/`). Now solve
dLst/dη = 0 for η. For Lent, we have 2Lent = ˜̀+ η̄(`c2 + s2)− log(`(η̄+ 1)). Now solve dLent/dη̄ = 0
for η̄. For Ldiv, we have 2Ldiv = ˜̀+ ¯̀+ η̄(`c2 + s2) + η̃(c2/`+ s2). Now solve dLent/dη = 0 for η.

Proof of Lemma 6.6

We use Lemma A.6 as needed. Define η̂ =
√
η − 1 and

M =

[
1 + η̂c2 η̂cs
η̂cs 1 + η̂s2

]
.

Direct calculation shows that M2 = B, namely, M =
√
B. Therefore trace(

√
A
√
B) =

√
`(1 + η̂c2) +

1 + η̂s2, and Lfre = η + `+ 2− 2
(

trace(
√
A
√
B)
)

. Now solve dLfre/dη̂ = 0 for η̂.

A.2 Beyond Formal Optimality

Proof of Lemma 8.2

We may assume that all the eigenvalues of Σ̂η(Sn,pn) lie in [1,∞), since the probability of this event
tends to 1 as n→∞. Let Ur and Vr,n denote the n-by-r matrices consisting of the top r eigenvectors
of Σp and Σ̂η(Sn,pn), respectively. Let W2r denote the n-by-2r matrix, whose columns comprise the
first 2r vectors of the W basis. Observe that the matrix W2r can be obtained as the output of the
following three-stage process.

Stage 1. Form the matrix W (0)
2r = [Ur Vr,n] by stacking the matrices Ur and Vr,n.

Stage 2. Let the matrix W (1)
2r be the factor Q in the QR decomposition of W (0)

2r , namely

W
(0)
2r = W

(1)
2r R , (A.5)

where W (1)
2r has orthogonal columns and the matrix R is upper triangular.

Stage 3. Form W
(2)
2r by permuting the columns of W (1)

2r as follows. Let π2r be the permutation
defined by

π2r : (1, . . . , 2r) 7→ (1, r + 1, 2, r + 2, 3, . . . , 2r) ,

and let Π2r be the permutation matrix corresponding to π2r. Now define W (2)
2r = W

(1)
2r Π2r.
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Since the first r columns of W (1)
2r are identically those of Ur, we let Zr be the n-by-r matrix such

that W (1)
2r = [Ur Zr]. Also note that the upper-diagonal matrix R in (A.5) has the block structure

R =

[
Ir×r R12

0r×r R22

]
,

where the matrices R12 and R22 satisfy

Vr,n = UrR12 + ZrR22 ,

so that

R12 = U ′r Vr,n (A.6)
R22 = Z ′r Vr,n . (A.7)

Since Vr,n has orthogonal columns, we have

V ′r,n Vr,n = I = R′12R12 +R′22R22

R′22R22 = I −R′12R12 .

Observe that the subspace spanned by the columns of W (i)
2r is stable under action of the population

covariance Σp, for i = 1, 2. Let Σ
(i)
2r denote the representation of the population covariance Σp,

restricted to the image of W (i)
2r , in the basis provided by the columns of W (i)

2r . Similarly, let Σ̂
(i)
2r

denote the representation of Σ̂η(Sn,pn), restricted to the image of W (i)
2r , in the basis provided by the

columns of W (i)
2r . Formally,

Σ
(1)
2r = (W

(1)
2r )′ΣpW

(1)
2r = diag (`1, . . . , `r)⊕ Ir

Σ
(2)
2r = (W

(2)
2r )′ΣpW

(2)
2r = Π′2r Σ

(1)
2r Π2r = ⊕rk=1A(`k) .

To simplify notation, we write ηi,n for the shrunken empirical eigenvalue η(λi,n), and let Σ̂η(Sn,pn) =
V diag(η1,n, . . . , ηp,n)V ′ be the full eigen-decomposition of Σ̂(Sn,pn). From (A.6) and (A.7), since
Σ̂η(Sn,pn) = V · (diag(η1,n, . . . , ηp,n)− Ip) · V ′ + Ip, we have

Σ̂
(1)
2r = (W

(1)
2r )′ Σ̂η(Sn,pn)W

(1)
2r =

[
R12

R22

]
(diag(η1,n, . . . , ηp,n)− Ir)

[
R′12 R′22

]
+ I2r .

