Stanford University
Departments of Mathematics and Statistics

PROBABILITY SEMINAR
4pm, Monday, April 29, 2019
Sequoia Hall Room 200
Refreshments served at 3:30pm in the Lounge.

Speaker: Jim Pitman
Departments of Statistics and Mathematics,
University of California, Berkeley

Title: Probability laws with a power biased inverse: Functional and distributional equations related to self-reciprocal Fourier transforms and the Riemann zeta function

Abstract:
The functional equation \(f(1/t) = t^{2+q} f(t) \) for a probability density function \(f \) on the positive half line, and some real \(q \), is of interest in several contexts. It is known that \(f \) solves this equation with \(q = -n \) iff for a random vector \(Z_n \) with \(n \) independent standard Gaussian components, independent of \(\Sigma \) with density \(f \), the probability density of \(\Sigma Z_n / \sqrt{2\pi} \) on \(R^n \) is self-reciprocal in the sense of harmonic analysis, meaning it is its own Fourier transform. For a general distribution of \(\Sigma \), the density of \(\Sigma Z_n / \sqrt{2\pi} \) is self-reciprocal iff \(Y = \Sigma^{-n} \) has a size-biased inverse, meaning \(EYg(Y) = Eg(Y^{-1}) \) for all nonnegative measurable \(g \). Equivalently, \(EY^{1-s} = EY^s \) for all \(0 \leq s \leq 1 \). This is a distributional symmetry of \(Y \) in the same vein as the Palm–Mecke–Chen characterization of the Poisson distribution, and Stein’s characterization of the normal distribution, by identities involving \(EYg(Y) \) for a generic function \(g \). Biane and Yor showed a distribution of \(Y \) with a size-biased inverse is involved in the probabilistic representation of Riemann’s \(\xi \) function by \(2\xi(s) = EY^s \). Then the distributional symmetry of \(Y \) is equivalent to Riemann’s functional equation \(\xi(1-s) = \xi(s) \), leading to the functional equation and analytic continuation of the Riemann zeta function. The set of all distributions of \(Y \) with a size-biased inverse may be characterized in a number of ways. In particular, it is a simplex: every such distribution is a unique probabilistic mixture over \(0 < u \leq 1 \) of the extreme distribution of \(Y_u \) on \(\{u, u^{-1}\} \) with mean 1.