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An integral equation for the identification of causal effects in nonlinear models 

 
Wing Hung Wong 

Departments of Statistics and Biomedical Data Science 
Stanford University 

 

Abstract  

When the causal relationship between 𝑋𝑋 and 𝑌𝑌 is specified by a structural equation, the causal 
effect of 𝑋𝑋 on 𝑌𝑌 is the expected rate of change of 𝑌𝑌 with respect to changes in 𝑋𝑋, when all other 
variables are kept fixed. This causal effect is not identifiable from the distribution of (𝑋𝑋,𝑌𝑌). We 
give conditions under which this causal effect is identified as the solution of an integral 
equation based on the distributions of (𝑋𝑋,𝑍𝑍) and (Y,Z), where 𝑍𝑍 is an instrumental variable. 

 

Introduction 

Suppose the causal relation between two real-valued randomly variables 𝑋𝑋 and 𝑌𝑌 is specified by 
the structural equation 𝑌𝑌 = 𝑓𝑓(𝑋𝑋,𝑈𝑈), where 𝑈𝑈 represents all other variables that may also 

affect 𝑌𝑌. We assume 𝑓𝑓(𝑠𝑠,𝑈𝑈) is smooth in 𝑥𝑥, and write 𝑌𝑌(𝑥𝑥) = 𝑓𝑓(𝑥𝑥,𝑈𝑈), 𝑌𝑌(𝑖𝑖)(𝑥𝑥) = 𝜕𝜕𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑓𝑓(𝑥𝑥,𝑈𝑈), 

i=1,2. We regard 𝜃𝜃(𝑥𝑥) = 𝐸𝐸(𝑌𝑌(1)(𝑥𝑥)) as the causal effect of 𝑋𝑋 on 𝑌𝑌. Discussion of this model and 
its relation to the potential outcome framework for causal inference was given in Wong (2021). 
Since 𝑌𝑌(𝑥𝑥) and 𝑌𝑌(𝑖𝑖)(𝑥𝑥) are not directly obtainable from 𝑋𝑋 and 𝑌𝑌, 𝜃𝜃(𝑥𝑥) is not identifiable from 
the distribution (𝑋𝑋,𝑌𝑌) alone. The method of instrumental variable attempts to identify 𝜃𝜃(𝑥𝑥) 
from the joint distribution of (𝑋𝑋,𝑌𝑌,𝑍𝑍) where the instrumental variable 𝑍𝑍 can affect 𝑋𝑋 through 
another equation 𝑋𝑋 = 𝑔𝑔(𝑍𝑍,𝑉𝑉). However, identifiability results using instrumental variables are 
only available under very strong restrictions 𝑓𝑓 and 𝑔𝑔. These results and related literature had 
been reviewed in Wong (2021) and will not be repeated. 

We consider the following nonlinear, nonparametric causal model: 

• 𝑌𝑌 = 𝑓𝑓(𝑋𝑋,𝑈𝑈),   𝑌𝑌 ∈ 𝑅𝑅,  𝑋𝑋 ∈ 𝑅𝑅, 𝑈𝑈 ∈ 𝑅𝑅𝑝𝑝,   𝑓𝑓 is bounded and smooth in 𝑥𝑥  (1) 
• 𝑋𝑋 = 𝑔𝑔(𝑍𝑍,𝑉𝑉),   𝑍𝑍 ∈ 𝑅𝑅𝑞𝑞, 𝑉𝑉 ∈ 𝑅𝑅𝑟𝑟         (2) 
• sup

𝑥𝑥,𝑧𝑧
𝑝𝑝𝑧𝑧(𝑥𝑥)<∞,   where 𝑝𝑝𝑧𝑧( ) denotes the density function of 𝑋𝑋(𝑧𝑧)   (3) 

• 𝑍𝑍 is independent of (𝑈𝑈,𝑉𝑉)         (4) 