Now, by Theorem 4.1, as n→∞, we have 6

R12 = U ′r Vr,n →P diag(c(`1), . . . , c(`r))

R22R
′
22 = I −R12R

′
12 →P diag

(
s2(`1), . . . , s2(`r)

)
R22 →P diag (s(`1), . . . , s(`r)) .

Therefore, as n→∞we have
Σ̂

(1)
2r →P B2r ,

6For simplicity, we chose the QR decomposition to make the sign of s(`i) positive.
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where

B2r =

[
Ir + diag

(
(η1 − 1)c2

1, . . . , (ηr − 1)c2
r

)
diag ((η1 − 1)c1s1, . . . , (ηr − 1)crsr)

diag ((η1 − 1)c1s1, . . . , (ηr − 1)crsr) Ir + diag
(
(η1 − 1)s2

1, . . . , (ηr − 1)s2
r

)]
is a fixed (non-random) 2r-by-2r matrix. Since the convergence occurs in each coordinate, it also
occurs in Frobenius norm:

‖Σ̂(1)
2r −B2r‖F →P 0 .

Moreover, since the Frobenius norm is invariant under left and right orthogonal rotations, and in
particular under permutations, we have

‖Π′2r
(

Σ̂
(1)
2r −B2r

)
Π2r‖F →P 0 .

From Σ̂
(2)
2r = Π′2r Σ̂

(1)
2r Π2r and Π′2r B2r Π2r = Σ

(2)
2r we obtain

‖Σ̂(2)
2r − Σ

(2)
2r ‖F →P 0 .

As the Frobenius norm is sum-decomposable, we conclude that as n→∞,

‖
(

Σ̂
(2)
2r ⊕ Ip−2r

)
−
(

Σ
(2)
2r ⊕ Ip−2r

)
‖F →P 0 .

Finally, note that by definition

Σ̂
(2)
2r ⊕ Ip−2r = W ′ Σ̂η(Sn,pn)W

Σ
(2)
2r = Π′2r B2r Π2r = ⊕ri=1B(ηi, ci, si) ,

and the lemma follows.

Proof of Lemma 8.3

Consider the single spike case, namely assume [Asy(γ)] and [Spike(`1)]. Observe that the proof of
Lemma 5.2 remains valid if the nonlinearity η collapses the bulk to 1, and if, in addition,

lim
n→∞

E

(
pn∑
i=2

(η(λi,n)− 1)2

)
= 0 . (A.8)

We now show that (A.8) holds. Fix n. Let Π : Rpn → Rpn−1 denote the projection on the last
pn − 1 coordinates, and let X be a pn-by-n matrix whose rows are i.i.d draws from N (0,Σpn), so
that the eigenvalues of XX ′/n are just λ1,n ≥ . . . ≥ λpn,n. Now, let λ̃1,n ≥ . . . λ̃pn−1,n denote
the eigenvalues of ΠX(ΠX)′/n. By the Cauchy interlacing Theorem, we have λi,n ≤ λ̃i−1,n for
2 ≤ i ≤ pn. Let λ+ = (1 +

√
β)2 denote the bulk edge. Since η is α-Hölder at the bulk edge,

there exists a constant C > 0 such that |η(λ) − η(λ+)| ≤ C|λ − λ+|α for all λ. It follows that
(η(λ)− 1)2 = (η(λ)− η(λ+))2 ≤ C2(λ− λ+)2α for any λ > λ+. Since η is monotone non-decreasing,

pn∑
i=2

(η(λi,n)− 1)2 ≤
pn−1∑
i=1

(η(λ̃i,n)− 1)2 ≤ C2
pn−1∑
i=1

(λ̃i,n − λ+)2α .
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However, as the columns of ΠX are just i.i.d samples from the standard multivariate normal distri-
bution in Rpn−1, the empirical distribution of {λ̃i,n} converges to the Marčenko-Pastur bulk and in
fact

lim
n→∞

E

(
pn−1∑
i=1

(λ̃i,n − λ+)2α

)
= 0 ,

which implies (A.8). The multiple spike case is proved similarly.

A.3 Optimality Among Equivariant Procedures

Proof of Theorem 9.1: Direct Frobenius Loss case L = LF,1

The Theorem follows from Lemma A.7 and Lemma A.8 below, which explicilty evaluate both sides
of (9.1) to show that they are equal.

