Speaker: Yves Atchade, *Boston University*

Title: Interplay between Bayesian theory and computation

Abstract:

We advocate a quasi-likelihood approach and a spike-and-slab modeling framework for large-scale Bayesian data analysis. The resulting posterior distribution (Π say), in the linear regression case can be sampled by Markov chain Monte Carlo (MCMC) at the cost of $O(p^2)$ per iteration (compared to at least $O(\min(n,p)p^2)$ for the state of the art), where n is the sample size and p is the dimension of the parameter space.

Of practical importance are the questions of quantifying the mixing times of MCMC sampling from Π, and understanding the behaviors of variational approximations to Π. We argue — and this is the main theme of the talk — that the theoretical statistical properties of Π can be exploited to shed some light on these computational questions. We illustrate the results with sparse linear regression and sparse principal component analysis.