In (1), the condition that 𝑓𝑓 is bounded and smooth in 𝑥𝑥 means that sup
𝑢𝑢

|𝑓𝑓(0,𝑢𝑢)| < ∞ and 

sup
𝑢𝑢

| 𝜕𝜕𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑓𝑓(𝑥𝑥,𝑢𝑢)| < 𝑚𝑚(𝑥𝑥) for i=1, 2, where 𝑚𝑚( ) is a bounded and integrable function. Then, 

when 𝑥𝑥 → ∞,  we have 𝑌𝑌(∞) = lim𝑌𝑌(𝑥𝑥) exists and  𝐸𝐸(𝑌𝑌(𝑥𝑥)) → 𝐸𝐸(𝑌𝑌(∞)). Similarly for 
𝑌𝑌(−∞). Also, 𝜃𝜃(𝑥𝑥) = 𝐸𝐸(𝑌𝑌(1)(𝑥𝑥)) is a differentiable function and lim𝜃𝜃(𝑥𝑥)=0 as 𝑥𝑥 → ±∞. 

For nonlinear 𝑓𝑓 and 𝑔𝑔, the independence condition (4) is not sufficient for the identification of 
𝜃𝜃(𝑥𝑥) from the distribution of (𝑋𝑋,𝑌𝑌,𝑍𝑍). Under the condition that changes in 𝑌𝑌 caused by varying 
𝑋𝑋 is uncorrelated to changes in 𝑋𝑋 caused by varying Z, conditional on 𝑍𝑍 = 𝑧𝑧, Wong (2021) 
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showed that the distributions (𝑋𝑋,𝑍𝑍) and (𝑌𝑌,𝑍𝑍) identify a related function 𝜓𝜓(𝑧𝑧) =
𝐸𝐸(𝑌𝑌(𝑖𝑖1)(𝑋𝑋)|𝑍𝑍 = 𝑧𝑧). That paper also demonstrated by examples that sometimes the function 
𝜃𝜃(𝑥𝑥) can be recovered from the function 𝜓𝜓 (z), but did not provide results on the direct 
identification of 𝜃𝜃(𝑥𝑥). To fill this gap, in this paper we derive an integral equation that can be 
used to identify 𝜃𝜃(𝑥𝑥) from the distributions of (𝑋𝑋,𝑍𝑍) and (𝑌𝑌,𝑍𝑍). 

 

Result 

To formulate our main result, consider the following conditions: 

• 𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥) is uncorrelated with 𝑌𝑌(1)(𝑥𝑥), for all 𝑥𝑥, 𝑧𝑧    (5) 
• The set of distributions of 𝑋𝑋|𝑍𝑍 = 𝑧𝑧, induced by varying z, is a complete set (6)  

Theorem: If (1)-(6) hold, then 𝜃𝜃 is identifiable via the integral equation, 

        ∫𝐾𝐾(𝑧𝑧, 𝑥𝑥)𝜃𝜃(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝜇𝜇(𝑧𝑧) − 𝜇𝜇(0)          (7) 

           where 𝐾𝐾(𝑧𝑧, 𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑍𝑍 = 0) − 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)  

  𝜇𝜇(𝑧𝑧) = 𝐸𝐸(𝑌𝑌|𝑍𝑍 = 𝑧𝑧)    

Proof: 

       𝜇𝜇(𝑧𝑧) = 𝐸𝐸(𝑌𝑌|𝑍𝑍 = 𝑧𝑧) = 𝐸𝐸(𝑓𝑓(𝑋𝑋,𝑈𝑈)|𝑍𝑍 = 𝑧𝑧) = 𝐸𝐸(𝑓𝑓(𝑔𝑔(𝑧𝑧,𝑉𝑉),𝑈𝑈|𝑍𝑍 = 𝑧𝑧) 

                 = 𝐸𝐸(𝑌𝑌(𝑋𝑋(𝑧𝑧))) 

                 = 𝐸𝐸 ∫𝛿𝛿�𝑥𝑥 − 𝑋𝑋(𝑧𝑧)�𝑌𝑌(𝑥𝑥)𝑑𝑑𝑥𝑥        (8) 