Lemma A.7.

LF,1∞ (`1, . . . , `r|η∗) =

r∑
k=1

(`k − 1)2(1− c4(`k)) .

Proof. By Lemma 8.1, it is enough to prove

LF,12 (A(`), B(η∗, c, s)) = (`− 1)2(1− c4(`)) . (A.9)

Recall that (η∗ − 1) = (`− 1)c2(`). The pivot matrix is

∆ (A(`) , B(η∗, c, s)) =

[
(`− 1)− (`− 1)c4 −(`− 1)c3s
−(`− 1)c3s (`− 1)c2s2

]
= (`− 1)

[
1− c4 −c3s
−c3s c2s2

]
. (A.10)

Taking the squared Frobenius norm of (A.10), a straightforward calculation yields (A.18).

Lemma A.8. As n→∞,

LF,1pn (Σpn , Σ̂
oracle
pn )→P

r∑
k=1

(`k − 1)2(1− c4(`k)) . (A.11)

Proof. To simplify some of the formal steps below, we use the familiar asymptotic notation oP and
OP , with respect to convergence in probability as n→∞.

By definition,

LF,1pn (Σpn , Σ̂
oracle
pn ) = min

∆
‖diag(`1, . . . , `r, 1, . . . , 1)− V ∆V ′‖2F ,

where the columns of V are the eigenvectors of Sn,pn and the minimum is taken over all pn-by-
pn diagonal matrices. Fix (`1, . . . , `r) and define L = diag(`1, . . . , `r, 1, . . . , 1). Since the Frobenius
norm is orthogonally invariant, for any diagonal matrix ∆ we have

‖L− V ∆V ′‖2F = ‖(∆− I)− V ′(L− I)V ‖2F
=

∑
i

(
(∆− I)− V ′(L− I)V

)2
i,i

+
∑
i 6=j

(V ′(L− I)V )2
i,j , (A.12)
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where we have separated summation over the diagonal and non-diagonal entries.
Clearly, the minimum of (A.12) over ∆ is attained when the left term vanishes, namely

min
∆
‖diag(`1, . . . , `r, 1, . . . , 1)− V ∆V ′‖2F =

∑
i 6=j

(V ′(L− I)V )2
i,j

=
∑
i 6=j

(
n∑
k=1

(`k − 1)vk(i)vk(j)

)2

=
∑
i 6=j

n∑
k,k′=1

(`k − 1)(`k′ − 1)vk(i)vk(j)vk′(i)vk′(j)

=

n∑
k,k′=1

(`k − 1)(`k′ − 1)
∑
i 6=j

vk(i)vk(j)vk′(i)vk′(j) ,

where vk′ denotes the k′-th column of V ′ and vk denotes its transpose. To evaluate the last term,
first note that ∑

i,j

vk(i)vk(j)vk′(i)vk′(j) =

(∑
i

vk(i)vk′(i)

)2

= δk,k′ .

Now, by Lemma A.9, stated and proved below, we have∑
i

v2
k(i)v

2
k′(i) = c4(`k)(1 + oP (1))δk,k′ + oP (1) .

Since ∑
i 6=j

vk(i)vk(j)vk′(i)vk′(j) =
∑
i,j

vk(i)vk(j)vk′(i)vk′(j)−
∑
i

v2
k(i)v

2
k′(i)

we have ∑
i 6=j

vk(i)vk(j)vk′(i)vk′(j) =
(
1− c4(`k)

)
· (1 + oP (1)) · δk,k′ + oP (1) .

It thus follows that

min
∆
‖diag(`1, . . . , `r, 1, . . . , 1)− V ∆V ′‖2F =

∑
k

(`k − 1)2
(
1− c4(`k)

)
+ oP (1)

as desired.

Lemma A.9. Let 1 ≤ k, k′ ≤ r. As n→∞ we have

n∑
i=1

v2
k(i)v

2
k′(i)→P

{
c4(`k) k = k′

0 k 6= k′
.

