Probabilistic perspective toward KPZ class models

Mon January 29th 2024, 4:00pm
Sloan 380C
Lingfu Zhang, UC Berkeley

A striking phenomenon in probability theory is universality, where different probabilistic models produce the same large-scale or long-time limits. One example is the Kardar-Parisi-Zhang (KPZ) universality class, which encompasses a wide range of natural models such as growth processes modeling bacterial colonies, eigenvalues of random matrices, and traffic flow models originating from mRNA translation. Historically, these KPZ class models have been studied primarily through algebraic methods. In this talk, I will introduce a more probabilistic perspective, which has enabled us to successfully resolve many open problems. I will present a selection of these results, including: (1) geodesic statistics of Last Passage Percolation, a pivotal model in the KPZ class; (2) the slow bond problem in a related traffic flow model; and (3) the cutoff phenomenon in Metropolis biased card shuffling. No prior knowledge of the topic will be assumed.