Replacing the delta function 𝛿𝛿( ) by the 𝑁𝑁(0,𝜎𝜎2) density 𝜙𝜙𝜎𝜎( ), we define 

       𝜇𝜇𝜎𝜎(𝑧𝑧) = 𝐸𝐸 ∫𝜙𝜙𝜎𝜎 �𝑥𝑥 − 𝑋𝑋(𝑧𝑧)�𝑌𝑌(𝑥𝑥)𝑑𝑑𝑥𝑥       (9) 

Since 𝑌𝑌(𝑥𝑥) = 𝑌𝑌(𝑋𝑋(𝑧𝑧)) + 𝑌𝑌(1)(𝑋𝑋(𝑧𝑧))�𝑥𝑥 − 𝑋𝑋(𝑧𝑧)� + 1
2
𝑌𝑌(2)(𝑋𝑋(𝑊𝑊))�𝑥𝑥 − 𝑋𝑋(𝑧𝑧)�2, where 𝑊𝑊 is an 

intermediate variable lying between 𝑥𝑥 and 𝑋𝑋(𝑧𝑧), hence 

      𝜇𝜇𝜎𝜎(𝑧𝑧) = 𝐸𝐸𝑌𝑌(𝑋𝑋(𝑧𝑧) + 𝐸𝐸[1
2
𝑌𝑌(2)(𝑋𝑋(𝑊𝑊))∫𝜙𝜙𝜎𝜎( �𝑥𝑥 − 𝑋𝑋(𝑧𝑧)��𝑥𝑥 − 𝑋𝑋(𝑧𝑧)�2𝑑𝑑𝑥𝑥 

                  =  𝜇𝜇(𝑧𝑧) + 𝜎𝜎2

2
sup
𝑥𝑥
𝑚𝑚(𝑥𝑥) 

Thus, |𝜇𝜇𝜎𝜎(𝑧𝑧) − 𝜇𝜇(𝑧𝑧)| ≤ 𝑐𝑐𝜎𝜎2 for some constant c      (10) 

Next, we claim that 

     |𝐸𝐸 �Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� 𝑌𝑌(1)(𝑥𝑥)� − 𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)𝜃𝜃(𝑥𝑥)| ≤ 𝑐𝑐𝑚𝑚(𝑥𝑥)√𝜎𝜎 for some constant c (11)  

Assuming (11) is true, we now analyze the integral in (9). Using integration by part, we have 

     𝜇𝜇𝜎𝜎(𝑧𝑧) = 𝐸𝐸[𝑌𝑌(∞) − ∫�Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� 𝑌𝑌(1)(𝑥𝑥)� 𝑑𝑑𝑥𝑥] 

                 = 𝐸𝐸(𝑌𝑌(∞)) − ∫𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)𝜃𝜃(𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑟𝑟(𝑧𝑧,𝜎𝜎)     
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where for some constant c,  |𝑟𝑟(𝑧𝑧,𝜎𝜎)| ≤ 𝑐𝑐√𝜎𝜎  for all small 𝜎𝜎. 

Thus |(𝜇𝜇𝜎𝜎(𝑧𝑧) − 𝜇𝜇𝜎𝜎(0)) − ∫[𝑃𝑃(𝑋𝑋(0) ≤ 𝑥𝑥) − 𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)]𝜃𝜃(𝑥𝑥)𝑑𝑑𝑥𝑥|≤ 2𝑐𝑐√𝜎𝜎   (12) 

Taking the limit of (10) and (12) as σ→ 0, we have 

     𝜇𝜇(𝑧𝑧) − 𝜇𝜇(0) = lim
𝜎𝜎→0

(𝜇𝜇𝜎𝜎(𝑧𝑧) − 𝜇𝜇𝜎𝜎(0)) =∫[𝑃𝑃(𝑋𝑋(0) ≤ 𝑥𝑥) − 𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)]𝜃𝜃(𝑥𝑥)𝑑𝑑𝑥𝑥. 

The desired equation (7) follows because 𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥) = 𝑃𝑃(𝑔𝑔(𝑧𝑧,𝑉𝑉) ≤ 𝑥𝑥) = 𝑃𝑃(𝑔𝑔(𝑧𝑧,𝑉𝑉) ≤
𝑥𝑥|𝑍𝑍 = 𝑧𝑧) = 𝑃𝑃(𝑔𝑔(𝑍𝑍,𝑉𝑉) ≤ 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑍𝑍 = 𝑧𝑧). 