Proof. Let 1 ≤ k, k′ ≤ r. By Theorem 4.1,

r∑
i=1

v2
k(i)v

2
k′(i)→P c

4(`k)δk,k′ .
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It therefore remains to show that, as n→∞,

p∑
i=r+1

v2
k(i)v

2
k′(i)→P 0 . (A.13)

Indeed, by Lemma A.10, stated and proved below,

max
r+1≤i≤p

|vk(i)| = OP

(√
log p

p

)
,

so that

v2
k(i)v

2
k′(i) = OP

(
log2(p)

p4

)
,

and (A.13) follows.

Lemma A.10. Let vk denote the empirical eigenvector of Sn,p corresponding to the k-largest empirical eigen-
value. Define the statistic

Mn,p,r = max
j>r
|〈vk, ej〉| .

Then

Mn,p,r = OP

(√
log p

p

)
.

Proof. Define, for a vector v and a matrix U ,

Mr(v, U) = max
j>r
|〈v, Uej〉|

so that our quantity of interest satisfies

Mn,p,r ≡Mr(vk, I) .

Consider the Rp-valued function of a matrix variable defined by Sn,p 7→ vk. Observe that it is
invariant under orthogonal rotations of Rp, in the sense that

vk(U Sn,p U
′) = U ′ vk(Sn,p) . (A.14)

Here and below, the symbol =D denotes equality in distribution. Observe that, if U0 is any rotation
that leaves Σ invariant (in the sense that U0 ΣU ′0 = Σ), then

vk
(
U0 Sn,p U

′
0

)
=D vk(Sn,p) , (A.15)

and hence

U ′0 vk(Sn,p) =D vk(Sn,p) . (A.16)

Combining (A.14), (A.15) and (A.16) we obtain

Mr(vk, U0) =D Mr(vk, I) ≡Mn,p,r . (A.17)

Consider the case U0 = Ir⊕Q0, whereQ0 is a Haar-distributed (p−r)-by-(p−r) orthogonal matrix.
Note that almost surely, U0 leaves Σ invariant. Now let w be any fixed vector in Rp and let P>r be
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any orthoprojector of Rp onto span {er+1, . . . , ep}. Then P>rw sends the first r coordinates to zero
and we have

P>rw = 0r ⊕ w0 ,

where 0r ∈ Rr is the zero vector and w0 ∈ Rp−r. Clearly,

M1(w,U0) = Mr(P>rw,U0) = Mr(w0, Q0) .

We now apply Lemma A.11, stated and proved below, to M1(w0, Q0) with q = p− r and obtain

M1(w0, Q0) = OP

(√
log(p− r)
(p− r)

)

where the implied constants on the right hand side are uniform across all vectors w0 ∈ Rp−r for
which ‖w0‖2 ≤ 1.

In the above construction, let Sn,p be some fixed realization, let vk(Sn,p) be the corresponding
fixed eigenvector in Rp and set w = vk(Sn,p). Then the above implies

Mr(vk, U0) = OP

(√
log p

p

)
,

where the implied constants on the right hand side are independent of the specific realization of
Sn,p. Now apply (A.17) and conclude that

Mr(vk) = OP

(√
log p

p

)
,

as required.

Lemma A.11. Let Q be a Haar-distributed q-by-q orthogonal matrix and let w ∈ Rq be a fixed vector with
‖w‖2 ≤ 1. Then

max
1≤j≤q

|〈w , Qej〉| = OP

(√
log q

q

)
,

where the implied constants on the right hand side are independent of the choice of w.

Proof. Let U be a rotation that satisfies Uw = e1. Then U ′Q =D Q. Hence,

max
1≤j≤q

|〈w , Q ej〉| =D max
1≤j≤q

|〈e1 , Q ej〉| .

Now, the map
Q 7→ |〈e1 , Q ej〉|

is 1-Lipschitz w.r.t Frobenius norm, and the Haar matrix Q obeys concentration of measure [40],
hence

P {|〈e1 , Q ej〉| > t} ≤ e−qt2/2 .

Therefore,

P

{
max

1≤j≤q
|〈e1 , Q ej〉| > t

}
≤ q e−qt2/2 .

Picking t = c
√

log q/q we get that the right hand side is bounded by e−c
2/2.
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Proof of Theorem 9.1: Stein Loss case L = Lst

The Theorem follows from Lemma A.12 and Lemma A.13 below, which explicilty evaluate the both
sides of (9.1) to show that they are equal.

Lemma A.12.