To prove the claim (11), 

     |𝐸𝐸 �Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� 𝑌𝑌(1)(𝑥𝑥)� − 𝑃𝑃(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)𝜃𝜃(𝑥𝑥)| 

     = |𝐸𝐸 �Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� 𝑌𝑌(1)(𝑥𝑥)� − 𝐸𝐸(𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥))𝐸𝐸(𝑌𝑌(1)(𝑥𝑥))| 

     = |𝐸𝐸 �Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� 𝑌𝑌(1)(𝑥𝑥)� − 𝐸𝐸(𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)𝑌𝑌(1)(𝑥𝑥))|       (by condition (5)) 

     ≤ 𝑚𝑚(𝑥𝑥) 𝐸𝐸|Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� − 𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)|  

     ≤ 𝑚𝑚(𝑥𝑥) [Φ�− 1
√𝜎𝜎
� + 4(sup

𝑥𝑥,𝑧𝑧
𝑝𝑝𝑧𝑧(𝑥𝑥))√𝜎𝜎 ]       (13) 

The last inequality (13) holds because |Φ�𝑥𝑥−𝑋𝑋(𝑧𝑧)
𝜎𝜎

� − 𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥)| is bounded by 2 on 𝐴𝐴(𝜎𝜎) and 

by Φ(− 1
√𝜎𝜎

) on 𝐴𝐴(𝜎𝜎)𝐶𝐶, where 𝐴𝐴(𝜎𝜎) is the event {|𝑋𝑋(𝑧𝑧) − 𝑥𝑥| ≤ √𝜎𝜎}. 

Since both 𝐾𝐾(𝑧𝑧, 𝑥𝑥) and 𝜇𝜇(𝑧𝑧) in the integral equation (7) are determined by the distributions of 
(𝑋𝑋,𝑍𝑍) and (𝑌𝑌,𝑍𝑍), it follows that 𝜃𝜃 is also determined if the solution to (7) is unique. 

To establish uniqueness, let 𝑎𝑎 be a fixed constant, and define for any 𝜃𝜃( ), its anti-derivative 
𝜆𝜆(𝑥𝑥) = 𝑎𝑎 − ∫ 𝜃𝜃(𝑡𝑡)𝑑𝑑𝑡𝑡∞

𝑥𝑥 . Suppose 𝜃𝜃1 and 𝜃𝜃2 are two solutions to (7) and 𝜆𝜆1 and 𝜆𝜆2 are the 
corresponding anti-derivatives, then 

𝐸𝐸(𝜆𝜆1(𝑋𝑋) − 𝜆𝜆2(𝑋𝑋)|𝑍𝑍 = 𝑧𝑧) = �𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥|𝑧𝑧) (𝜆𝜆1 − 𝜆𝜆2)(𝑥𝑥)𝑑𝑑𝑥𝑥

= −�𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)(𝜃𝜃1 − 𝜃𝜃2)(𝑥𝑥)𝑑𝑑𝑥𝑥 = −�𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑍𝑍 = 0)(𝜃𝜃1 − 𝜃𝜃2)(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Since the last expression does not depend on 𝑧𝑧, condition (6) implies 𝜆𝜆1 = 𝜆𝜆2 , and therefore 
𝜃𝜃1 = 𝜃𝜃2. 

 

Discussion 

Of the 6 conditions in the theorem, the first 3 are needed just set up the model and are not 
restrictive. On the other hand, conditions (4), (5), (6) each represents a significant constraint on 
the model. Condition (4) says that 𝑍𝑍 is independent of all other causal variables that affect 𝑋𝑋 
and 𝑌𝑌. Together with (1) and (2), this means that the only way 𝑍𝑍 can affect 𝑌𝑌 causally is 
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indirectly through its effect on 𝑋𝑋. This seems to be a natural condition on an instrumental 
variable. Condition (6) implies that the family of conditional distributions 𝑃𝑃(𝑋𝑋|𝑍𝑍 = 𝑧𝑧) as 𝑧𝑧 
varies, is a large family. This means that 𝑍𝑍 has non-trivial relationship with 𝑋𝑋 in the sense that 
varying the value of 𝑧𝑧 leads to rich changes in the distribution of 𝑋𝑋. This is also a reasonable 
condition on an instrumental variable. This type of completeness condition was first introduced 
into causal inference by Imbens and Newey (2003). Finally, condition (5) requires 𝑌𝑌(1)(𝑥𝑥) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑥𝑥,𝑈𝑈) to be uncorrelated to 𝐼𝐼(𝑋𝑋(𝑧𝑧) ≤ 𝑥𝑥) = 𝐼𝐼(𝑔𝑔(𝑧𝑧,𝑉𝑉) ≤ 𝑥𝑥),  which is a non-trivial condition 
not easy to interpret, but is needed to establish the relationship (7) between 𝜇𝜇(𝑧𝑧) and 𝜃𝜃(𝑥𝑥). 
Wong (2021) introduced a similar condition that requires  𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
(𝑋𝑋,𝑈𝑈) to be conditionally 

uncorrelated to 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

(𝑍𝑍,𝑉𝑉) given 𝑍𝑍 = 𝑧𝑧. However, under that condition one can only relate 𝜇𝜇(𝑧𝑧) 

to 𝜓𝜓(𝑧𝑧) = 𝐸𝐸(𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑋𝑋(𝑧𝑧),𝑈𝑈)) but not to 𝜃𝜃(𝑥𝑥) = 𝐸𝐸(𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑥𝑥,𝑈𝑈)). In the general context of (1)-(4), we 
are not aware of alternative conditions that be used to relate 𝜇𝜇(𝑧𝑧) to 𝜃𝜃(𝑥𝑥). 

Example: Suppose 𝑌𝑌 = 𝑈𝑈1ℎ(𝑋𝑋) + 𝑈𝑈2 , 𝑋𝑋 = 𝑔𝑔(𝑍𝑍,𝑉𝑉), where ℎ( ) is a smooth and bounded 
function in 𝑥𝑥. If 𝑈𝑈1is independent of 𝑉𝑉, then condition (5) is satisfied. In this example, the 
“subject-level” causal effect 𝑌𝑌(1)(𝑥𝑥) is assumed to be proportional to a nonlinear function ℎ(𝑥𝑥), 
but heterogeneity is allowed by letting the proportionality constant depend on the subject. On 
the other hand, no restriction is imposed on the relation between 𝑍𝑍 and 𝑋𝑋 beyond the 
completeness condition (6), which is not too restrictive. For example, (6) holds in the following 
cases (a) 𝑔𝑔(𝑧𝑧, 𝑣𝑣) = 𝑠𝑠(𝑧𝑧 + 𝑣𝑣) where 𝑠𝑠( ) is an invertible function and 𝑉𝑉 is a continuous random 
variable, (b) 𝑔𝑔(𝑧𝑧, 𝑣𝑣) = 1+𝑣𝑣1𝑧𝑧 + 𝑣𝑣2𝑧𝑧2, 𝑉𝑉1 and 𝑉𝑉2 are independent random variables. This 
example demonstrated the usefulness of our result in a nonlinear, nonparametric model that 
allows heterogeneity in the causal effect of 𝑋𝑋 on 𝑌𝑌 in different subjects. 

The above proof of the theorem follows the way we discovered the integral equation originally, 
namely, start with the expression for 𝐸𝐸(𝑌𝑌|𝑍𝑍 = 𝑧𝑧), replace the delta function in the expression 
by the normal kernel and then integrate by part to obtain an expression involving 𝜃𝜃( ). Weijie 
Su (personal communication) suggests a second proof, which starts from the given 𝐾𝐾(𝑧𝑧, 𝑥𝑥) and 
then shows that the integral in (7) gives rise to 𝜇𝜇(𝑧𝑧) − 𝜇𝜇(0). His proof has the advantage that it 
does not require the existence of bounded second derivatives. See Su (2021, arXiv). 
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