Lst∞ (`1, . . . , `r|η∗) =
r∑

k=1

[
(`−1
k − 1)s2(`k) + log

(
c(`k)

2 + `ks
2(`k)

)]
Proof. By Lemma 8.1, it is enough to prove

Lst2 (A(`), B(η∗, c, s)) = (`−1 − 1)s2(`) + log
(
c(`)2 + `s2(`)

)
. (A.18)

Indeed,

Lst2 (A(`), B(η, c, s)) = trace(A−1(`)B(η, c, s)− I)− log

(
|B(η, c, s)|
|A(`)|

)
.

Direct calculation shows that

trace
(
A−1(`)B(η, c, s)− I

)
=

(
`−1 − 1

)
+ (η − 1)

(
c2/`+ s2

)
log (|B(η, c, s)|/|A(`)|) = log(η/`)

Above we have seen that the optimal shrinker η∗ for the Stein Loss satisfies η∗(`) =
(
c2(`) + s2

)−1.
Substituting, we obtain

trace
(
A−1(`)B(η∗(`), c(`), s(`))− I

)
=

(
`−1 − 1

)
s2(`)

log (|B(η∗(`), c(`), s(`))|/|A(`)|) = − log
(
c2(`) + `s2(`)

)
,

as required.

Lemma A.13. As n→∞,

Lstpn(Σpn , Σ̂
oracle
pn )→P

r∑
k=1

[
(`−1
k − 1)s2(`k) + log

(
c(`k)

2 + `ks
2(`k)

)]
. (A.19)

Proof. Define L = diag(`1, . . . , `r, 1, . . . , 1). We first show that the oracle estimator for Stein Loss
satisfies ∆oracle = diag(doracle1 , . . . , doraclen ) with

doraclei =
1

1−
∑n

k=1

(
1− `−1

k

)
v2
k(i)

. (A.20)

Indeed, for any diagonal matrix ∆ we have

Lstp
(
L , V ∆V ′

)
= trace

(
L−1 V ∆V ′ − I

)
− log (|∆|/|L|)

= trace(V ′(L−1 − I)V ∆ + ∆− I)− log(|∆|/|Λ|)

=

p∑
i=1

[
(di − 1)− di

r∑
k=1

(
1− `−1

k

)
v2
k(i)− log(di/Li,i)

]
(A.21)
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where we have used the cyclic property of the trace.
Minimizing (A.21) w.r.t ∆ is thus achieved by minimizing w.r.t each di. Setting the derivative to

zero and solving for di, we arrive at (A.21). A simple calculation now shows that

Lstpn(Σpn , Σ̂
oracle
pn ) = Lstpn(L , V ∆oracle V ′)

=

pn∑
i=1

log


(

1−
∑r

k=1

(
1− L−1

k,k

)
v2
k(i)

)−1

Lk,k


=

r∑
i=1

log

((
1−

∑r
k=1

(
1− `−1

k

)
v2
k(i)

)−1

`k

)
(A.22)

−
pn∑

i=r+1

log

(
1−

r∑
k=1

(
1− `−1

k

)
v2
k(i)

)
. (A.23)

We first evaluate the limiting value of (A.22). By Theorem 4.1, as n→∞we have

v2
k(i)→P c

2(`k) δk,i .

It follows that, as n→∞,

r∑
i=1

log

((
1−

∑r
k=1

(
1− `−1

k

)
v2
k(i)

)−1

`k

)
→P

r∑
i=1

log
(
c2(`k) + `ks

2(`k)
)
.

To evaluate (A.23), first observe that, by Lemma A.10,

max
r<i<p

r∑
k=1

v2
k(i)(1− `−1

k ) = OP

(
log p

p

)
,

and therefore, as n→∞,

pn∑
i=r+1

log

(
1−

r∑
k=1

(
1− `−1

k

)
v2
k(i)

)
→P

pn∑
i=r+1

r∑
k=1

(
1− `−1

k

)
v2
k(i) .

However, ‖vk‖2 = 1, hence by Theorem 4.1, as n→∞we have as n→∞

pn∑
i=r+1

v2
k(i)→P 1− c2(`k) = s2(`k) ,

so that, as n→∞,

pn∑
i=r+1

log

(
1−

r∑
k=1

(
1− `−1

k

)
v2
k(i)

)
→P

r∑
k=1

s2(`k)(1− `−1
k ) ,

and the lemma follows.
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